Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66856
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡
dc.contributor.authorMeng-Hung Tsaien
dc.contributor.author蔡孟宏zh_TW
dc.date.accessioned2021-06-17T01:09:40Z-
dc.date.available2020-02-04
dc.date.copyright2020-02-04
dc.date.issued2019
dc.date.submitted2020-01-17
dc.identifier.citationM.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells, Prog Polym Sci 38(12) (2013) 1929-1940.
M. Kaltenbrunner, G. Adam, E.D. Glowacki, M. Drack, R. Schwodiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air, Nat Mater 14(10) (2015) 1032-9.
P. Cheng, G. Li, X. Zhan, Y. Yang, Next-generation organic photovoltaics based on non-fullerene acceptors, Nature Photonics 12(3) (2018) 131-142.
G. Zhang, J. Zhao, P.C.Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells, Chemical Reviews 118(7) (2018) 3447-3507.
M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 54), Progress in Photovoltaics: Research and Applications 27(7) (2019) 565-575.
R. Wang, J. Yuan, R. Wang, G. Han, T. Huang, W. Huang, J. Xue, H.-C. Wang, C. Zhang, C. Zhu, P. Cheng, D. Meng, Y. Yi, K.-H. Wei, Y. Zou, Y. Yang, Rational Tuning of Molecular Interaction and Energy Level Alignment Enables High-Performance Organic Photovoltaics, Adv. Mater. 31(43) (2019) 1904215.
B.R. Weinberger, M. Akhtar, S.C. Gau, Polyacetylene photovoltaic devices, Synthetic Metals 4(3) (1982) 187-197.
C.W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters 48(2) (1986) 183-185.
G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science 270(5243) (1995) 1789-1791.
R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small Bandgap Polymers for Organic Solar Cells(Polymer Material Development in the Last 5 Years), Polymer Reviews 48(3) (2008) 531-582.
A.J. Moulé, D. Neher, S.T. Turner, P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance, in: S. Ludwigs (Ed.), P3HT Revisited – From Molecular Scale to Solar Cell Devices, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 181-232.
S. Banerjee, S.S.K. Iyer, Short-circuit current density and spectral response modelling of bulk-heterojunction solar cells, Organic Electronics 11(12) (2010) 2032-2036.
Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications, Chemical Reviews 109(11) (2009) 5868-5923.
A.J. Moulé, J.B. Bonekamp, K. Meerholz, The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells, Journal of Applied Physics 100(9) (2006).
P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics 93(7) (2003) 3693-3723.
S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chemical reviews 107(4) (2007) 1324-1338.
A.J. Heeger, 25th anniversary article: Bulk heterojunction solar cells: understanding the mechanism of operation, Adv Mater 26(1) (2014) 10-27.
M. Knupfer, Exciton binding energies in organic semiconductors, Applied Physics A 77(5) (2003) 623-626.
G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells, Adv. Mater. 21(13) (2009) 1323-1338.
B. Qi, J. Wang, Fill factor in organic solar cells, Physical Chemistry Chemical Physics 15(23) (2013) 8972-8982.
M.S. Kim, B.G. Kim, J. Kim, Effective variables to control the fill factor of organic photovoltaic cells, ACS Appl Mater Interfaces 1(6) (2009) 1264-9.
Y. Shen, K. Li, N. Majumdar, J.C. Campbell, M.C. Gupta, Bulk and contact resistance in P3HT:PCBM heterojunction solar cells, Solar Energy Materials and Solar Cells 95(8) (2011) 2314-2317.
P.R. Berger, M. Kim, Polymer solar cells: P3HT:PCBM and beyond, Journal of Renewable and Sustainable Energy 10(1) (2018).
H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature 401(6754) (1999) 685-688.
S.S. Pandey, W. Takashima, S. Nagamatsu, T. Eendo, M. Rikukawa, K. Kaneto, Regioregularity vs Regiorandomness: Effect on Photocarrier Transport in Poly(3-hexylthiophene), Jpn. J. Appl. Phys. 39 (2000) L94-L97.
J.-i. Nakamura, K. Murata, K. Takahashi, Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives, Applied Physics Letters 87(13) (2005) 132105.
E. von Hauff, V. Dyakonov, J. Parisi, Study of field effect mobility in PCBM films and P3HT:PCBM blends, Solar Energy Materials and Solar Cells 87(1-4) (2005) 149-156.
C. Katagiri, K.-i. Nakayama, Comparison of the carrier mobilities of annealed P3HT films by using charge carrier extraction by linearly increasing voltage and space-charge limited current, Molecular Crystals and Liquid Crystals 629(1) (2016) 193-199.
B.H. Hamadani, D. Natelson, Temperature-dependent contact resistances in high-quality polymer field-effect transistors, Applied Physics Letters 84(3) (2004) 443-445.
Y.K. Lan, C.I. Huang, Charge Mobility and Transport Behavior in the Ordered and Disordered States of the Regioregular Poly(3-hexylthiophene), Journal of Physical Chemistry B 113(44) (2009) 14555-14564.
Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, L. Yu, Development of new semiconducting polymers for high performance solar cells, Journal of the American Chemical Society 131(1) (2008) 56-57.
Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L. Yu, Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties, Journal of the American Chemical Society 131(22) (2009) 7792-7799.
Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, Y. Li, 10.8% Efficiency Polymer Solar Cells Based on PTB7-Th and PC71BM via Binary Solvent Additives Treatment, Advanced Functional Materials 26(36) (2016) 6635-6640.
Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nature Communications 5 (2014) 5293.
H. Cha, S. Wheeler, S. Holliday, S.D. Dimitrov, A. Wadsworth, H.H. Lee, D. Baran, I. McCulloch, J.R. Durrant, Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor, Advanced Functional Materials 28(3) (2018) 1704389.
W. Li, J. Cai, F. Cai, Y. Yan, H. Yi, R.S. Gurney, D. Liu, A. Iraqi, T. Wang, Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination, Nano Energy 44 (2018) 155-163.
V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk, Electron Transport in a Methanofullerene, Advanced Functional Materials 13(1) (2003) 43-46.
P.H. Wöbkenberg, D.D.C. Bradley, D. Kronholm, J.C. Hummelen, D.M. de Leeuw, M. Cölle, T.D. Anthopoulos, High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives, Synthetic Metals 158(11) (2008) 468-472.
Y. He, Y. Li, Fullerene derivative acceptors for high performance polymer solar cells, Physical Chemistry Chemical Physics 13(6) (2011) 1970-1983.
H. Hoppe, N.S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, Journal of Materials Chemistry 16(1) (2006) 45-61.
B.A. Collins, Z. Li, J.R. Tumbleston, E. Gann, C.R. McNeill, H. Ade, Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells, Advanced Energy Materials 3(1) (2013) 65-74.
S. Hu, O. Dyck, H. Chen, Y.-c. Hsiao, B. Hu, G. Duscher, M. Dadmun, B. Khomami, The impact of selective solvents on the evolution of structure and function in solvent annealed organic photovoltaics, RSC Adv. 4(53) (2014) 27931-27938.
G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), Journal of Applied Physics 98(4) (2005).
V.D. Mihailetchi, H. Xie, B.d. Boer, L.M. Popescu, J.C. Hummelen, P.W.M. Blom, L.J.A. Koster, Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer, Applied Physics Letters 89(1) (2006) 012107.
W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells, J Am Chem Soc 139(21) (2017) 7148-7151.
F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials and Solar Cells 93(4) (2009) 394-412.
C.-C. Chang, C.-L. Pai, W.-C. Chen, S.A. Jenekhe, Spin coating of conjugated polymers for electronic and optoelectronic applications, Thin Solid Films 479(1) (2005) 254-260.
F. Zhao, C. Wang, X. Zhan, Morphology Control in Organic Solar Cells, Advanced Energy Materials 8(28) (2018).
T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, C.J. Brabec, Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells, Advanced Functional Materials 15(7) (2005) 1193-1196.
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials 4(11) (2005) 864-868.
W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Advanced Functional Materials 15(10) (2005) 1617-1622.
M. Reyes-Reyes, K. Kim, D.L. Carroll, High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends, Applied Physics Letters 87(8) (2005).
V.D. Mihailetchi, H.X. Xie, B. de Boer, L.J.A. Koster, P.W.M. Blom, Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells, Advanced Functional Materials 16(5) (2006) 699-708.
G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes, Advanced Functional Materials 17(10) (2007) 1636-1644.
A.J. Moulé, K. Meerholz, Controlling Morphology in Polymer–Fullerene Mixtures, Adv. Mater. 20(2) (2008) 240-245.
J. Jo, S.-S. Kim, S.-I. Na, B.-K. Yu, D.-Y. Kim, Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells, Advanced Functional Materials 19(6) (2009) 866-874.
M. Shin, H. Kim, J. Park, S. Nam, K. Heo, M. Ree, C.-S. Ha, Y. Kim, Abrupt Morphology Change upon Thermal Annealing in Poly(3-Hexylthiophene)/Soluble Fullerene Blend Films for Polymer Solar Cells, Advanced Functional Materials 20(5) (2010) 748-754.
M.T. Dang, L. Hirsch, G. Wantz, P3HT:PCBM, Best Seller in Polymer Photovoltaic Research, Adv. Mater. 23(31) (2011) 3597-3602.
I. Etxebarria, J. Ajuria, R. Pacios, Polymer:fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review, Journal of Photonics for Energy 5(1) (2015).
B. Fan, L. Ying, P. Zhu, F. Pan, F. Liu, J. Chen, F. Huang, Y. Cao, All-Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxane-Functionalized Side Chains with Efficiency over 10%, Adv. Mater. 29(47) (2017) 1703906.
C.-T. Lee, C.-H. Lee, Conversion efficiency improvement mechanisms of polymer solar cells by balance electron–hole mobility using blended P3HT:PCBM:pentacene active layer, Organic Electronics 14(8) (2013) 2046-2050.
J. Cornil, D. Beljonne, J.P. Calbert, J.L. Brédas, Interchain interactions in organic π‐conjugated materials: impact on electronic structure, optical response, and charge transport, Adv. Mater. 13(14) (2001) 1053-1067.
Y.-K. Lan, C.-I. Huang, A Theoretical Study of the Charge Transfer Behavior of the Highly Regioregular Poly-3-hexylthiophene in the Ordered State, The Journal of Physical Chemistry B 112(47) (2008) 14857-14862.
C. Adamo, D. Jacquemin, The calculations of excited-state properties with Time-Dependent Density Functional Theory, Chemical Society Reviews 42(3) (2013) 845-856.
Y. Cui, P. Li, C. Song, H. Zhang, Terminal Modulation of D−π–A Small Molecule for Organic Photovoltaic Materials: A Theoretical Molecular Design, The Journal of Physical Chemistry C 120(51) (2016) 28939-28950.
陳昱朋, 運用分子動力學建構高效率太陽能電池系統於堆疊結構下之粗粒化模型勢能函數並探討其與分子鏈構形之關聯性, 高分子科學與工程學研究所, 國立臺灣大學, 2018, pp. 1-48.
C.-K. Lee, C.-W. Pao, C.-W. Chu, Multiscale molecular simulations of the nanoscale morphologies of P3HT:PCBM blends for bulk heterojunction organic photovoltaic cells, Energy & Environmental Science 4(10) (2011).
J.M. Carrillo, R. Kumar, M. Goswami, B.G. Sumpter, W.M. Brown, New insights into the dynamics and morphology of P3HT:PCBM active layers in bulk heterojunctions, Phys Chem Chem Phys 15(41) (2013) 17873-82.
S.E. Root, S. Savagatrup, C.J. Pais, G. Arya, D.J. Lipomi, Predicting the Mechanical Properties of Organic Semiconductors Using Coarse-Grained Molecular Dynamics Simulations, Macromolecules 49(7) (2016) 2886-2894.
M. Scheidler, U. Lemmer, R. Kersting, S. Karg, W. Riess, B. Cleve, R.F. Mahrt, H. Kurz, H. Bässler, E.O. Göbel, P. Thomas, Monte Carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene), Physical Review B 54(8) (1996) 5536-5544.
P.K. Watkins, A.B. Walker, G.L.B. Verschoor, Dynamical Monte Carlo Modelling of Organic Solar Cells:  The Dependence of Internal Quantum Efficiency on Morphology, Nano Letters 5(9) (2005) 1814-1818.
R.A. Marsh, C. Groves, N.C. Greenham, A microscopic model for the behavior of nanostructured organic photovoltaic devices, Journal of Applied Physics 101(8) (2007) 083509.
F. Yang, S.R. Forrest, Photocurrent Generation in Nanostructured Organic Solar Cells, ACS Nano 2(5) (2008) 1022-1032.
L. Meng, Y. Shang, Q. Li, Y. Li, X. Zhan, Z. Shuai, R.G.E. Kimber, A.B. Walker, Dynamic Monte Carlo Simulation for Highly Efficient Polymer Blend Photovoltaics, J Phys Chem B 114(1) (2010) 36-41.
R.G. Kimber, A.B. Walker, G.E. Schroder-Turk, D.J. Cleaver, Bicontinuous minimal surface nanostructures for polymer blend solar cells, Phys Chem Chem Phys 12(4) (2010) 844-51.
M. Casalegno, G. Raos, R. Po, Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions, J Chem Phys 132(9) (2010) 094705.
P.M. Baidya, K. Bayat, M. Biesecker, M. Farrokh Baroughi, Kinetic Monte Carlo modeling of dark and illuminated current-voltage characteristics of bulk heterojunction solar cells, Applied Physics Letters 103(6) (2013).
T. Albes, B. Popescu, D. Popescu, F. Arca, P. Lugli, Optimization of organic solar cells by kinetic Monte Carlo simulations, 14th IEEE International Conference on Nanotechnology, 2014, pp. 1023-1028.
S. Khodakarimi, M.H. Hekmatshoar, F. Abbasi, Monte Carlo simulation of transport coefficient in organic solar cells, Applied Physics A 122(2) (2016).
U. Neupane, B. Bahrami, M. Biesecker, M.F. Baroughi, Q. Qiao, Kinetic Monte Carlo modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness, Nano Energy 35 (2017) 128-137.
W. Kaiser, T. Albes, A. Gagliardi, Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder, Physical Chemistry Chemical Physics 20(13) (2018) 8897-8908.
W. Kaiser, J. Popp, M. Rinderle, T. Albes, A. Gagliardi, Generalized Kinetic Monte Carlo Framework for Organic Electronics, Algorithms 11(4) (2018).
G.A. Buxton, N. Clarke, Predicting structure and property relations in polymeric photovoltaic devices, Physical Review B 74(8) (2006) 085207.
C.M. Martin, V.M. Burlakov, H.E. Assender, D.A.R. Barkhouse, A numerical model for explaining the role of the interface morphology in composite solar cells, Journal of Applied Physics 102(10) (2007) 104506.
A.H. Fallahpour, A. Di Carlo, P. Lugli, Sensitivity of the Drift-Diffusion Approach in Estimating the Power Conversion Efficiency of Bulk Heterojunction Polymer Solar Cells, Energies 10(3) (2017) 285.
T. Kirchartz, J. Nelson, Device Modelling of Organic Bulk Heterojunction Solar Cells, in: D. Beljonne, J. Cornil (Eds.), Multiscale Modelling of Organic and Hybrid Photovoltaics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 279-324.
T. Albes, P. Lugli, A. Gagliardi, Investigation of the Blend Morphology in Bulk-Heterojunction Organic Solar Cells, IEEE Transactions on Nanotechnology 15(2) (2016) 281-288.
N. Metropolis, S. Ulam, The Monte Carlo Method, Journal of the American Statistical Association 44(247) (1949) 335-341.
D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics 22(4) (1976) 403-434.
D.T. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, J Phys Chem 81(25) (1977) 2340.
L. Meng, D. Wang, Q. Li, Y. Yi, J.L. Bredas, Z. Shuai, An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices, J Chem Phys 134(12) (2011) 124102.
F. Wei, L. Liu, L. Liu, G. Li, Multiscale Modeling and Simulation for Optimizing Polymer Bulk Heterojunction Solar Cells, IEEE Journal of Photovoltaics 3(1) (2013) 300-309.
F. Wei, L. Yao, F. Lan, G. Li, L. Liu, Tandem polymer solar cells: simulation and optimization through a multiscale scheme, Beilstein J Nanotechnol 8 (2017) 123-133.
L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics 86(1) (1999) 487-496.
L. Liu, G. Li, Thickness optimization of organic solar cells by optical transfer matrix, 2011 11th IEEE International Conference on Nanotechnology, 2011, pp. 332-336.
A.G. Mathewson, H.P. Myers, Absolute Values of the Optical Constants of Some Pure Metals, Physica Scripta 4(6) (1971) 291.
A.D. Rakić, Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt. 34(22) (1995) 4755-4767.
G. Dennler, K. Forberich, M.C. Scharber, C.J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells, Journal of Applied Physics 102(5) (2007).
G.F. Burkhard, E.T. Hoke, M.D. McGehee, Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells, Adv Mater 22(30) (2010) 3293-7.
Y. Zhou, J.W. Shim, C. Fuentes-Hernandez, A. Sharma, K.A. Knauer, A.J. Giordano, S.R. Marder, B. Kippelen, Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure, Phys Chem Chem Phys 14(34) (2012) 12014-21.
E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift für Physik 31(1) (1925) 253-258.
K. Kawasaki, Phase transitions and critical phenomena, Academic, New York, 1972.
G.S. Grest, D.J. Srolovitz, Structure and evolution of quenched Ising clusters, Physical Review B 30(9) (1984) 5150-5155.
C.D. Adams, D.J. Srolovitz, M. Atzmon, Monte Carlo simulation of phase separation during thin‐film codeposition, Journal of Applied Physics 74(3) (1993) 1707-1715.
J.S. Moon, J.K. Lee, S. Cho, J. Byun, A.J. Heeger, “Columnlike” Structure of the Cross-Sectional Morphology of Bulk Heterojunction Materials, Nano Letters 9(1) (2009) 230-234.
G.R. Strobl, M. Schneider, Direct evaluation of the electron density correlation function of partially crystalline polymers, Journal of Polymer Science: Polymer Physics Edition 18(6) (1980) 1343-1359.
D.R. Kozub, K. Vakhshouri, L.M. Orme, C. Wang, A. Hexemer, E.D. Gomez, Polymer Crystallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology, Macromolecules 44(14) (2011) 5722-5726.
Y. Shen, M.C. Gupta, Investigation of electrical characteristics of P3HT:PCBM organic solar cells, 2012 38th IEEE Photovoltaic Specialists Conference, 2012, pp. 002770-002774.
F. Jahani, S. Torabi, R.C. Chiechi, L.J. Koster, J.C. Hummelen, Fullerene derivatives with increased dielectric constants, Chem Commun (Camb) 50(73) (2014) 10645-7.
P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Exciton Diffusion Measurements in Poly(3-hexylthiophene), Adv. Mater. 20(18) (2008) 3516-3520.
S. Cook, A. Furube, R. Katoh, Analysis of the excited states of regioregular polythiophene P3HT, Energy & Environmental Science 1(2) (2008).
G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.J. Egelhaaf, D. Brida, G. Cerullo, G. Lanzani, Hot exciton dissociation in polymer solar cells, Nat Mater 12(1) (2013) 29-33.
C.J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J.C. Hummelen, S. Sariciftci, Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time, Chemical Physics Letters 340(3) (2001) 232-236.
A. Miller, E. Abrahams, Impurity Conduction at Low Concentrations, Physical Review 120(3) (1960) 745-755.
G.J. Adriaenssens, V.I. Arkhipov, Non-Langevin recombination in disordered materials with random potential distributions, Solid State Communications 103(9) (1997) 541-543.
J. Nelson, Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection, Physical Review B 67(15) (2003) 155209.
L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells, Applied Physics Letters 88(5) (2006) 052104.
M.M. Mandoc, F.B. Kooistra, J.C. Hummelen, B. de Boer, P.W.M. Blom, Effect of traps on the performance of bulk heterojunction organic solar cells, Applied Physics Letters 91(26) (2007) 263505.
C.G. Shuttle, R. Hamilton, B.C. O'Regan, J. Nelson, J.R. Durrant, Charge-density-based analysis of the current-voltage response of polythiophene/fullerene photovoltaic devices, Proc Natl Acad Sci U S A 107(38) (2010) 16448-52.
T.-A. Chen, X. Wu, R.D. Rieke, Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties, Journal of the American Chemical Society 117(1) (1995) 233-244.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66856-
dc.description.abstract本研究探討異質接面高分子太陽能電池中主動層厚度、分離區塊尺寸以及電荷遷移率對於光電轉換效率與各項光電性質的影響,藉由系統性的調整各項變因分析何者為電池效能表現的關鍵影響因素。我們共結合光學轉換矩陣、易辛模型與動態蒙地卡羅方法三種模擬,並選用極具代表性的P3HT:PCBM 混摻系統進行模擬,並將模擬結果與本實驗室中以 PffBT4T-2OD:PCBM 混摻系統進行模擬之結果進行比較,探討不同電子予體材料之混摻系統受到上述三種變因之影響差異。
首先,我們從實驗文獻決定模擬中的設定參數並利用多次測試比對調整部分待定的參數,以確保模擬結果足以反應真實實驗之趨勢。在對於主動層厚度的調控中,我們發現主動層厚度以及入射光線的干涉作用對於光子吸收效率有極為關鍵之影響,雖然光子吸收效率大致隨厚度增加而上升,但亦需衡量厚度增加對電荷傳遞之負面效應;而主動層在分離區塊尺寸約 15 nm 時有最佳的光電性質表現,除了擁有較高的激子解離效率,也具有最低的電荷再結合比例,此結果與主動層形態中的材料孤島有極大的關聯;本研究中電荷遷移率的提升對光電性質極具助益,值得注意的是此結果與一般追求兩種電荷遷移率平衡的觀念有所出入。在兩種混摻系統的比較中,我們發現材料選擇對光子吸收效率與電荷傳遞能力仍具有絕對的影響,因此除了主動層厚度、分離區塊尺寸以及電荷遷移率三項變因,混摻系統材料選擇更是具有不可輕忽的影響。藉由本研究中對於檢視異質接面高分子太陽能電池光電轉換效率之關鍵影響因素的討論,期望可以提供未來之實驗學者在高分子太陽能電池設計與製作上的建議與方向。
zh_TW
dc.description.abstractImpact of active layer thickness, domain size and charge mobility in bulk heterojunction polymer solar cell on power conversion efficiency(PCE) and opto-electrical properties has been studied in this work. Key factors in the efficiency are investigated by systematically manipulating these variables. Our multiscale simulation consists of optical transfer matrix, Ising model and kinetic Monte Carlo method, and P3HT:PCBM active layer is chosen as our simulating subject. The results are compared with PffBT4T-2OD:PCBM active layer to demonstrate the different effects of these variables.
Firstly, by setting the input parameters according to experimental reference or fitting with experimental results, we aim at examining the influence of the three variables with caution. In the variation of active layer thickness, photon absorption is strongly related to thickness. Though thicker active layer usually absorbs more photons, the charges may suffer from long-distance diffusing to electrodes. Besides, domain size of active layer can also affect the performance of solar cell. It is found that morphology with domain size of 15 nm reaches higher efficiency due to its high exciton dissociation efficiency and low charge recombination ratio. Nevertheless, the existence of isolated sites also plays a crucial role in it. Additionally, the result in varying charge mobility shows that the efficiency can increase with higher charge mobility regardless of unbalanced hole and electron mobility. In the comparison of two different electron donor materials, all three variables show similar trends and the ability of light absorption is still the decisive factor in efficiency. By examining the key factors in the efficiency of bulk heterojunction polymer solar cell, we hope these contributions can provide concrete suggestions to scientist on designing and fabricating polymer solar cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:09:40Z (GMT). No. of bitstreams: 1
ntu-108-R05549027-1.pdf: 4554021 bytes, checksum: 238dd6616c6ecfe8cabff0a7027a4418 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vi
表目錄 x
第 1 章 前言 1
第 2 章 模擬方法 12
2.1 光學轉換矩陣 14
2.2 易辛模型與分離區塊尺寸測定 18
2.3 動態蒙地卡羅模擬 22
第 3 章 結果與討論 27
3.1 動態蒙地卡羅模擬參數之確認 27
3.2 主動層厚度對光電性質之影響 31
3.3 分離區塊尺寸對光電性質之影響 36
3.4 電荷遷移率對光電性質之影響 47
3.5 混摻系統對光電性質影響之探討 54
第 4 章 結論 62
參考文獻 64
附錄 71
dc.language.isozh-TW
dc.subject動態蒙地卡羅方法zh_TW
dc.subject主動層厚度zh_TW
dc.subject分離區塊尺寸zh_TW
dc.subject電荷遷移 率zh_TW
dc.subject光學轉換矩陣zh_TW
dc.subject光電轉換效率zh_TW
dc.subjectP3HT:PCBMzh_TW
dc.subject異質接面太陽能電池zh_TW
dc.subject多尺度模擬zh_TW
dc.subject易辛模型zh_TW
dc.subjectkinetic Monte Carlo methoden
dc.subjectP3HT:PCBMen
dc.subjectpower conversion efficiencyen
dc.subjectmultiscale simulationen
dc.subjectoptical transfer matrixen
dc.subjectIsing modelen
dc.subjectbulk heterojunction solar cellen
dc.subjectactive layer thicknessen
dc.subjectdomain sizeen
dc.subjectcharge mobilityen
dc.title檢視異質接面高分子太陽能電池光電轉換效率之關鍵影響因素zh_TW
dc.titleExamination of the Key Factors in the Efficiency of Bulk Heterojunction Polymer Solar Cellsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王立義,吳育任,賴育英
dc.subject.keyword異質接面太陽能電池,P3HT:PCBM,光電轉換效率,多尺度模擬,光學轉換矩陣,易辛模型,動態蒙地卡羅方法,主動層厚度,分離區塊尺寸,電荷遷移 率,zh_TW
dc.subject.keywordbulk heterojunction solar cell,P3HT:PCBM,power conversion efficiency,multiscale simulation,optical transfer matrix,Ising model,kinetic Monte Carlo method,active layer thickness,domain size,charge mobility,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202000177
dc.rights.note有償授權
dc.date.accepted2020-01-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved