Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66865
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor雷欽隆
dc.contributor.authorYi-Cheng Tsaien
dc.contributor.author蔡一誠zh_TW
dc.date.accessioned2021-06-17T01:09:51Z-
dc.date.available2020-02-04
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-01-17
dc.identifier.citation[1] J. Wu, S. Guo, J.Li, and D. Zeng, “Bigdatameetgreen challenges: Big data toward green applications,” Ieee systems journal, vol. 10, pp. 888–900, 2016.
[2] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, “Information and communications technologies for sustainable development goals: State-of-the-art, needs and perspectives,” Ieee communications surveys & tutorials, vol. 20, pp. 2389–2406, 2018.
[3] F. Provost and T. Fawcet, Data science and its rela tionship to big data and data-driven decision making. 2013.
[4] D. Vezeris, C. Schinas, and G. Papaschinopoulos, “Profitability edge by dynamic back testing optimal period selection for technical parameters optimization, in trading systems with forecasting,” Computational economics, vol. 51, pp. 761–807, 2018.
[5] S. Schulmeister, “Profitability of technical stock trading: Has it moved from daily to intraday data?” Review of financial economics, vol. 18, no. 4, pp. 190–201, 2009.
[6] W. Brock, J. Lakonishok, and B. LeBaron, “Simple technical trading rules and the stochastic properties of stock returns,” The journal of finance, vol. 47, no. 5, pp. 1731–1764, 1992.
[7] E. Boehmer and E. K. Kelley, “Institutional investors and the informational efficiency of prices,” Review of financial studies, vol. 22, no. 9, pp. 3563–3594, 2009.
[8] J. Y. Campbell, T. Ramadorai, and A. Schwartz, “Caught on tape: Institutional trading, stock returns, and earnings announcements,” Journal of financial economics, vol. 92, no. 1, pp. 66–91, 2009.
[9] C.-C. Chang, P.-F. Hsieh, and H.-N. Lai, “Do informed option investors predict stock returns? evidence from the taiwan stock exchange,” Journal of banking & finance, vol. 33, no. 4, pp. 757–764, 2009.
[10] A. Boulatov, T. Hendershott, and D. Livdan, “In-formed trading and portfolio returns,” The review of economic studies, vol. 80, no. 1, pp. 35–72, 2013.
[11] T. Hendershott, D. Livdan, and N. Schürhoff, “Are institutions informed about news?” Swiss finance institute research paper, no. 14-49, 2014.
[12] Y.-C. Tsai, C.-L. Lei, W. Cheung, C.-S. Wu, J.-M. Ho, and C.-J. Wang, “Exploring the persistent behavior of financial markets,” Finance research letters, vol. 24, pp. 199–220, 2018
[13] Hirshleifer, D. (2001). Investor psychology and asset pricing. The Journal of Finance, 56(4), 1533-1597.
[14] Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1, 1053-1128.
[15] Menkhoff, L. (2010). The use of technical analysis by fund managers: International evidence. Journal of Banking & Finance, 34(11), 2573-2586. ISO 690
[16] Park, C. H., & Irwin, S. H. (2007). What do we know about the profitability of technical analysis?. Journal of Economic Surveys, 21(4), 786-826.
[17] Wood, R. A., McInish, T. H., & Ord, J. K. (1985). An investigation of transactions data for NYSE stocks. The Journal of Finance, 40(3), 723-739.
[18] Jain, P. C., & Joh, G. H. (1988). The dependence between hourly prices and trading volume. Journal of Financial and Quantitative Analysis, 23(03), 269-283.
[19] Admati, A. R., & Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price variability. Review of Financial studies, 1(1), 3-40.
[20] Hendershott, T., Livdan, D., & Sch‘rhoff, N. (2011). Are Institutions Informed About News?. Unpublished Working Paper.
[21] Chang, C. C., Hsieh, P. F., & Lai, H. N. (2009). Do informed option investors predict stock returns? Evidence from the Taiwan stock exchange. Journal of Banking & Finance, 33(4), 757-764.
[22] Foster, F. D., & Viswanathan, S. (1990). A theory of the interday variations in volume, variance, and trading costs in securities markets. Review of financial Studies, 3(4), 593-624.
[23] Foster, F. D., & VISWANATHAN, S. (1993). Variations in trading volume, return volatility, and trading costs; Evidence on recent price formation models. The Journal of Finance, 48(1), 187-211.
[24] Neely, C. J., Weller, P. A., & Ulrich, J. M. (2009). The adaptive markets hypothesis: evidence from the foreign exchange market. Journal of Financial and Quantitative Analysis, 44(02), 467-488.
[25] Lo, A. W. (2004). The adaptive markets hypothesis. The Journal of Portfolio Management, 30(5), 15-29.
[26] Cheung, W., Lam, K. S., & Yeung, H. (2011). Intertemporal profitability and the stability of technical analysis: evidences from the Hong Kong stock exchange. Applied Economics, 43(15), 1945-1963.
[27] Szakmary, A. C., Shen, Q., & Sharma, S. C. (2010). Trend-following trading strate- gies in commodity futures: A re-examination. Journal of Banking & Finance, 34(2), 409-426.
[28] Bekaert, G., C. B. Erb, C. R. Harvey, and T. E. Viskanta (1998). The behavior of emerging market returns. In Emerging Market Capital Flows, pp. 107–173. Springer.
[29] Bianchi, S., A. Pantanella, and A. Pianese (2013). Modeling stock prices by multifractional brownian motion: an improved estimation of the pointwise regularity. Quantitative Fi- nance 13 (8), 1317–1330.
[30] Hoffmann, A. O. and H. Shefrin (2014). Technical analysis and individual investors. Journal of Economic Behavior & Organization 107, 487–511.
[31] Matos, J. A., S. M. Gama, H. J. Ruskin, A. Al Sharkasi, and M. Crane (2008). Time and scale hurst exponent analysis for financial markets. Physical A: Statistical Mechanics and its Applications 387 (15), 3910–3915.
[32] Nofsinger, J. R. and R. W. Sias (1999). Herding and feedback trading by institutional and individual investors. The Journal of Finance 54 (6), 2263–2295.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66865-
dc.description.abstract了解金融市場行為是非常有趣的問題與題目。隨著科技技術的發展,目前的環境已經擁有大量的數據供我們參考和研究。這些數據訊息的產生,讓我們可以有跡可循的去解決問題。大數據分析也讓我們判斷的更加精確,進而解決各領域的問題。當然,這些問題也包含了金融交易領域的問題。數據分析提供了一種科學方法來判斷和驗證數據背後所帶給我們的線索,提高了生產效率也讓我們有更多的創新機會。本文旨在通過數據分析探索金融市場的行為。在此論文,我們透過對市場行為的了解提出了兩種交易策略。這兩種交易策略分別是時間突破區間策略(TORB)以及持續行為策略(PBS)。我們還藉由數據分析驗證了這兩種策略背後的金融市場行為。對於這兩種策略,我們獲得了最佳的結果分別是,在TORB中,在p值為3.1×10-5的年收益率為20.28%;在PBS中,在p值小於1×10-5的年收益率為27%。我們也針對TAIEX期貨交易數據進行了實驗來分析這兩種策略的信號與交易者行為之間的關係。我們發現這兩種策略的交易訊號與法人的投資行為呈顯著性的正相關。而這個正相關在國外投資法人更為顯著。zh_TW
dc.description.abstractUnderstanding the market behavior is an interesting issue in financial markets. With the development of information technology, a considerable amount of data has been generated and thus can be utilized to produce useful information and insights to better solve various problems in many fields including finance. Data analysis provides a scientific way to capture and verify the information behind the data, which promotes productivity, improves efficiency, and supports innovation. In this dissertation, we aim to explore the financial market behavior via data analysis. Thus, we proposed two trading strategies, which are timely open range breakout (TORB) and persistent behavior strategy (PBS). We also explored financial market behavior behind these two strategies through data analysis. For these two strategies, we obtain the best performance, 20.28% annual returns at a p-value of 3.1×10-5, in the TORB, and 27% net annual returns with p-value less than 1 ×10-5, in PBS. We conduct experiments on a TAIEX futures transaction dataset to analyze the relationship between these two strategies’ signals and traders’ behaviors, and find the signals are in the same direction as institutional traders, especially foreign investment institutions.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:09:51Z (GMT). No. of bitstreams: 1
ntu-109-D98921019-1.pdf: 3037564 bytes, checksum: 80dafa0a25c6522692361b9ac40356c5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
Chapter 2 Related Work 9
Chapter 3 Assessing the Profitability of Timely Opening Range Breakout on Index Futures Markets 12
3.1 Methodology of TORB 12
3.1.1 Definitions of PMMV and PMVR 12
3.1.2 TORB trading rules 13
3.2 Experimental results and discussion 14
3.2.1 Active hours 18
3.2.2 TORB profitability test 20
3.2.3 Relationship between TORB signals and trader behavior 27
Chapter 4 Exploring the Persistent Behavior of Financial Markets 40
4.1 Methodology of PB of PBS 40
4.1.1 Persistent behavior 40
4.1.2 Persistent behavior strategy (PBS) 41
4.2 Data 41
4.3 Experimental results and discussion 42
4.3.1 Persistent behavior 43
4.3.2 PBS performance 46
4.3.3 Returns and positions of investors 48
4.3.3.1 Relationship of sign of probe returns to net buy positions of investors 50
4.3.3.2 Persistent trading behavior of investors 52
4.3.3.3 Relationship of positions in the probe period and hind returns 54
Chapter 5 Conclusion 84
Bibliography 87
dc.language.isoen
dc.subject交易者行為zh_TW
dc.subject技術分析zh_TW
dc.subject時間突破區間zh_TW
dc.subject指數期貨zh_TW
dc.subject持續行為zh_TW
dc.subject交易策略zh_TW
dc.subjectTrading Strategyen
dc.subjectIndex Futuresen
dc.subjectOpen Range Breakouten
dc.subjectTechnical Analysisen
dc.subjectTraders’ Behavioren
dc.subjectPersistent Behavioren
dc.title利用資料分析進行金融市場之探討與研究zh_TW
dc.titleExploring Financial Market Behavior via Data Analysisen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee郭斯彥,顏嗣鈞,王凡,何建明,吳中書
dc.subject.keyword持續行為,指數期貨,時間突破區間,技術分析,交易者行為,交易策略,zh_TW
dc.subject.keywordPersistent Behavior,Index Futures,Open Range Breakout,Technical Analysis,Traders’ Behavior,Trading Strategy,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202000171
dc.rights.note有償授權
dc.date.accepted2020-01-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved