請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66855完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞 | |
| dc.contributor.author | Hsiao-Ting Huang | en |
| dc.contributor.author | 黃筱婷 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:09:39Z | - |
| dc.date.available | 2020-02-04 | |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-17 | |
| dc.identifier.citation | [1] Kubo Mingliang, 1996, Discovery and Treatment of Gastroinstetinal Symptoms, First edition, Yiqun Publishing, 222-232.
[2] Liao Jiding, 2003, Clinical Oncology, First edition, Heji Book Publishing, 513-571 [3] Colorectal Cancer - American Cancer Society. [4] Magrini R, Bhonde MR, Hanski M-L, et al. (2002) Cellular effects of CPT-11 on colon carcinoma cells: Dependence on p53 and hMLH1 status. International Journal of Cancer. 101:23-31. [5] Bala V, Rao S, Boyd BJ, et al. (2013) Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. Journal of Controlled Release. 172:48-61. [6] Kouchakzadeh H, Safavi MS, Shojaosadati SA. (2015) Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv Protein Chem Struct Biol. 98:121-43. [7] Ding D, Tang X, Cao X, et al. (2014) Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS PharmSciTech.15(1):213–222. [8] Elsadek B, Kratz F. (2012) Impact of albumin on drug delivery-new applications on the horizon. J Control Release. 157(1):4–28. [9] Frei E. (2011) Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol Metab Syndr. 3(1):11. [10] Kim TH, Jiang HH, Youn YS, et al. (2011) Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm. 403(1–2):285–291. [11] Quan Q, Xie J, Gao H, et al. (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm. 8(5):1669–1676. [12] Sheng Z, Hu D, Zheng M, et al. (2014) Smart human serum albumin indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. 8(12):12310–12322. [13] Tirkey B, Bhushan B, Uday Kumar S, et al. (2017) Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy. Mater Sci Eng C Mater Biol Appl. 73:507-515. [14] Lee S, Lee C, Park S, et al. (2018) Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. Int J Pharm. 553(1-2):363-374. [15] Yang H, Maoa H, Wan Z, et al. (2013) Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 34(36):9124-9133. [16] Zha Z, Deng Z, Li Y, et al. (2013) Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5(10):4462-4467. [17] Ju E, Dong K, Liu Z, et al. (2015) Tumor Microenvironment Activated Photothermal Strategy for Precisely Controlled Ablation of Solid Tumors upon NIR Irradiation. Adv Funct Mater 25:1574-1580. [18] Jaque D, Martínez Maestro L, del Rosal B, et al. (2016) Nanoparticles for photothermal therapies. Nanoscale 6(16):9494-9530. [19] Y. Ma, X.L. Liang, S. Tong, et al. (2013) Gold Nanoshell Nanomicelles for Potential Magnetic Resonance Imaging, Light-Triggered Drug Release, and Photothermal Therapy, Adv. Funct. Mater. 23:815–822. [20] X. Huang, S. Neretina, M.A. (2009) El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater. 21:4880-4910. [21] H. Chen, L. Shao, Q. Li, , et al. (2013) Gold nanorods and their plasmonic properties, Chem. Soc. Rev. 42:2679-2724. [22] N. Fomina, J. Sankaranarayanan, A. Almutairi. (2012) Photochemical mechanisms of light-triggered release from nanocarriers, Adv. Drug Deliv. Rev. 64:1005-1020. [23] M. Yang, Y. Liu, W. Hou, et al. (2017) Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer, Nanoscale 9:334-340. [24] J. Lee, D.K. Chatterjee, M.H. Lee, et al. (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls, Cancer Lett. 347:46-53. [25] R.K. Kannadorai, G.G.Y. Chiew, K.Q. Luo, et al. (2015) Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy, Cancer Lett. 357:152-159. [26] Blakey I, Merican Z, Thurecht KJ. (2013) A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties. Langmuir. 29(26):8266-74. [27] Tu TY, Yang SJ, Tsai MH, et al. (2019) Dual-triggered drug-release vehicles for synergistic cancer therapy. Colloids Surf B Biointerfaces. 173:788-797. [28] Shin-Yu Lee, Cheng-Liang Peng, and Ming-Jium Shieh. (2018) Combined Chemo-Photothermotherapy Using Gold Nanoshells on Drug-Loaded Micellar Templates for Colorectal Cancer Treatment. Part. Part. Syst. Charact. 1800334. [29] Qi Wang, Xiangyu Zhang, Ying Sun, Liting Wang, Li Ding, Wei-Hong Zhu, Wen Di, You-Rong Duan. Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer, Biomaterials, Volume 212, 2019, Pages 73-86. [30] Lu, R., Li, W., Katzir, A., Raichlin, Y., Yu, H., & Mizaikoff, B. (2015). Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst, 140(3), 765–770. [31] Usoltsev D, Sitnikova V, Kajava A, Uspenskaya M. Systematic FTIR Spectroscopy Study of the Secondary Structure Changes in Human Serum Albumin under Various Denaturation Conditions. Biomolecules. 2019;9(8):359. Published 2019 Aug 12. [32] Hirsch, L.R., Gobin, A.M., Lowery, A.R. et al. Metal Nanoshells. Ann Biomed Eng (2006) 34: 15. https://doi.org/10.1007/s10439-005-9001-8 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66855 | - |
| dc.description.abstract | 大腸直腸癌目前已是全球人類死亡的重大疾病之一,而國內隨著經濟進步、飲食習慣西方化,大腸直腸癌的發生率隨之增加,約有三分之一的大腸直腸癌患者於診斷時即已發生轉移,轉移性大腸直腸癌無法使用手術切除,因此治療以全身性化學治療為主。而本計畫即是利用人類血清白蛋白 (Human serum albumin, HSA) 分子所帶有的疏水官能基將化療藥物7-乙基-10-羥基喜樹鹼 (7-Ethyl-10-hydroxycamptothecin, SN-38) 包覆於內,接著HSA會與polyetherimide (PEI) 混合,以利於金還原於奈米粒子表面,最後在此藥物載體表面還原奈米金團簇用以作為大腸直腸癌光熱治療之有效藥物載體。其中,HSA可增加此奈米藥物載體於血液中之相容性,有效增加此奈米藥物載體在血液中的半衰期,提高整體治療效果與降低化療藥物的毒性。而表面還原之奈米金團簇可藉由近紅外光的照射產生高溫,同時此高溫也可促進腫瘤細胞對化療藥物之敏感性甚至直接殺死腫瘤細胞。故此奈米藥物載體結合化學療法與光熱療法,提高化療藥物於血液之半衰期、降低病患之副作用與提高大腸直腸癌治療之效果。 | zh_TW |
| dc.description.abstract | Colorectal cancer is one of the main causes of death worldwide, and is currently undergoing a rapid increase in incidence. About a third of colorectal cancer patients have cancer metastasis at the time of diagnosis. In this study, the 7-Ethyl-10-hydroxycamptothecin (SN-38) molecules could be loaded in human serum albumin (HSA) nanoparticles by the hydrophobic side groups of amino acid in HSA. And HSA mixed with polyetherimide (PEI) could offer reduction sites for HAuCl4 to forming gold nanoclusters on the surface easily. Then, the gold nanocluster could be reduced and aggregated on the surface of SN-38-loaded nanoparticles (HSA/SN-38/PEI NPs) to obtain NIR-absorbent plasmonic nano-carriers (HSA/SN-38/PEI@Au NPs) for chemotherapy and photothermal therapy. When NIR irradiation, the local regional heat can promote the sensitivity of tumor cells to chemotherapy drugs and even directly kill the tumor cells. Finally, the use of this nano-carrier could improve the half-life of chemotherapy drugs in the blood and reduce the side effect, and is significantly more efficacious than the chemotherapy or photothermal therapy alone for colorectal cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:09:39Z (GMT). No. of bitstreams: 1 ntu-109-R06548078-1.pdf: 1755451 bytes, checksum: 02600fa69e789fab3eb65d804a412cc4 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii List of Schemes v List of Table vi List of Figures vii Chapter 1 Introduction 1 1.1 Research background and its importance 1 1.2 Chemotherapy and its limitation 3 1.3 Human serum albumin (HSA) 5 1.4 Photothermal therapy 6 1.5 Development of nano-carrier combine chemotherapy and photothermal therapy 7 Chapter 2 Materials and methods 10 2.1 Materials 10 2.2 Preparation of HSA/SN-38/PEI nanoparticles and HSA/SN-38/PEI@Au nanoparticles 10 2.3 Characterization of HSP@Au NPs 11 2.4 In vitro photothermal properties 12 2.5 Cell culture 13 2.6 Cellular uptake 13 2.7 In vitro cytotoxicity of chemotherapy and photothermal therapy 14 2.8 Animal and tumor model 15 2.9 In vivo anticancer efficacy 16 2.10 Statistic analysis 16 Chapter 3 Results and discussion 17 3.1 Synthesis and characterization of HSP@Au NPs 17 3.2 In vitro photothermal properties 19 3.3 Cellular uptake 20 3.4 In vitro cytotoxicity of chemotherapy and photothermal therapy 21 3.5 In vivo photothermal effect and anticancer effect 23 Chapter 4 Conclusion 25 References 26 Schemes 31 Table 32 Figures 33 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 人類血清白蛋白 | zh_TW |
| dc.subject | 化學治療 | zh_TW |
| dc.subject | 光熱治療 | zh_TW |
| dc.subject | 奈米金 | zh_TW |
| dc.subject | 7-乙基-10-羥基喜樹鹼 | zh_TW |
| dc.subject | gold nanocluster | en |
| dc.subject | colorectal cancer | en |
| dc.subject | human serum albumin | en |
| dc.subject | 7-Ethyl-10-hydroxycamptothecin (SN-38) | en |
| dc.subject | chemotherapy | en |
| dc.subject | photothermal therapy | en |
| dc.title | 結合化療與光熱療法之大腸直腸癌奈米藥物載體開發 | zh_TW |
| dc.title | The development of nano-carrier for colorectal cancer by the combination of chemotherapy and photothermal therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊台鴻,林文澧,駱俊良 | |
| dc.subject.keyword | 大腸直腸癌,人類血清白蛋白,化學治療,光熱治療,奈米金,7-乙基-10-羥基喜樹鹼, | zh_TW |
| dc.subject.keyword | colorectal cancer,human serum albumin,chemotherapy,photothermal therapy,gold nanocluster,7-Ethyl-10-hydroxycamptothecin (SN-38), | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU201904460 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-01-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
