請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66859
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華 | |
dc.contributor.author | Hsien-Chun Chiu | en |
dc.contributor.author | 邱憲君 | zh_TW |
dc.date.accessioned | 2021-06-17T01:09:44Z | - |
dc.date.available | 2022-03-13 | |
dc.date.copyright | 2020-03-13 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-17 | |
dc.identifier.citation | 1. Shaw SC, Dennison EM, Cooper C. Epidemiology of sarcopenia: determinants throughout the lifecourse. Calcif Tissue Int. 2017; 101(3):229-247.
2. Ziaaldini MM, Marzetti E, Picca A, Murlasits Z. Biochemical pathways of sarcopenia and their modulation by physical exercise: a narrative review. Front Med (Lausanne). 2017; 4:167. 3. Ziaaldini MM, Koltai E, Csende Z, Goto S, Boldogh I, Taylor AW. Exercise training increases anabolic and attenuates catabolic and apoptotic processes in aged skeletal muscle of male rats. Exp Gerontol. 2015; 67:9–14. 4. Capelli C, Rittveger J, Bruseghini P, Calabria E, Tam E. Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes. Eur J Appl Physiol. 2016; 116:1395-410. 5. Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 2012; 4(2):a008342. 6. Nguyen NUH, Wang HV. Schematic model outlining how reduced expression of palladin affects skeletal muscle differentiation processes. 7. Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular insights into muscle homeostasis, atrophy and wasting. Curr Genomics. 2018; 19(5):356-369. 8. Sandri M , Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004; 117(3):399-412. 9. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature. 1997; 387(6628):83-90. 10. Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun. 2002; 291(3):701-6. 11. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009; 296(6):C1258-70. 12. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000; 88(12 Suppl):2961-78. 13. McLeod NM, Brennan PA, Ruggiero SL. Bisphosphonate osteonecrosis of the jaw: A historical and contemporary review. Surgeon. 2012; 10(1):36-42. 14. Montpetit K, Plotkin H, Rauch F, Bilodeau N, Cloutier S, Rabzel M. Rapid increase in grip force after start of pamidronate therapy in children and adolescents with severe osteogenesis imperfecta. Pediatrics 2003; 111:e601–e603. 15. Harada A, Ito S, Matsui Y, Sakai Y, Takemura M, Tokuda H. Effect of alendronate on muscle mass: investigation in patients with osteoporosis. Osteoporos Sarcopenia 2015; 1:53–58. 16. Park JH, Park KH, Cho S, Choi YS, Seo SK, Lee BS. Concomitant increase in muscle strength and bone mineral density with decreasing IL-6 levels after combination therapy with alendronate and calcitriol in postmenopausal women. Menopause 2013; 20:747–753. 17. Singh MA. Exercise comes of age: rationale and recommendations for a geriatric exercise prescription. J Gerontol A Biol Sci Med Sci. 2002; 57(5):M262-82. 18. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr. 2003; 78(2):250-8. 19. Chen Y, Zajac JD, MacLean HE. Androgen regulation of satellite cell function. J Endocrinol. 2005; 186(1):21-31. 20. Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care. 2004; 7(3):271-7. 21. Smith RC, Lin BK. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care. 2013; 7(4):352-60. 22. Bonaventura A,Montecucco F. Steroid-induced hyperglycemia: An nderdiagnosed problem or clinical inertia? A narrative review. Diabetes Res Clin Pract. 2018; 139:203-220. 23. Qin J1, Du R, Yang YQ, Zhang HQ, Li Q, Liu L, Guan H, Hou J, An XR. Dexamethasone-induced skeletal muscle atrophy was associated with upregulation of myostatin promoter activity. Res Vet Sci. 2013; 94(1):84-9. 24. Liu J, Peng Y, Wang X, Fan Y, Qin C, Shi L, Tang Y, Cao K, Li H, Long J, Liu J. Mitochondrial dysfunction launches dexamethasone-Induced skeletal muscle atrophy via AMPK/FOXO3 signaling. Mol Pharm. 2016; 13(1):73-84. 25. Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int. 2008; 34(2):292-308. 26. T.G.Luan, Jing Jin, Sidney M.N, Chan, Y.S.Wonga, Nora F.Y.Tam. Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles. Process Biochemistry 2006; 41(7):1560-1565. 27. Gadd GM. Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ. 2000; 258(1-2):119-27. 28. Rouleau C, Gobeil C, Tjälve H. Pharmacokinetics and distribution of dietary tributyltin and methylmercury in the Snow Crab (Chionoecetes opilio). Environ. Sci. Technol. 1999; 33(19):3451-3457. 29. Murai R, Sugimoto A, Tanabe S, Takeuchi I. Biomagnification profiles of tributyltin (TBT) and triphenyltin (TPT) in Japanese coastal food webs elucidated by stable nitrogen isotope ratios. Chemosphere. 2008; 73(11):1749-56. 30. Schøyen M, Green NW, Hjermann DØ, Tveiten L, Beylich B, Øxnevad S, Beyer J. Levels and trends of tributyltin (TBT) and imposex in dogwhelk (Nucella lapillus) along the Norwegian coastline from 1991 to 2017. Mar Environ Res. 2019; 144:1-8. 31. Matthiessen P, Waldock R, Thain J.E, Waite M.E, Scropehowe S. Change in Periwinkle (Littorina littorea) populations following the ban on TBT-based antifoulings on small boats in the United Kingdom. Ecotoxicol Environ Saf. 1995; 30(2):180-194. 32. T.G.Luan, Jing Jin, Sidney M.N, Chan, Y.S.Wonga, Nora F.Y.Tam. Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles. Process Biochemistry 2006; 41(7):1560-1565. 33. Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int. 2008; 34(2):292-308. 34. Kannan K, Senthilkumar K, John P. Giesy. Occurrence of Butyltin Compounds in Human Blood. Environ. Sci. Technol. 1999, 33(10):1776-1779. 35. Li B, Guo J, Xi Z, Xu J, Zuo Z, Wang C. Tributyltin in male mice disrupts glucose homeostasis as well as recovery after exposure: mechanism analysis. Arch Toxicol. 2017; 91(10):3261-3269. 36. Penza M, Jeremic M, Marrazzo E, Maggi A, Ciana P, Rando G, Grigolato PG, Di Lorenzo D. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose. Toxicol Appl Pharmacol. 2011; 255(1):65-75. 37. Bertuloso BD, Podratz PL, Merlo E, de Araújo JF, Lima LC, de Miguel EC, de Souza LN, Gava AL, de Oliveira M, Miranda-Alves L, Carneiro MT, Nogueira CR, Graceli JB. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas. Toxicol Lett. 2015; 235(1):45-59. 38. Ronconi KS, Stefanon I, Ribeiro Junior RF. Tributyltin and vascular dysfunction: the role of oxidative stress. Front Endocrinol (Lausanne). 2018; 9:354. 39. Yamada S, Kubo Y, Yamazaki D, Sekino Y, Nomura Y, Yoshida S, Kanda Y. Tributyltin Inhibits Neural Induction of Human Induced Pluripotent Stem Cells. Sci Rep. 2018; 8(1):12155. 40. Yao W, Wei X, Guo H, Cheng D, Li H, Sun L, Wang S, Guo D, Yang Y, Si J. Tributyltin reduces bone mineral density by reprograming bone marrow esenchymal stem cells in rat. Environ Toxicol Pharmacol. 2019; 73:103271. 41. Watt J, Schlezinger JJ. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells. Toxicology. 2015; 331:66-77. 42. Tsukamoto Y, Ishihara Y, Miyagawa-Tomita S, Hagiwara H. Inhibition of ossification in vivo and differentiation of osteoblasts in vitro by tributyltin. Biochem Pharmacol. 2004; 68(4):739-46. 43. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH. Arsenic inhibits myogenic differentiation and muscle regeneration. Environ Health Perspect. 2010; 118(7):949-56. 44. Bush RK, Stave GM. Guide for the Care and Use of Laboratory Animals. Laboratory animal allergy: An update. ILAR J 44:28-51. 45. MacDonald EM, Andres-Mateos E, Mejias R, Simmers JL, Mi R, Park JS, Ying S, Hoke A, Lee SJ, Cohn RD. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition. Dis Model Mech. 2014; 7(4):471-81. 46. Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS, Chiang CK, Liu SH. Advanced glycation end‐products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE‐mediated, AMPK‐down‐regulated, Akt pathway. J Pathol. 2016; 238(3):470-82. 47. Liu SH, Fu WM, Lin-Shiau SY. Studies on the inhibition by chlorpromazine of myotonia induced by ion channel modulators in mouse skeletal muscle. Eur J Pharmacol. 1993; 231(1):23-30. 48. Zhuang P, Zhang J, Wang Y, Zhang M, Song L, Lu Z, Zhang L, Zhang F, Wang J, Zhang Y, Wei H, Li H. Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia. Support Care Cancer. 2016; 24(3):1189-98. 49. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev. 2012; 92(3):1479-514. 50. Radley HG, De Luca A, Lynch GS, Grounds MD. Duchenne muscular dystrophy: Focus on pharmaceutical and nutritional intervention. Int J Biochem Cell Biol. 2007; 39(3):469-77. 51. Harada A, Ito S, Matsui Y, Sakai Y, Takemura M, Tokuda H, Hida T, Shimokata H. Effect of alendronate on muscle mass: Investigation in patients with osteoporosis. Osteoporosis and Sarcopenia. 2015; (1):53e58. 52. Yoon SH, Sugamori KS, Grynpas MD, Mitchell J. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy. Neuromuscul Disord. 2016; 26(1):73-84. 53. Børsheim E, Herndon DN, Hawkins HK, Suman OE, Cotter M, Klein GL. Pamidronate attenuates muscle loss after pediatric burn injury. J Bone Miner Res. 2014; 29(6):1369-72. 54. Uchiyama S, Ikegami S, Kamimura M, Mukaiyama K, Nakamura Y, Nonaka K, Kato H. The skeletal muscle cross sectional area in long-term bisphosphonate users is smaller than that of bone mineral density-matched controls with increased serum pentosidine concentrations. Bone. 2015; 75:84-7. 55. Chiu CY, Yen YP, Tsai KS, Yang RS, Liu SH. Low-dose benzo (a) pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells. Toxicol Sci. 2014; 138(2):344-53. 56. Shiomi K, Nagata Y, Kiyono T, Harada A, Hashimoto N. Differential impact of the bisphosphonate alendronate on undifferentiated and terminally differentiated human myogenic cells. J Pharm Pharmacol. 2014; 66(3):418-27. 57. Ramamoorthy S, Cidlowski JA. Exploring the molecular mechanisms of glucocorticoid receptor action from sensitivity to resistance. Endocr Dev. 2013; 24:41-56. 58. Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang JC. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A. 2012; 109(28):11160-5. 59. Kim J, Park MY, Kim HK, Park Y, Whang KY. Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Biosci Biotechnol Biochem 2016 [Epub ahead of print]; 80:2093–2099. 60. Gupta A, Gupta Y. Glucocorticoid-induced myopathy: Pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab. 2013; 17(5):913-6. 61. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005; 16(10):4623-35. 62. Mellini P, Valente S, Mai A. Sirtuin modulators: an updated patent review (2012-2014). Expert Opin Ther Pat. 2015; 25(1):5-15. 63. Lee D, Goldberg AL. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem. 2013; 288(42):30515-26. 64. Jing E, O’Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S. Sirt3 regulates metabolicflexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes2013; 62:3404–3417. 65. Lin L, Chen K, Abdel Khalek W, Ward JL 3rd, Yang H, Béatrice Chabi. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS One 2014; 9(1):e85636. 66. Velden JL, Langen RC, Kelders MC, Willems J, Wouters EF, Janssen-Heininger YM. Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3beta. Am J Physiol Cell Physiol 2007; 292:C1636–C1644. 67. Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J Pathol 2016; 238:470–482. 68. Yang SY, Lin SL, Chen YM, Wu VC, Yang WS, Wu KD. Downregulation of angiotensin type 1 receptor and nuclear factor-кB by sirtuin 1 contributes to renoprotection in unilateral ureteral obstruction. Sci Rep 2016; 6:33705. 69. Huang XZ, Wen D, Zhang M, Xie Q, Ma L, Guan Y. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. J Cell Biochem2014; 115:996–1005. 70. Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang JY. SIRT3 blocks aging-associated tissuefibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol Cell Biol 2015; 36:678–692. 71. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014; 307(6):E469-84. 72. Elkina Y, von Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting an overview. J Cachexia Sarcopenia Muscle. 2011; 2(3):143-151. 73. Sriram S1, Subramanian S, Sathiakumar D, Venkatesh R, Salerno MS, McFarlane CD, Kambadur R, Sharma M. Modulation of reactive oxygen species in skeletal muscle by myostatin is mediated through NF-κB. Aging Cell. 2011; 10(6):931-48. 74. Dupont-Versteegden EE. Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol. 2006; 12(46):7463-6. 75. Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L.AMPK in skeletal muscle function and metabolism. FASEB J. 2018; 32(4):1741-1777. 76. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114(12):1752-61. 77. Russell AP, Gastaldi G, Bobbioni-Harsch E, Arboit P, Gobelet C, Dériaz O, Golay A, Witztum JL, Giacobino JP. Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids? FEBS Lett. 2003; 551(1-3):104-6. 78. J Sekizawa. Tributyltin and triphenyltin compounds. 79. Ho KK, Leung KM. Organotin contamination in seafood and its implication for human health risk in Hong Kong. Mar Pollut Bull. 2014; 85(2):634-40. 80. Guo H, Yan H, Cheng D, Wei X, Kou R, Si J. Tributyltin exposure induces gut microbiome dysbiosis with increased body weight gain and dyslipidemia in mice. Environ Toxicol Pharmacol. 2018; 60:202-208. 81. Sakuma K, Yamaguchi A. Sarcopenia and Age-Related Endocrine Function. Int J Endocrinol. 2012; 2012: 127362. 82. Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Vasilaki A, Griffiths RD, Jackson MJ, McArdle A. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep. 2016; 6:33944. 83. De Coster S, van Larebeke N. Endocrine-Disrupting Chemicals Associated Disorders and Mechanisms of Action. J Environ Public Health. 2012; 2012:713696. 84. Meador JP. Predicting the fate and effects of tributyltin in marine systems. Rev Environ Contam Toxicol. 2000; 166:1-48. 85. Pagliarani A, Nesci S, Ventrella V. Toxicity of organotin compounds Shared and unshared biochemical targets and mechanisms in animal cells. Toxicol In Vitro. 2013; 27(2):978-90. 86. Regnier SM, El-Hashani E, Kamau W, Zhang X, Massad NL Sargis RM1. Tributyltin differentially promotes development of a phenotypically distinct adipocyte. Obesity (Silver Spring). 2015; 23(9):1864-71. 87. Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ. Metabolic stress and altered glucose transport activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes. 2000; 49(4):527-31. 88. Nakashima K, Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem. 2007; 71(7):1650-6. 89. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010; 29(10):1774-85. 90. Coutinho JV, Freitas-Lima LC, Freitas FF, Freitas FP, Podratz PL, Magnago RP, Porto ML, Meyrelles SS, Vasquez EC, Brandão PA, Carneiro MT, Paiva-Melo FD, Miranda-Alves L, Silva IV, Gava AL, Graceli JB. Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in femalerats. Toxicol Lett. 2016; 260:52-69. 91. Ronconi KS, Stefanon I, Ribeiro Junior RF. Tributyltin and vascular dysfunction the role of oxidative stress. Front Endocrinol (Lausanne). 2018; 9:354. 92. O'Neill HM, Lally JS, Galic S, Thomas M, Azizi PD, Fullerton MD, Smith BK, Pulinilkunnil T, Chen Z, Samaan MC, Jorgensen SB, Dyck JR, Holloway GP, Hawke TJ, van Denderen BJ, Kemp BE, Steinberg GR. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia. 2014; 57(8):1693-702. 93. Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Endocrinol Metab. 2006; 291(1):E182-9. 94. McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol. 2010; 298(3):C542-9. 95. McClung JM, Judge AR, Talbert EE, Powers SK. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am J Physiol Cell Physiol. 2009; 296(2):C363-71. 96. Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 2016; 98:218-230. 97. Kramer PA, Duan J, Qian WJ, Marcinek DJ. The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol. 2015; 6:347. 98. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kB-independent, FoxO1-dependent Mechanism. J Cell Physiol. 2006; 209(2):501-14. 99. Hulmi JJ1, Silvennoinen M, Lehti M, Kivelä R, Kainulainen H. Altered REDD1, myostatin, and Akt-mTOR-FoxO-MAPK signaling in streptozotocin-induced diabetic muscle atrophy, Am J Physiol Endocrinol Metab. 2012; 302(3):E307-15. 100. Lee K, Ochi E, Song H, Nakazato K. Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage. Biochem Biophys Res Commun. 2015; 466(3):289-94. 101. Das AK, Yang QY, Fu X, Liang JF, Duarte MS, Zhu MJ, Trobridge GD, Du M. AMP-activated protein kinase stimulates myostatin expression in C2C12 cells. Biochem Biophys Res Commun. 2012; 427(1):36-40. 102. Nguyen NU, Wang HV. Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation. PLoS One. 2015; 10(4):e0124762. 103. Janssen I. The epidemiology of sarcopenia. Clin Geriatr Med. 2011; 27(3):355-63. 104. Farshidfar, Farnaza, Shulgina, Veronikaa, Myrie, Semone B. Nutritional supplementations and administration considerations for sarcopenia in older adults. Nutrition and Aging. 2015; 3:147-170. 105. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010; 39(4):412-23. 106. Bae EJ, Kim YH. Factors affecting sarcopenia in Korean adults by age groups. Osong Public Health Res Perspect. 2017; 8(3):169-178. 107. Madoka Ohji, Takaomi Arai, Nobuyuki Miyazaki. Comparison of organotin accumulation in the masu salmon Oncorhynchus masou accompanying migratory histories. Estuarine, Coastal and Shelf Science. 2007; 72:721e731. 108. Hongxia L, Guolan H, Shugui D. Toxicity and accumulation of tributyltin chloride on tilapia. Applied Organometallic Chemistry. 1998; 12:109–119. 109. Filipkowska A, Złoch I, Wawrzyniak-Wydrowska B, Kowalewska G. Organotins in fish muscle and liver from the Polish coast of the Baltic Sea: Is the total ban successful? Mar Pollut Bull. 2016; 111(1-2):493-499. 110. Karl Fent. Ecotoxicology of organotin Compounds. Critical Reviews in Toxicology. 1996; 26(1): 1-117. 111. I.M. DaviesJ, C. McKie. Accumulation of total tin and tributyltin in muscle tissue of farmed Atlantic salmon. Marine Pollution Bulletin. 1987; 18(7):405-407. 112. Becker G, Janak K, Colmsjo A, Ostman C. Speciation of organotin compounds released from poly (vinylchloride) at increased temperatures by gas chromatography with atomic emission detection. J Chromatogr A. 1997; 775:295–306. 113. Rantakokko P, Turunen A, Verkasalo PK, Kiviranta H, Männistö S, Vartiainen T. Blood levels of organotin compounds and their relation to fish consumption in Finland. Sci Total Environ. 2008; 399(1-3):90-5. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66859 | - |
dc.description.abstract | 肌少症是一種伴隨著老化所引起的肌肉質量減少、肌肉力量減弱和行動能力變差的疾病。肌少症可分為兩種,第一種是僅因年紀老化而造成的原發性肌少症,而第二種是因長期臥病、癌症、內分泌疾病或營養不良而造成的次發性肌少症。然而大多數的肌少症是由多重疾病或風險因子而造成的,因此它是一個涉及許多複雜因素的肌肉疾病。目前治療肌少症的策略主要以運動和飲食來延緩肌少症所造成的影響,然而這些治療策略對於因長期臥病在床無法行動或營養吸受不良而造成肌少症的病人是不具有顯著療效的。因此臨床上對於肌少症的治療仍需要一個確切性的治療藥物。先前研究指出雙磷酸鹽藥物福善美(Alendronate)除了能預防骨質疏鬆外,亦能改善肌肉功能,然而其確切機制尚不明瞭。此外,氯化三丁基錫(Tributyltin chloride)是一種內分泌干擾物質,被廣泛用來製造PVC塑膠的安定劑、殺蟲劑、油漆及抗汙劑等,先前研究指出暴露於低劑量的三丁基錫會影響小鼠的代謝系統及骨質密度,但三丁基錫於對骨骼肌方面的影響及其機制仍尚未明瞭。因此,本研究首先利用細胞與動物模式探討福善美是否具有預防肌肉萎縮的效果及其作用機轉。另外,本篇研究亦探討是否長期暴露於低劑量的三丁基錫會造成肌少症相關的症狀產生。首先,實驗結果顯示福善美能促進骨骼肌分化指標蛋白(Myosin heavy chain)表現,並能藉由減少泛素連接酶(Atrogin-1)及sirtuin-3的蛋白表現來抑制皮質類固醇(Dexamethasone)所誘發的肌肉萎縮。動物模式方面,將小鼠分成肌肉萎縮(去神經)及肌肉受損(甘油注射)兩種試驗模式,發現經由管餵小鼠福善美(0.5及1 mg/kg)四週,能顯著改善肌肉質量、強度及促進肌肉的再生能力。本篇研究亦發現暴露於低劑量的氯化三丁基錫(0.1-0.5 μM)會造成肌肉萎縮相關蛋白(Atrogin-1, Myostatin及Muscle RING-finger protein-1)表現並伴隨著單磷酸腺苷活化蛋白質激酶(5' Adenosine monophosphate-activated protein kinase)的大量表現,而管餵小鼠低劑量的氯化三丁基錫(5及25 μg/kg)四週後,造成小鼠體重及血糖上升並減少肌肉質量及肌肉強度。將小鼠肌肉組織切片進行免疫組織化學染色亦能發現肌肉萎縮相關蛋白表現。綜合上述,本論文研究成果證實福善美能藉由降低Atrogin-1及SIRT3訊號分子來改善肌肉萎縮之相關症狀;另一方面亦發現低劑量的氯化三丁基錫可經由AMPK訊號路徑來調控肌肉萎縮相關蛋白表現,進而導致肌肉萎縮與失能。未來仍需更進一步探討低劑量的氯化三丁基錫對於骨骼肌分化影響及機制,亦需進一步探討福善美使否也能改善氯化三丁基錫所造成的肌肉萎縮。 | zh_TW |
dc.description.abstract | Sarcopenia is aging-related diseases accompanied with a progressive decline of muscle mass, strength and poor mobility. Sarcopenia can be divided into two types. The first is primary sarcopenia caused by aging, while the second is called secondary sarcopenia, which was caused by disuse atrophy, cancer, endocrine disease or malnutrition. However, sarcopenia can be induced via several factors, and thus it is a complex and numerous factor involved disease. Current therapeutic strategies for sarcopenia are mitigate the impact of sarcopenia by exercise and diet strategies. However, these treatment strategies are not effective for patients with severe physical disability, disuse atrophy and poor nutritional absorption. Therefore, alternative managements are needed to find out for the clinical efficacy of sarcopenia and disease-related muscle atrophy and dysfunction. Previous studies indicated that alendronate can improve bone loss and have a therapeutic potential on skeletal muscle function. However, the detail mechanism of alendronate on muscle function still remain unknown. In addition, tributyltin chloride is an endocrine disruptors chemical, and has a widespread application in PVC heat stabilizers, biocide and paints and antifouling paints. Previous studies indicated that low-dose tributyltin result in metabolism system disruption and lower bone density. The mechanism of low-dose TBTCL effect on skeletal muscle function is also still remain unknown. Thus, we investigate the therapeutic potential of alendronate in vivo and in vitro. Besides, the other aim of this study is to investigate the effect of low-dose tributyltin chloride on skeletal muscle. First, alendronate promotes the differentiation of C2C12 myoblasts and primary HSMPCs, and prevents dexamethasone-induce muscle atrophy via Atrogin-1 and SIRT3 down-regulation. Mice were treated with alendornate (0.5 and 1 mg/kg) for 4 weeks, has been shown an increase in muscle mass, muscle function and muscle regeneration. In the present study, we also found that low-dose tributyltin chloride (0.1-0.5 μM) causes muscle atrophy accompanied with the expression of muscle atrophic-related proteins (Atrogin-1, myostatin and MuRF1) via AMPK mediation, and reduce soleus muscle mass and muscle strength in mice. Immunohistochemistry was performed on fixed soleus muscle sections and low-dose tributyltin cause the muscle atrophic-related protein expressed. Taken together, the present study has been demonstrated that alendronate can improve muscle wasting via down-regulation of Atrogin-1 and SIRT3. On the other hand, these results suggest that low-dose tributyltin may through AMPK signal pathway to induce muscle atrophy and dysfunction. However, the mechanism of low-dose tributyltin chloride effect on skeletal muscle function needs to clarified in the future, and we also need to explore whether alendronate also have a therapeutic potential on tributyltin chloride-induced muscle wasting. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:09:44Z (GMT). No. of bitstreams: 1 ntu-109-D03447002-1.pdf: 5868899 bytes, checksum: ae6750fd559845c33dcefa883e5d1896 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 V
中文摘要 VI Abstract VIII List of abbreviation X Part 1: Introduction 1 1.1 Background 1 Figure S1. The age-specific average grip strengths in developing and developed regions 2 Figure S2. The main factors involved in the onset and progression of sarcopenia and its consequences 2 1.2 Contributing factors of sarcopenia 3 Figure S3. Possible etiological factors associated with sarcopenia 3 1.3 Myogenesis, myotube hypertrophy and atrophy 4 Figure S4. The process of myoblast differentiation 6 Figure S5. The regulatory mechanism of protein synthesis and degradation in skeletal muscle 6 1.4 Current therapeutic strategies for muscle wasting 7 1.5 Tributyltin chloride and dexamethasone 8 Table S1. The concentration of different butyltin compounds in sediments for several regions in the world 10 1.6 Aims 11 Part 2: Materials and methods 12 2.1 Statement of ethics 12 2.2 Primary HSMPCs 12 2.3 C2C12 myoblast 13 2.4 ALN, Dexa and TBTCL 13 2.5 Myogenic differentiation and differentiated myotubes treatment with ALN and Dexa 13 2.6 Myogenic differentation and differentiated myotube treatment with low-dose TBTCL 14 2.7 Transient transfection 14 2.8 Cell viability and the loss of myotube assay 15 2.9 The skeletal muscle cell morphological analysis 15 2.10 Western blot analysis 15 2.11 Rodent animals 16 2.12 Fasting plasma glucose test 17 2.13 Muscle injured model 17 Figure S5. The flowchart of animal experiments. 17 2.14 Muscle fatigue task and grip strength tests 18 2.15 Assessment of muscle tension 18 2.16 Sampling and histological assessment 19 2.17 Statistics 20 Part 3: Results and Discussion 20 3.1 Preventing muscle wasting by osteoporosis drug ALN in vitro and in myopathy models via sirtuin-3 down-regulation 20 3.1.1 ALN promotes hypertrophy and prevent Dexa-induced atrophy in C2C12-derived and HSMPCs-derived myotubes via SIRT3 mediation 20 3.1.2 ALN ameliorate Dexa-diminished myogenesis of C2C12 myoblasts and primary HSMPCs 22 3.1.3 The mouse model of denervation and glycerol-induced muscle wasting/weakness and lower regenerative capacity were ameliorated by treatment with ALN 23 3.1.4 Discussion 24 3.1.5 Figures 29 3.2 Studies on environmental risk factor of muscle wasting /sarcopenia: action and possible molecular mechanism of low-dose organotin exposure 45 3.2.1 Low-dose tributyltin chloride-caused myotube loss and atrophic effect in mouse C2C12-derived myotubes. 45 3.2.2 Low-dose tributyltin chloride-induced myotube atrophy in C2C12 via AMPK mediation. 45 3.2.3 Chronic exposure to low-dose TBTCL result in muscle dysfunction and physiological change in male ICR mice. 46 3.2.4 Chronic exposure to low-dose TBTCL have been shown to cause muscle wasting/weakness in ICR mice via AMPK mediation. 47 3.2.5 Discussion 48 3.2.6 Figures 52 4. Conclusion and future perspectives 59 5. References 60 6. Appendix 69 | |
dc.language.iso | zh-TW | |
dc.title | 肌肉萎縮/肌少症之環境危險因子及治療策略探討:以三丁基錫及福善美為例 | zh_TW |
dc.title | The environmental risk factor and therapeutic strategies for muscle wasting/sarcopenia: Take tributyltin and alendronate as examples | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蕭水銀,楊榮森,許美鈴,姜至剛 | |
dc.subject.keyword | 福善美,氯化三丁基錫,骨骼肌,肌肉萎縮,肌少症,SIRT3,Myostatin, | zh_TW |
dc.subject.keyword | Alendronate,tributyltin chloride,skeletal muscle,sarcopenia,muscle wasting,SIRT3,Myostatin, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU202000048 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-01-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 5.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。