Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙聖德(Sheng-Der Chao)
dc.contributor.authorWei-Cheng Kaoen
dc.contributor.author高煒程zh_TW
dc.date.accessioned2021-06-17T01:09:48Z-
dc.date.available2023-01-21
dc.date.copyright2020-01-21
dc.date.issued2020
dc.date.submitted2020-01-17
dc.identifier.citation[1] Chao, S.W., A.H.T. Li, and S.D. Chao, Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials. Journal of Computational Chemistry, 2009. 30(12): p. 1839-1849.
[2] Chen Q.S., and S.D. Chao, Quantum Chemistry Calculated Intermolecular Interaction and Molecular Dynamics Simulation of Dichloromethane, National Taiwan University, Institute of Applied Mechanics, 2019
[3] Yin, C.-C., A.H.-T. Li, and S.D. Chao, Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential. Journal of Chemical Physics, 2013. 139(19): p. 194501.
[4] Li, A.H.-T., S.-C. Huang, and S.D. Chao, Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field. Journal of chemical physics, 2010. 132(2): p. 024506.
[5] Chen, Y.-D., et al., Molecular dynamics simulations of liquid water structure and diffusivity. 2013. 51(6): p. 1218-1229.
[6] Tyagi, O.S., H.S. Bisht, and A.K. Chatterjee, Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. Journal of Physical Chemistry B, 2004. 108(9): p. 3010-3016.
[7] Jeffery, G. and W. Saenger, Hydrogen bonding in biological structures. (Spriger-Verlag, Berlin, 1991).
[8] Anthony J. Stone, The Theory of Intermolecular Forces. (Oxford University Press, Oxford, 1996).
[9] Marchetti, O. and H.-J. Werner, Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. Journal of Physical Chemistry A, 2009. 113(43): p. 11580-11585.
[10] Raghavachari, K., et al., A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 1989. 157(6): p. 479-483.
[11] Zhao, Y. and D.G. Truhlar, Benchmark databases for nonbonded interactions and their use to test density functional theory. Journal of Chemical Theory Computation, 2005. 1(3): p. 415-432.
[12] D. Frenkel, B. Smit, Understanding Molecular Simulation. (Acdemic Press, New York, 2002).
[13] Jeziorski, B., R. Moszynski, and K. Szalewicz, Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 1994. 94(7): p. 1887-1930.
[14] Marques, M.A. and E.K. Gross, Time-dependent density functional theory. Annual Review of Physical Chemistry 2004. 55: p. 427-455.
[15] Tables of Experimental Dipole Moments. A. L. McClellan, W. H. Freman and Co., San Francisco (1963).
[16] Lide DR, CRC Handbook of Chemistry and Physics(89 ed). (Boca Raton: CRC Press, 2008).
[17] Krishnan, R., et al., Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal of Chemical Physics, 1980. 72(1): p. 650-654.
[18] Dunning Jr, T.H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of chemical physics, 1989. 90(2): p. 1007-1023.
[19] Boys, S.F. and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 1970. 19(4): p. 553-566.
[20] Frisch, M., et al., Gaussian 09, revision a. 02, gaussian. 2009. 200: p. 28.
[21] Turney, J.M., et al., Psi4: an open‐source ab initio electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012. 2(4): p. 556-565.
[22] Loru, D., I. Peña, and M.E. Sanz, Ethanol dimer: Observation of three new conformers by broadband rotational spectroscopy. Journal of Molecular Spectroscopy, 2017. 335: p. 93-101.
[23] Sasada, Y., M. Takano, and T. Satoh, Microwave spectrum and rotational isomerism in 1-d1 ethyl alcohol. Journal of Molecular Spectroscopy, 1971. 38(1): p. 33-42.
[24] Jorgensen, W.L., Optimized intermolecular potential functions for liquid alcohols. Journal of Physical Chemistry, 1986. 90(7): p. 1276-1284.
[25] Rapaport, D.C., The art of molecular dynamics simulation. 2004: Cambridge university press.
[26] Martin, J.M., Ab initio total atomization energies of small molecules—towards the basis set limit. Chemical physics letters, 1996. 259(5-6): p. 669-678.
[27] Helgaker, T., et al., Basis-set convergence of correlated calculations on water. Journal of Chemical Physics, 1997. 106(23): p. 9639-9646.
[28] Feller, D., Application of systematic sequences of wave functions to the water dimer. Journal of Chemical Physics, 1992. 96(8): p. 6104-6114.
[29] Press, W.H., et al., Numerical Recipes in C: The Art of Scientific Computing. Vol. Edn. 2nd. 1996, Cambridge University Press Cambridge, UK:.
[30] Jurečka, P., et al., Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chemical Physics, 2006. 8(17): p. 1985-1993.
[31] Onken, U., J. Rarey-Nies, and J. Gmehling, The Dortmund Data Bank: A computerized system for retrieval, correlation, and prediction of thermodynamic properties of mixtures. International Journal of Thermophysics, 1989. 10(3): p. 739-747.
[32] Benmore, C.J. and Y.L. Loh, The structure of liquid ethanol: A neutron diffraction and molecular dynamics study. Journal of Chemical Physics, 2000. 112(13): p. 5877-5883.
[33] Karger, N., T. Vardag, and H.D. Ludemann, Temperature dependence of self-diffusion in compressed monohydric alcohols. Journal of Chemical Physics, 1990. 93(5): p. 3437-3444.
[34] Saiz, L., J.A. Padro, and E. Guardia, Structure and dynamics of liquid ethanol. Journal of Physical Chemistry B, 1997. 101(1): p. 78-86.
[35] Klinov, A. and I. Anashkin, Diffusion in Binary Aqueous Solutions of Alcohols by Molecular Simulation. Processes, 2019. 7(12): p. 947.
[36] Suarez-Iglesias, O., et al., Self-diffusion in molecular fluids and noble gases: available data. Journal of Chemical Engineering Data, 2015. 60(10): p. 2757-2817.
[37] Chen, B., J.J. Potoff, and J.I. Siepmann, Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. Journal of Physical Chemistry B, 2001. 105(15): p. 3093-3104.
[38] Schnabel, T., J. Vrabec, and H. Hasse, Henry’s law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K: Prediction from molecular simulation. Fluid Phase Equilibria, 2005. 233(2): p. 134-143.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66863-
dc.description.abstract研究主要分量子化學計算與分子動力學模擬兩部分,在量子計算方面,我們使以MP2/aug-cc-pVQZ計算乙醇分子單體之結構最佳化,並以自洽理論(Hartee-Fock, HF)、微擾理論(Møller–Plesset Perturbation Theory, MP)及耦合簇理論(Coupled Cluster Method, CC)等方法對乙醇分子二聚體的分子間作用力進行計算,所有計算均使用Basis Set Supperposition Error(BSSE)修正,其中在HF與MP2方法所搭配的基底為Pople’s medium size與Dunning’s correlation consistent,並對其做最佳化處理,在CCSD(T)則使用aug-cc-pVDZ繪製勢能曲線。接著使用四種方法計算基底極限值(CBS)與MP2計算做比較。我們接著針對選定的19種構型,使用PSI4軟體內的SAPT分析將乙醇分子二聚體間的勢能拆解成四種不同的能量,分別為靜電能、交換能、誘導能與色散能,分析對於不同構型的乙醇分子二聚體,各項吸引力與排斥力對其勢能的影響。
計算完成後,我們使用以原先的OPLS 4-sites model為底,進行修改與新增後得到的9-sites model擬合量子化學計算得到的19種構型的乙醇分子二聚體勢能曲線,架構出力場,並將其代入牛頓方程式去進行分子動力學模擬,接著與實驗值做比較。模擬部分我們沿著汽化曲線從三相點模擬至接近臨界點,得到各溫度下的徑向分佈函數(Radial Distribution Function, RDF)、速度自相關函數(Velocity autocorrelation Function, VAF)、擴散係數(Diffusion coefficient)與黏滯係數(Viscosity)等,與實驗值做比較後皆得到相當不錯的模擬結果,代表以量子化學計算結果架構出的力場進行分子動力學模擬有一定程度的可靠性。
zh_TW
dc.description.abstractThis research including two parts, one is quantum chemical calculation, and another is molecular dynamics simulation. In the first part, we use MP2 with aug-cc-pVQZ to optimize the structure of the ethanol monomer and also calculate the intermolecular interaction potentials of the ethanol-ethanol dimer by using Hartee-Fock self-consistent theory(HF), second-order Møller–Plesset Perturbation Theory(MP2) and Coupled Cluster method(CC), and the correction of the basis-set superposition error(BSSE) has been included. We use MP2 and HF with Pople’s medium size basis sets and Dunning’s correlation consistent basis sets to optimize the ethanol dimer and cauculate the binding energy, and use CCSD(T) only with aug-cc-pVDZ to cauculate. Then we apply four different method to get the complete basis sets limit and compare with the result calculating with MP2. Furthermore, we take the SAPT analysis (Symmetry-Adapted Perturbation Theory) in the PSI4 software to the 19 selected conformers and decompose the potential energy of the ethanol dimer into four different energies, including electrostatic energy, exchange energy, induction energy and dispersion energy.
After the calculation is completed, we move to the second part. In this part, we use the 9-sites model, which is modified from OPLS 4-sites model, to fit the ab initio data and construct the force field. Then we substitute it into Newton equation to perform molecular dynamics simulation and compare with the experimental data. We simulate from triple point along the vaporization curve to the critical point, and obtain the data of the Radial Distribution Function(RDF), Velocity autocorrelation Function(VAF), diffusion coefficient and viscosity. The comparison of the simulation and experimental data is acceptable, which represents the molecular dynamics simulation base on the force field constructed by the result of quantum chemical calculation can accurately reproduce the thermodynamic properties.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:09:48Z (GMT). No. of bitstreams: 1
ntu-109-R06543054-1.pdf: 3217478 bytes, checksum: 4cfaf12f43c4e935b63b6af5db3c8552 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
第二章 基本理論 5
2.1 量子力學基本理論 5
2.1.1 薛丁格方程式(Schrödinger equation) 5
2.1.2 波恩-奧本海默近似法(Born-Oppenheimer approximation) 8
2.2 分子軌域理論 13
2.2.1 全初始法 13
2.2.2 HF近似法(Hartree-Fock approximation) 14
2.2.3 微擾理論(Møller–Plesset Perturbation Theory) 18
2.2.4 耦合簇理論(Coupled Cluster Method, CC) 23
2.3 分子動力學 25
2.3.1 基本原理 25
2.3.2 週期性邊界條件(Periodic boundary condition) 26
2.3.3徑向分布函數(Radial Distribution Function, RDF) 27
2.3.4 速度自相關函數(Velocity Autocorrelation Function, VAF) 30
2.3.5 擴散係數(Diffusion Constant) 31
2.3.6 黏滯係數(Viscosity Coefficient) 32
第三章 計算方法 34
3.1 乙醇分子二具體之量子化學計算方法 35
3.1.1 單體之結構最佳化 35
3.1.2 二聚體能量計算 36
3.2 乙醇勢能曲線擬合方法 38
3.3 分子動力學計算方法 40
第四章 模擬與計算結果 41
4.1 乙醇二聚體之量子化學計算結果 42
4.1.1 HF計算結果 42
4.1.2 MP2計算結果 46
4.1.3 CCSD(T)計算結果 54
4.1.4 乙醇構型SAPT分析 55
4.2乙醇二聚體之能量曲線擬合結果 59
4.3 乙醇分子動力學模擬結果 64
4.3.1 徑向分佈函數模擬結果 64
4.3.2 速度自相關函數模擬結果 68
4.3.3 擴散係數模擬結果 69
4.3.4 黏滯係數模擬計算結果 72
第五章 結論及展望 73
5.1 乙醇之量子化學計算 73
5.2 乙醇之分子動力學模擬 75
5.3 未來展望 76
參考文獻 77
附錄A 81
附錄B 82
dc.language.isozh-TW
dc.subject黏滯係數zh_TW
dc.subject速度自相關函數zh_TW
dc.subject徑向分佈函數zh_TW
dc.subject分子動力學模擬zh_TW
dc.subject擴散係數zh_TW
dc.subject耦合簇理論zh_TW
dc.subject微擾理論zh_TW
dc.subject自洽理論zh_TW
dc.subject乙醇分子二聚體zh_TW
dc.subjectethanol-ethanol dimeren
dc.subjectVelocityen
dc.subjectRadial Distribution Functionen
dc.subjectethanolen
dc.subjectMolecular Dynamics simulationen
dc.subjectCoupled Cluster methoden
dc.subjectMoller–Plesset Perturbation Theoryen
dc.subjectHartee-Fock self-consistent theoryen
dc.title乙醇分子之量子化學勢能計算與分子動力學模擬zh_TW
dc.titleQuantum Chemistry Calculated Intermolecular Interaction and Molecular Dynamics Simulation of Ethanolen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江志強(Jyh-Chiang Jiang),林祥泰(Shiang-Tai Lin),包淳偉(Chun-Wei Pao),周佳靚(Chia-Ching Chou)
dc.subject.keyword乙醇分子二聚體,自洽理論,微擾理論,耦合簇理論,分子動力學模擬,徑向分佈函數,速度自相關函數,擴散係數,黏滯係數,zh_TW
dc.subject.keywordethanol,ethanol-ethanol dimer,Hartee-Fock self-consistent theory,Moller–Plesset Perturbation Theory,Coupled Cluster method,Molecular Dynamics simulation,Radial Distribution Function,Velocity,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202000162
dc.rights.note有償授權
dc.date.accepted2020-01-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved