Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡
dc.contributor.authorYi-Hung Yangen
dc.contributor.author楊鎰鴻zh_TW
dc.date.accessioned2021-06-17T01:09:35Z-
dc.date.available2020-02-04
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-01-17
dc.identifier.citationG. Li, R. Zhu, Y. Yang, Polymer solar cells, Nature Photonics 6(3) (2012) 153-161.
M.C. Scharber, N.S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells, Prog Polym Sci 38(12) (2013) 1929-1940.
M. Kaltenbrunner, G. Adam, E.D. Glowacki, M. Drack, R. Schwodiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air, Nat Mater 14(10) (2015) 1032-9.
S. Rafique, S.M. Abdullah, K. Sulaiman, M. Iwamoto, Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement, Renewable and Sustainable Energy Reviews 84 (2018) 43-53.
R.R. Lunt, N.C. Giebink, A.A. Belak, J.B. Benziger, S.R. Forrest, Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching, Journal of Applied Physics 105(5) (2009) 053711.
C.W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters 48(2) (1986) 183-185.
G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science 270(5243) (1995) 1789-1791.
A. Moliton, J.M. Nunzi, How to model the behaviour of organic photovoltaic cells, Polymer International 55(6) (2006) 583-600.
P. Morvillo, E. Bobeico, Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study, Solar Energy Materials and Solar Cells 92(10) (2008) 1192-1198.
H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature photonics 3(11) (2009) 649-653.
N.A. Ran, J.A. Love, C.J. Takacs, A. Sadhanala, J.K. Beavers, S.D. Collins, Y. Huang, M. Wang, R.H. Friend, G.C. Bazan, Harvesting the full potential of photons with organic solar cells, Advanced Materials (2015).
G. Dennler, M.C. Scharber, C.J. Brabec, Polymer‐Fullerene bulk‐heterojunction solar cells, Advanced Materials 21(13) (2009) 1323-1338.
S. Banerjee, S.S.K. Iyer, Short-circuit current density and spectral response modelling of bulk-heterojunction solar cells, Organic Electronics 11(12) (2010) 2032-2036.
P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics 93(7) (2003) 3693-3723.
H. Peng, X. Sun, W. Weng, X. Fang, Polymer Materials for Energy and Electronic Applications, Academic Press2016.
Q. Wang, S. Zhang, B. Xu, L. Ye, H. Yao, Y. Cui, H. Zhang, W. Yuan, J. Hou, Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione‐based Photovoltaic Polymer by Grafting Alkylthio Functional Groups, Chemistry–An Asian Journal 11(19) (2016) 2650-2655.
G. Wang, M.A. Adil, J. Zhang, Z. Wei, Large-Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods, Adv Mater 31(45) (2019) e1805089.
B. Qi, J. Wang, Fill factor in organic solar cells, Phys Chem Chem Phys 15(23) (2013) 8972-82.
M.-S. Kim, B.-G. Kim, J. Kim, Effective variables to control the fill factor of organic photovoltaic cells, ACS applied materials & interfaces 1(6) (2009) 1264-1269.
Z.G. Zhang, J. Wang, Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications, Journal of Materials Chemistry 22(10) (2012) 4178.
H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, J. Hou, Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials, Chem Rev 116(12) (2016) 7397-457.
H. Fu, Z. Wang, Y. Sun, Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells, Angew Chem Int Ed Engl 58(14) (2019) 4442-4453.
A. Wadsworth, M. Moser, A. Marks, M.S. Little, N. Gasparini, C.J. Brabec, D. Baran, I. McCulloch, Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells, Chem Soc Rev 48(6) (2019) 1596-1625.
S. Shoaee, M. Stolterfoht, D. Neher, The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells, Advanced Energy Materials 8(28) (2018) 1703355.
L. Murphy, W. Hong, H. Aziz, Y. Li, Influences of using a high mobility donor polymer on solar cell performance, Organic Electronics 14(12) (2013) 3484-3492.
Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nat Commun 5 (2014) 5293.
J. Yu, P. Chen, C.W. Koh, H. Wang, K. Yang, X. Zhou, B. Liu, Q. Liao, J. Chen, H. Sun, H.Y. Woo, S. Zhang, X. Guo, Phthalimide-Based High Mobility Polymer Semiconductors for Efficient Nonfullerene Solar Cells with Power Conversion Efficiencies over 13, Adv Sci (Weinh) 6(2) (2019) 1801743.
G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), Journal of Applied Physics 98(4) (2005) 043704.
M. Abbas, N. Tekin, Balanced charge carrier mobilities in bulk heterojunction organic solar cells, Applied Physics Letters 101(7) (2012) 073302.
C.-T. Lee, C.-H. Lee, Conversion efficiency improvement mechanisms of polymer solar cells by balance electron–hole mobility using blended P3HT:PCBM:pentacene active layer, Organic Electronics 14(8) (2013) 2046-2050.
B. Ebenhoch, S.A.J. Thomson, K. Genevičius, G. Juška, I.D.W. Samuel, Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance, Organic Electronics 22 (2015) 62-68.
F. Zhao, C. Wang, X. Zhan, Morphology Control in Organic Solar Cells, Advanced Energy Materials 8(28) (2018) 1703147.
H. Zhong, L. Ye, J.-Y. Chen, S.B. Jo, C.-C. Chueh, J.H. Carpenter, H. Ade, A.K.Y. Jen, A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive, Journal of Materials Chemistry A 5(21) (2017) 10517-10525.
X. Liu, L. Nian, K. Gao, L. Zhang, L. Qing, Z. Wang, L. Ying, Z. Xie, Y. Ma, Y. Cao, F. Liu, J. Chen, Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells, Journal of Materials Chemistry A 5(33) (2017) 17619-17631.
W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells, J Am Chem Soc 139(21) (2017) 7148-7151.
Y. Zang, Q. Xin, J. Zhao, J. Lin, Effect of Active Layer Thickness on the Performance of Polymer Solar Cells Based on a Highly Efficient Donor Material of PTB7-Th, The Journal of Physical Chemistry C 122(29) (2018) 16532-16539.
J.K. van Duren, X. Yang, J. Loos, C.W. Bulle‐Lieuwma, A.B. Sieval, J.C. Hummelen, R.A. Janssen, Relating the morphology of poly (p‐phenylene vinylene)/methanofullerene blends to solar‐cell performance, Advanced Functional Materials 14(5) (2004) 425-434.
H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene‐based bulk‐heterojunction solar cells, Advanced Functional Materials 14(10) (2004) 1005-1011.
C.-Y. Nam, Q. Wu, D. Su, C.-y. Chiu, N.J. Tremblay, C. Nuckolls, C.T. Black, Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices, Journal of Applied Physics 110(6) (2011) 064307.
F. Zhao, Y. Li, Z. Wang, Y. Yang, Z. Wang, G. He, J. Zhang, L. Jiang, T. Wang, Z. Wei, W. Ma, B. Li, A. Xia, Y. Li, C. Wang, Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells, Advanced Energy Materials 7(13) (2017) 1602552.
H. Hu, K. Jiang, G. Yang, J. Liu, Z. Li, H. Lin, Y. Liu, J. Zhao, J. Zhang, F. Huang, Y. Qu, W. Ma, H. Yan, Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells, J Am Chem Soc 137(44) (2015) 14149-57.
W. Ma, G. Yang, K. Jiang, J.H. Carpenter, Y. Wu, X. Meng, T. McAfee, J. Zhao, C. Zhu, C. Wang, H. Ade, H. Yan, Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High-Performance PffBT4T-2OD:PC71BM Organic Solar Cells, Advanced Energy Materials 5(23) (2015).
J. Zhao, S. Zhao, Z. Xu, B. Qiao, D. Huang, L. Zhao, Y. Li, Y. Zhu, P. Wang, Revealing the Effect of Additives with Different Solubility on the Morphology and the Donor Crystalline Structures of Organic Solar Cells, ACS Appl Mater Interfaces 8(28) (2016) 18231-7.
J. Zhao, Y. Li, A. Hunt, J. Zhang, H. Yao, Z. Li, J. Zhang, F. Huang, H. Ade, H. Yan, A Difluorobenzoxadiazole Building Block for Efficient Polymer Solar Cells, Adv Mater 28(9) (2016) 1868-73.
Suman, A. Bagui, V. Gupta, K.K. Maurya, S.P. Singh, High-Performance Non-Fullerene Acceptor Derived from Diathiafulvalene Wings for Solution-Processed Organic Photovoltaics, The Journal of Physical Chemistry C 120(43) (2016) 24615-24622.
D. Baran, T. Kirchartz, S. Wheeler, S. Dimitrov, M. Abdelsamie, J. Gorman, R.S. Ashraf, S. Holliday, A. Wadsworth, N. Gasparini, P. Kaienburg, H. Yan, A. Amassian, C.J. Brabec, J.R. Durrant, I. McCulloch, Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages, Energy Environ Sci 9(12) (2016) 3783-3793.
M. Kumano, M. Ide, N. Seiki, Y. Shoji, T. Fukushima, A. Saeki, A ternary blend of a polymer, fullerene, and insulating self-assembling triptycene molecules for organic photovolatics, J. Mater. Chem. A 4(47) (2016) 18490-18498.
R.C. Masters, Q. Wan, Y. Zhang, M. Dapor, A.M. Sandu, C. Jiao, Y. Zhou, H. Zhang, D.G. Lidzey, C. Rodenburg, Novel organic photovoltaic polymer blends: A rapid, 3-dimensional morphology analysis using backscattered electron imaging in the scanning electron microscope, Solar Energy Materials and Solar Cells 160 (2017) 182-192.
Y. Shimata, A. Saeki, Hole Relaxation in Polymer:Fullerene Solar Cells Examined by the Simultaneous Measurement of Time-of-Flight and Time-Resolved Microwave Conductivity, The Journal of Physical Chemistry C 121(34) (2017) 18351-18359.
Y. Zhang, A.J. Parnell, F. Pontecchiani, J.F. Cooper, R.L. Thompson, R.A. Jones, S.M. King, D.G. Lidzey, G. Bernardo, Understanding and controlling morphology evolution via DIO plasticization in PffBT4T-2OD/PC71BM devices, Sci Rep 7 (2017) 44269.
X. Zhang, D. Zheng, S. Xing, H. Wang, J. Huang, J. Yu, Precisely control the morphology and crystallization of temperature-dependent aggregation bulk heterojunction by using co-solvent system for optimized light intensity distribution and its effect on thick active layer polymer solar cells, Solar Energy 147 (2017) 106-112.
W. Li, J. Cai, F. Cai, Y. Yan, H. Yi, R.S. Gurney, D. Liu, A. Iraqi, T. Wang, Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination, Nano Energy 44 (2018) 155-163.
C. Xu, M. Wright, N.K. Elumalai, M.A. Mahmud, D. Wang, V.R. Gonçales, M.B. Upama, F. Haque, J.J. Gooding, A. Uddin, Realizing 11.3% efficiency in PffBT4T-2OD fullerene organic solar cells via superior charge extraction at interfaces, Applied Physics A 124(6) (2018).
H. Cha, S. Wheeler, S. Holliday, S.D. Dimitrov, A. Wadsworth, H.H. Lee, D. Baran, I. McCulloch, J.R. Durrant, Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor, Advanced Functional Materials 28(3) (2018) 1704389.
J. Cornil, D. Beljonne, J.P. Calbert, J.L. Brédas, Interchain interactions in organic π‐conjugated materials: impact on electronic structure, optical response, and charge transport, Adv. Mater. 13(14) (2001) 1053-1067.
Y.-K. Lan, C.-I. Huang, A Theoretical Study of the Charge Transfer Behavior of the Highly Regioregular Poly-3-hexylthiophene in the Ordered State, The Journal of Physical Chemistry B 112(47) (2008) 14857-14862.
Y.K. Lan, C.I. Huang, Charge Mobility and Transport Behavior in the Ordered and Disordered States of the Regioregular Poly(3-hexylthiophene), Journal of Physical Chemistry B 113(44) (2009) 14555-14564.
C. Adamo, D. Jacquemin, The calculations of excited-state properties with Time-Dependent Density Functional Theory, Chemical Society Reviews 42(3) (2013) 845-856.
Y. Cui, P. Li, C. Song, H. Zhang, Terminal Modulation of D−π–A Small Molecule for Organic Photovoltaic Materials: A Theoretical Molecular Design, The Journal of Physical Chemistry C 120(51) (2016) 28939-28950.
C.-K. Lee, C.-W. Pao, C.-W. Chu, Multiscale molecular simulations of the nanoscale morphologies of P3HT:PCBM blends for bulk heterojunction organic photovoltaic cells, Energy & Environmental Science 4(10) (2011).
J.M. Carrillo, R. Kumar, M. Goswami, B.G. Sumpter, W.M. Brown, New insights into the dynamics and morphology of P3HT:PCBM active layers in bulk heterojunctions, Phys Chem Chem Phys 15(41) (2013) 17873-82.
S.E. Root, S. Savagatrup, C.J. Pais, G. Arya, D.J. Lipomi, Predicting the Mechanical Properties of Organic Semiconductors Using Coarse-Grained Molecular Dynamics Simulations, Macromolecules 49(7) (2016) 2886-2894.
T. Albes, A. Gagliardi, Influence of permittivity and energetic disorder on the spatial charge carrier distribution and recombination in organic bulk-heterojunctions, Phys Chem Chem Phys 19(31) (2017) 20974-20983.
M. Casalegno, A. Bernardi, G. Raos, Numerical simulation of photocurrent generation in bilayer organic solar cells: Comparison of master equation and kinetic Monte Carlo approaches, J Chem Phys 139(2) (2013) 024706.
M. Casalegno, G. Raos, R. Po, Methodological assessment of kinetic Monte Carlo simulations of organic photovoltaic devices: the treatment of electrostatic interactions, J Chem Phys 132(9) (2010) 094705.
C. Groves, R.G. Kimber, A.B. Walker, Simulation of loss mechanisms in organic solar cells: A description of the mesoscopic Monte Carlo technique and an evaluation of the first reaction method, J Chem Phys 133(14) (2010) 144110.
D. Kipp, V. Ganesan, A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells, Journal of Applied Physics 113(23) (2013) 234502.
Y.S. Lingyi Meng, Qikai Li, Yongfang Li, Xiaowei Zhan, Zhigang Shuai, Robin G. E. Kimber, and Alison B. Walker, Dynamic Monte Carlo Simulation for Highly Efficient Polymer Blend Photovoltaics, (2010).
R.A. Marsh, C. Groves, N.C. Greenham, A microscopic model for the behavior of nanostructured organic photovoltaic devices, Journal of Applied Physics 101(8) (2007).
U. Neupane, B. Bahrami, M. Biesecker, M.F. Baroughi, Q. Qiao, Kinetic Monte Carlo modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness, Nano Energy 35 (2017) 128-137.
A.B.W. Peter K. Watkins, and Geraldine L. B. Verschoor, Dynamical Monte Carlo Modelling of Organic Solar Cells: The Dependence of Internal Quantum Efficiency on Morphology, (2005).
B.P. Tim Albes, Dan Popescu, Francesco Arca and Paolo Lugli, Optimization of Organic Solar Cells by Kinetic Monte Carlo Simulations, (2014).
F. Wei, L. Yao, F. Lan, G. Li, L. Liu, Tandem polymer solar cells: simulation and optimization through a multiscale scheme, Beilstein J Nanotechnol 8 (2017) 123-133.
F. Yang, S.R. Forrest, Photocurrent Generation in Nanostructured Organic Solar Cells, ACS Nano 2(5) (2008) 1022-1032.
G.A. Buxton, N. Clarke, Predicting structure and property relations in polymeric photovoltaic devices, Physical Review B 74(8) (2006) 085207.
C.M. Martin, V.M. Burlakov, H.E. Assender, D.A.R. Barkhouse, A numerical model for explaining the role of the interface morphology in composite solar cells, Journal of Applied Physics 102(10) (2007) 104506.
A.H. Fallahpour, A. Di Carlo, P. Lugli, Sensitivity of the Drift-Diffusion Approach in Estimating the Power Conversion Efficiency of Bulk Heterojunction Polymer Solar Cells, Energies 10(3) (2017) 285.
Y.A. Duan, Y. Geng, H.B. Li, J.L. Jin, Y. Wu, Z.M. Su, Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells, Journal of computational chemistry 34(19) (2013) 1611-1619.
L.R. Rutledge, S.M. McAfee, G.C. Welch, Design and computational characterization of non-fullerene acceptors for use in solution-processable solar cells, The Journal of Physical Chemistry A 118(36) (2014) 7939-7951.
D. Wang, W. Ding, Z. Geng, L. Wang, Y. Geng, Z. Su, H. Yu, Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: A quantum chemical approach, Materials Chemistry and Physics 145(3) (2014) 387-396.
D. Wang, X. Zhang, W. Ding, X. Zhao, Z. Geng, Density functional theory design and characterization of D–A–A type electron donors with narrow band gap for small-molecule organic solar cells, Computational and Theoretical Chemistry 1029 (2014) 68-78.
H. Yoo, K.C. Kim, S.S. Jang, Blends of poly(3-alkylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester for organic photovoltaic cell applications: Multi-scale modeling approach, Computational Materials Science 126 (2017) 299-307.
D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics 22(4) (1976) 403-434.
D.T. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, J Phys Chem 81(25) (1977) 2340.
W. Kaiser, T. Albes, A. Gagliardi, Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder, Phys Chem Chem Phys 20(13) (2018) 8897-8908.
P.K. Watkins, A.B. Walker, G.L.B. Verschoor, Dynamical Monte Carlo Modelling of Organic Solar Cells:  The Dependence of Internal Quantum Efficiency on Morphology, Nano Letters 5(9) (2005) 1814-1818.
R.G. Kimber, A.B. Walker, G.E. Schroder-Turk, D.J. Cleaver, Bicontinuous minimal surface nanostructures for polymer blend solar cells, Phys Chem Chem Phys 12(4) (2010) 844-51.
F. Wei, L. Liu, L. Liu, G. Li, Multiscale Modeling and Simulation for Optimizing Polymer Bulk Heterojunction Solar Cells, IEEE Journal of Photovoltaics 3(1) (2013) 300-309.
Y.-L. Li, 結合分子動力學與量子力學探討高效率高分子太陽能電池給體材料其分子鏈構形與光電性質之關聯性, Institute of Polymer Science and Engineering, National Taiwan University, 2017.
Y.-P. Chen, 運用分子動力學建構高效率太陽能電池系統於堆疊結構下之粗粒化模型勢能函數並探討其與分子鏈構形之關聯性, Institute of Polymer Science and Enguneering, National Taiwan University, 2018.
T. Wang, X.-K. Chen, A. Ashokan, Z. Zheng, M.K. Ravva, J.-L. Brédas, Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network, Advanced Functional Materials 28(14) (2018) 1705868.
Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nature Communications 5 (2014) 5293.
L.A.A. Pettersson, L.S. Roman, O. Inganäs, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, Journal of Applied Physics 86(1) (1999) 487-496.
L. Liu, G. Li, Thickness Optimization of Organic Solar Cells by Optical Transfer Matrix, (2011).
C.G. Bottenfield, F. Wei, H.J. Park, L.J. Guo, G. Li, Investigation of Printing-Based Graded Bulk-Heterojunction Organic Solar Cells, Energy Technology 3(4) (2015) 414-422.
Y. Zhou, J.W. Shim, C. Fuentes-Hernandez, A. Sharma, K.A. Knauer, A.J. Giordano, S.R. Marder, B. Kippelen, Direct correlation between work function of indium-tin-oxide electrodes and solar cell performance influenced by ultraviolet irradiation and air exposure, Phys Chem Chem Phys 14(34) (2012) 12014-21.
C. Stelling, C.R. Singh, M. Karg, T.A. Konig, M. Thelakkat, M. Retsch, Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells, Sci Rep 7 (2017) 42530.
A. Sánchez-Díaz, X. Rodríguez-Martínez, L. Córcoles-Guija, G. Mora-Martín, M. Campoy-Quiles, High-Throughput Multiparametric Screening of Solution Processed Bulk Heterojunction Solar Cells, Advanced Electronic Materials (2018) 1700477.
G.R. Strobl, M. Schneider, Direct evaluation of the electron density correlation function of partially crystalline polymers, Journal of Polymer Science: Polymer Physics Edition 18(6) (1980) 1343-1359.
J.S. Moon, J.K. Lee, S. Cho, J. Byun, A.J. Heeger, “Columnlike” Structure of the Cross-Sectional Morphology of Bulk Heterojunction Materials, Nano Letters 9(1) (2009) 230-234.
F. Jahani, S. Torabi, R.C. Chiechi, L.J. Koster, J.C. Hummelen, Fullerene derivatives with increased dielectric constants, Chem Commun (Camb) 50(73) (2014) 10645-7.
G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.J. Egelhaaf, D. Brida, G. Cerullo, G. Lanzani, Hot exciton dissociation in polymer solar cells, Nat Mater 12(1) (2013) 29-33.
A. Miller, E. Abrahams, Impurity Conduction at Low Concentrations, Physical Review 120(3) (1960) 745-755.
V.D. Mihailetchi, J.K.J.v. Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk, Electron Transport in a Methanofullerene, Advanced Functional Materials 13 (2003) 43-46.
E. von Hauff, V. Dyakonov, J. Parisi, Study of field effect mobility in PCBM films and P3HT:PCBM blends, Solar Energy Materials and Solar Cells 87(1-4) (2005) 149-156.
J.-i. Nakamura, K. Murata, K. Takahashi, Relation between carrier mobility and cell performance in bulk heterojunction solar cells consisting of soluble polythiophene and fullerene derivatives, Applied Physics Letters 87(13) (2005) 132105.
P.H. Wöbkenberg, D.D.C. Bradley, D. Kronholm, J.C. Hummelen, D.M. de Leeuw, M. Cölle, T.D. Anthopoulos, High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives, Synthetic Metals 158(11) (2008) 468-472.
C.G. Shuttle, R. Hamilton, B.C. O'Regan, J. Nelson, J.R. Durrant, Charge-density-based analysis of the current-voltage response of polythiophene/fullerene photovoltaic devices, Proc Natl Acad Sci U S A 107(38) (2010) 16448-52.
C.M. Proctor, J.A. Love, T.-Q. Nguyen, Mobility Guidelines for High Fill Factor Solution-Processed Small Molecule Solar Cells, Advanced Materials 26(34) (2014) 5957-5961.
G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), Journal of Applied Physics 98(4) (2005).
Y. Shen, M.C. Gupta, Investigation of electrical characteristics of P3HT:PCBM organic solar cells, 2012 38th IEEE Photovoltaic Specialists Conference, 2012, pp. 002770-002774.
P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Exciton Diffusion Measurements in Poly(3-hexylthiophene), Adv. Mater. 20(18) (2008) 3516-3520.
S. Cook, A. Furube, R. Katoh, Analysis of the excited states of regioregular polythiophene P3HT, Energy & Environmental Science 1(2) (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66852-
dc.description.abstract本研究以厚膜型高效率PffBT4T-2OD:PCBM太陽能電池為研究對象,結合光學轉換矩陣、易辛模型及動態蒙地卡羅模擬三種方法,探討主動層厚度、分離區塊尺寸及電荷遷移率對於光電性質之影響,並且和P3HT:PCBM太陽能電池的模擬結果進行比較,以歸納出PffBT4T-2OD:PCBM系統高效率之關鍵因素。為了確認動態蒙地卡羅參數的正確性,我們固定PffBT4T-2OD:PCBM的混摻體積比為1:0.75,調整電子遷移率、電荷再結合速率常數及電荷提取速率常數,將模擬結果和實驗文獻進行比較,在最佳情況之下兩者之誤差值僅有5.52%,足以說明所採用之參數適合用於各項變因之模擬。
針對主動層厚度的影響,較厚的主動層會使FF數值下降,原因和再結合的增加有關,不過由於厚膜能夠大幅提升光子吸收效率,因此當主動層厚度為240 nm時有明顯較佳的JSC值,整體來看,FF的改變對於PCE的影響十分有限,PCE主要的變化趨勢還是受到JSC的影響所致。針對分離區塊尺寸的結果,我們觀察到孤島的介面積比例在系統中扮演舉足輕重的角色,當予體區塊尺寸為15 nm時,雖然予體/受體的比介面積較低,使得激子解離效率略低於9 nm的結果,不過因為較低的孤島介面積比例,使電荷不易於傳遞的過程中發生再結合,因此在厚膜及薄膜時皆擁有較佳的PCE表現。針對電荷遷移率的影響,結果指出較高的 使電洞更容易傳遞至電極,也會略微提高電子的移動能力,使IQE及JSC有效提升,我們也發現較佳的電荷傳遞能力能夠克服高膜厚時內部生成之電荷不易傳遞至電極的缺陷,有效減少電荷停留在層內的時間、降低再結合情況的發生,進一步使PCE和薄膜之間的差距拉大。最後從PffBT4T-2OD:PCBM和P3HT:PCBM兩系統的比較中,我們觀察到不論如何調整各項變因,前者皆擁有較佳的PCE值,原因是PffBT4T-2OD擁有優異的光子吸收效率及電荷傳遞能力,有效增加電荷提取數目、提高PCE值。經由一系列的模擬,我們歸納了各項變因對於PCE的影響程度,期許研究成果有助於優化太陽能電池的結構設計,促成高分子太陽能電池之發展。
zh_TW
dc.description.abstractIn this study, the optical transfer matrix, Ising model and kinetic Monte Carlo method are combined to explore the influence of active layer thickness, domain size and carrier mobility on high-efficiency PffBT4T-2OD:PCBM polymer solar cells. The simulation results of PffBT4T-2OD:PCBM are compared with P3HT:PCBM for the purpose of searching the key factors in high efficient PffBT4T-2OD:PCBM system. Parameters applied in kinetic Monte Carlo, such as electron mobility, charge recombination rate constant, and charge extraction rate constant, are regulated to fit the experimental results. It shows that the error of J-V curve is merely 5.52% between our simulation and experiment, which indicates that these parameters are representative to be employed.
First of all, from the perspective of thickness in active layer, it shows that although thicker active layer would result in decreasing FF for more recombination, it can greatly improve the photon absorption efficiency which contributes to higher JSC. As a result, there is better JSC when the thickness of active layer is 240 nm. As a whole, the trend of PCE is mainly affected by JSC instead of FF. Next, regard to the results of domain size, we observe that the isolated site interface ratio plays a significant role in the system. Although the exciton dissociation efficiency is slightly lower than the result of 9 nm when the donor has domain size of 15 nm, there is less recombination occurs because of lower isolated site interface ratio. For this reason, there is better performance for both thin and thick active layer when the donor domain size is 15 nm. After that, for the influence of charge mobility, the results indicate that the higher hole mobility makes it easier for the holes to transfer to electrodes. Besides, it slightly promotes the electron's ability to move, which effectively improves IQE and JSC. It also shows that better charge transfer ability can overcome the limitation for thicker film, which effectively reduces the time that charges stay in the layer and much easier transfer to the electrodes. Finally, from the comparison of PffBT4T-2OD:PCBM and P3HT:PCBM systems, we observe that the former has a better PCE value regardless of how to adjust the various factors because PffBT4T-2OD has excellent photon absorption efficiency and better carrier mobility, which effectively increases the number of charge extraction, and improves the PCE. Through a series of simulations, the effects of various parameters to PCE have been summarized. These simulation results are in the hope of optimizing the device structure and also assists the development of polymer solar cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:09:35Z (GMT). No. of bitstreams: 1
ntu-109-R05549018-1.pdf: 3841587 bytes, checksum: 3bf64f6a37f482559ab3bdadcccf064a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vi
表目錄 x
第1章 前言 1
第2章 模擬方法 11
2.1 光學轉換矩陣 13
2.2 易辛模型與分離區塊尺寸測定 17
2.3 動態蒙地卡羅模擬 21
第3章 結果與討論 26
3.1 動態蒙地卡羅模擬參數之確認 26
3.2 主動層厚度對光電性質之影響 32
3.3 分離區塊尺寸對光電性質之影響 37
3.4 電荷遷移率對光電性質之影響 47
3.5 混摻系統對光電性質影響之探討 53
第4章 結論 61
參考文獻 63
附錄 70
dc.language.isozh-TW
dc.subject分離區塊尺寸zh_TW
dc.subject電荷遷移率zh_TW
dc.subject易辛模型zh_TW
dc.subject主動層厚度zh_TW
dc.subject光學轉換矩陣zh_TW
dc.subject多尺度模擬zh_TW
dc.subject高效率高分子太陽能電池zh_TW
dc.subjectPffBT4T-2OD:PCBMzh_TW
dc.subject動態蒙地卡羅模擬zh_TW
dc.subjectactive layer thicknessen
dc.subjecthigh-efficiency polymer solar cellsen
dc.subjectmultiscale simulationen
dc.subjectoptical transfer matrixen
dc.subjectIsing modelen
dc.subjectkinetic Monte Carlo simulationen
dc.subjectPffBT4T-2OD:PCBMen
dc.subjectdomain sizeen
dc.subjectcarrier mobilityen
dc.title藉由動態蒙地卡羅模擬方法探討高效率高分子太陽能電池其高轉換效率之關鍵因素zh_TW
dc.titleExploring the Key Factors for High Power Conversion Efficiency in Polymer Solar Cells via Kinetic Monte Carlo Simulation Methodsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴育英,吳育任,王立義
dc.subject.keywordPffBT4T-2OD:PCBM,高效率高分子太陽能電池,多尺度模擬,光學轉換矩陣,易辛模型,動態蒙地卡羅模擬,主動層厚度,分離區塊尺寸,電荷遷移率,zh_TW
dc.subject.keywordPffBT4T-2OD:PCBM,high-efficiency polymer solar cells,multiscale simulation,optical transfer matrix,Ising model,kinetic Monte Carlo simulation,active layer thickness,domain size,carrier mobility,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202000179
dc.rights.note有償授權
dc.date.accepted2020-01-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved