Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66835
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉貴生(Guey-Sheng Liou)
dc.contributor.authorYa-Wen Chiuen
dc.contributor.author邱雅雯zh_TW
dc.date.accessioned2021-06-17T01:09:13Z-
dc.date.available2020-02-04
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2020-01-20
dc.identifier.citationChapter 1
H. Staudinger, Über Polymerisation. Ber. Dtsch. Chem. Ges., 1920. 53(6): p. 1073-1085.
R. Hill and E. E. Walker, Polymer constitution and fiber properties. J. Polym. Sci., 1948. 3(5): p. 609-630.
A. J. Reglero Ruiz, M. Trigo-López, C. F. García and M. J. García, Functional Aromatic Polyamides. Polymers, 2017. 9(9).
J. M. García, F. C. García, F. Serna and J. L. de la Peña, High-performance aromatic polyamides. Prog. Polym. Sci., 2010. 35(5): p. 623-686.
Y. V. Mitin and O. V. Glinskaya, Peptide synthesis using triphenyl phosphite and imidazole. Tetrahedron Lett., 1969. 10(60): p. 5267-5270.
N. Ogata and H. Tanaka, Synthesis of Polyamide by Phosphoroxidation. Polym. J., 1971. 2: p. 672.
N. Yamazaki, F. Higashi, and J. Kawabata, Studies on reactions of the N-phosphonium salts of pyridines. XI. Preparation of polypeptides and polyamides by means of triaryl phosphites in pyridine. J. Polym. Sci. Pol. Chem., 1974. 12(9): p. 2149-2154.
N. Yamazaki, M. Matsumoto, and F. Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Pol. Chem., 1975. 13(6): p. 1373-1380.
J. Preston and W. L. Hofferbert Jr, Preparation of poly amides via the phosphorylation reaction. I. Wholly aromatic polyamides and polyamide-hydrazides. J. Polym. Sci. Pol. Sym., 1978. 65(1): p. 13-27.
J. Preston, W. R. Krigbaum, and R. Kotek, Synthesis of high-molecular-weight rodlike polyamides and block copolymers. J. Polym. Sci. Pol. Chem., 1982. 20(11): p. 3241-3249.
S. H. Hsiao, C. P. Yang, and J. C. Fan, Synthesis and properties of polyamides and poly(amideimide)s based on 4,4′-[1,4(or 1,3)-phenylenebis(isopropylidene-1,4-phenyleneoxy)]dianiline. Macromol. Chem. Phys., 1995. 196(9): p. 3041-3052.
M. J. Nanjan, M. Balasubramaniam, K. S. V. Srinivasan and M. Santappa, Synthesis of poly 2,2 bis[4(p-aminophenoxy) phenyl] propane-terephthalic acid. Polymer, 1977. 18(4): p. 411-412.
J. Adduci, L. L. Chapoy, G. Jonsson, J. Kops and B. M. Shinde, Semi‐stiff chain aromatic polyamides: New candidates for thermotropic liquid crystalline polymers. Polym. Eng. Sci., 1981. 21(11): p. 712-716.
H. Manami, M. Nakazawa, Y. Oishi, M. A. Kakimoto and Y. Imai, Preparation and properties of aromatic polyamides and aromatic polyesters derived from 4,4′-sulfonyldibenzoic acid. J. Polym. Sci. Pol. Chem., 1990. 28(3): p. 465-477.
S. H. Hsiao and C. F. Chang, Synthesis and properties of aromatic polyamides based on non-, methyl-, and phenyl-substituted 4,4′-bis(1,4-phenylenedioxy)dibenzoic acids. J. Polym. Sci. Pol. Chem., 1996. 34(8): p. 1433-1441.
J. F. Espeso, J. G. de la Campa, A. E. Lozano and J. de Abajo, Synthesis and characterization of new soluble aromatic polyamides based on 4-(1-adamantyl)-1, 3-bis(4-aminophenoxy)benzene. J. Polym. Sci. Pol. Chem., 2000. 38(6): p. 1014-1023.
Y. Iwakura, S. I. Izawa, F. Hayano and K. Kurita, Polyamides containing pendant hydroxyl groups and their derived polyoxazolines. Die Makromolekulare Chemie, 1967. 104(1): p. 66-76.
C. G. Granqvist, Introduction, in Handbook of Inorganic Electrochromic Materials, C.G. Granqvist, Editor. 1995, Elsevier Science B.V.: Amsterdam. p. 1-15.
J. R. Platt, Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. J. Chem. Phys., 1961. 34(3): p. 862-863.
S. K. Deb, A Novel Electrophotographic System. Appl. Opt., 1969. 8(S1): p. 192-195.
R. Baetens, B. P. Jelle, and A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energ. Mat. Sol. C., 2010. 94(2): p. 87-105.
P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: fundamentals and applications. 2008: John Wiley & Sons.
R. J. Mortimer, Electrochromic materials. Chem. Soc. Rev., 1997. 26(3): p. 147-156.
P. R. Somani and S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys., 2003. 77(1): p. 117-133.
R. J. Mortimer, D. R. Rosseinsky, and P. M. S. Monk, Electrochromic materials and devices. 2015: John Wiley & Sons.
M. Weil and W.-D. Schubert, The beautiful colours of tungsten oxides. International Tungsten Industry Association: London, UK, 2013: p. 1-9.
G. Beni and J. L. Shay, Electrochromism of heat‐treated anodic iridium oxide films in acidic, neutral, and alkaline solutions. Appl. Phys. Lett., 1978. 33(7): p. 567-568.
G. Beni, C. E. Rice, and J. L. Shay, Electrochromism of Anodic Iridium Oxide Films: III . Anion Mechanism. J. Electrochem. Soc., 1980. 127(6): p. 1342-1348.
S. Gottesfeld and J. D. E. McIntyre, Electrochromism in Anodic Iridium Oxide Films: II . pH Effects on Corrosion Stability and the Mechanism of Coloration and Bleaching. J. Electrochem. Soc., 1979. 126(5): p. 742-750.
C. E. Rice, A comparison of the behaviors of tungsten trioxide and anodic iridium oxide film electrochromics in a nonaqueous acidic medium. Appl. Phys. Lett., 1979. 35(7): p. 563-565.
C. Gutiérrez, M. Sánchez, J. I. Peña, C. Martínez and M. A. Martínez, Potential‐Modulated Reflectance Study of the Oxidation State of Iridium in Anodic Iridium Oxide Films. J. Electrochem. Soc., 1987. 134(9): p. 2119-2125.
R. Sanjinés, A. Aruchamy, and F. Lévy, Thermal Stability of Sputtered Iridium Oxide Films. J. Electrochem. Soc., 1989. 136(6): p. 1740-1743.
K. Yamanaka, The Electrochemical Behavior of Anodically Electrodeposited Iridium Oxide Films and the Reliability of Transmittance Variable Cells. Jpn. J. Appl. Phys., 1991. 30(Part 1, No. 6): p. 1285-1289.
J. S. E. M. Svensson and C. G. Granqvist, Optical properties of electrochromic hydrated nickel oxide coatings made by rf sputtering. Appl. Opt., 1987. 26(8): p. 1554-1556.
W. Estrada, A. M. Andersson, and C. G. Granqvist, Electrochromic nickel‐oxide‐based coatings made by reactive dc magnetron sputtering: Preparation and optical properties. J. Appl. Phys., 1988. 64(7): p. 3678-3683.
M. K. Carpenter, R. S. Conell, and D. A. Corrigan, The electrochromic properties of hydrous nickel oxide. Sol. Energ. Mater., 1987. 16(4): p. 333-346.
C. G. Granqvist, Chapter 17 - Vanadium Dioxide Films, in Handbook of Inorganic Electrochromic Materials, C.G. Granqvist, Editor. 1995, Elsevier Science B.V.: Amsterdam. p. 285-293.
R. J. Colton, A. M. Guzman, and J. W. Rabalais, Electrochromism in some thin‐film transition‐metal oxides characterized by x‐ray electron spectroscopy. J. Appl. Phys., 1978. 49(1): p. 409-416.
S. F. Cogan, N. M. Nguyen, S. J. Perrotti and R. D. Rauh, Electrochromism In Sputtered Vanadium Pentoxide. 1988 International Congress on Optical Science and Engineering. Vol. 1016. 1989: SPIE. 6.
Y. Shimizu, K. Nagase, N. Miura and N. Yamazoe, Electrochromic properties of spin-coated V2O5 thin films. Solid State Ionics, 1992. 53-56: p. 490-495.
R. J. Mortimer and N. M. Rowley, 9.13 - Metal Complexes as Dyes for Optical Data Storage and Electrochromic Materials, in Comprehensive Coordination Chemistry II, J.A. McCleverty and T.J. Meyer, Editors. 2003, Pergamon: Oxford. p. 581-619.
V. D. Neff, Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. J. Electrochem. Soc., 1978. 125(6): p. 886-887.
R. J. Mortimer and D. R. Rosseinsky, Iron hexacyanoferrate films : spectroelectrochemical distinction and electrodeposition sequence of 'soluble' (K+-containing) and 'insoluble' (K+-free) Prussian Blue, and composition changes in polyelectrochromic switching. J. Chem. Soc. Dalton, 1984(9): p. 2059-2062.
G. C. S. Collins and D. J. Schiffrin, The electrochromic properties of lutetium and other phthalocyanines. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982. 139(2): p. 335-369.
F. A. Pizzarello and M. M. Nicholson, Kinetics of Color Reversal in Lutetium Diphthalocyanine Oxidation Products Formed with Different Anions. J. Electrochem. Soc., 1981. 128(6): p. 1288-1290.
R. J. Mortimer, Electrochromic Materials. Ann. Rev. Mater. Res., 2011. 41(1): p. 241-268.
L. Michaelis and E. S. Hill, THE VIOLOGEN INDICATORS. J. Gen. Physiol., 1933. 16(6): p. 859-873.
J. F. Stargardt and F. M. Hawkridge, Computer decomposition of the ultraviolet-visible absorption spectrum of the methyl viologen cation radical and its dimer in solution. Anal. Chim. Acta, 1983. 146: p. 1-8.
S. L. Meisel, G. C. Johnson, and H. D. Hartough, Polymerization of Thiophene and Alkylthiophenes. J. Am. Chem. Soc., 1950. 72(5): p. 1910-1912.
F. Garnier, G. Tourillon, M. Gazard and J. C. Dubois, Organic conducting polymers derived from substituted thiophenes as electrochromic material. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983. 148(2): p. 299-303.
P. M. Beaujuge and J. R. Reynolds, Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chem. Rev., 2010. 110(1): p. 268-320.
C. A. Thomas, Donor-Acceptor methods for band gap reduction in conjugated polymers: the role of electron rich donor heterocycles, in Chemistry. 2002, University of Florida.
A. Galal, A. Ersin Karagözler, R. Shabana, A. Amer, H. Zimmer and H. B. Mark, Electrochromism and electrochemical characterization of soluble poly[3-alkylhetero(arylene)s]. Sol. Energ. Mat. Sol. C., 1992. 25(3): p. 339-348.
G. Sonmez, H. B. Sonmez, C. K. F. Shen and F. Wudl, Red, Green, and Blue Colors in Polymeric Electrochromics. Adv. Mater., 2004. 16(21): p. 1905-1908.
R. McNeill, R. Siudak, J. H. Wardlaw and D. E. Weiss, Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole. Aust. J. Chem., 1963. 16(6): p. 1056-1075.
N. J. Morse, D. R. Rosseinsk, R. J. Mortimer and D. J. Walton, Electrochemical and spectroscopie studies of pyridin intervention in the electrooxidation of pyrrole. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988. 255(1): p. 119-141.
A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, Electrochemical polymerization of pyrrole. J. Chem. Soc. Chem. Comm., 1979(14): p. 635-636.
K. K. Kanazawa, A. F. Diaz, R. H. Geiss, W. D. Gill, J. F. Kwak, J. A. Logan, J. F. Rabolt and G. B. Street, ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’ polymer. J. Chem. Soc. Chem. Comm., 1979(19): p. 854-855.
R. J. Mortimer, A. L. Dyer, and J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006. 27(1): p. 2-18.
F. Rourke and J. A. Crayston, Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3–/4– ions. J. Chem. Soc. Faraday T., 1993. 89(2): p. 295-302.
B. C. Sherman, W. B. Euler, and R. R. Force, The Modern Student Laboratory: Polyaniline-A Conducting Polymer: Electrochemical Synthesis and Electrochromic Properties. J. Chem. Educ., 1994. 71(4): p. A94.
J. W. Chevalier, J. Y. Bergeron, and L. H. Dao, Synthesis, characterization, and properties of poly(N-alkylanilines). Macromolecules, 1992. 25(13): p. 3325-3331.
M. Leclerc, J. Guay, and L. H. Dao, Synthesis and characterization of poly(alkylanilines). Macromolecules, 1989. 22(2): p. 649-653.
E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy and R. N. Adams, Anodic Oxidation Pathways of Aromatic Amines. Electrochemical and Electron Paramagnetic Resonance Studies. J. Am. Chem. Soc., 1966. 88(15): p. 3498-3503.
H. J. Yen and G. S. Liou, Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym. Chem., 2018. 9(22): p. 3001-3018.
H. J. Yen and G. S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 2012. 3(2): p. 255-264.
H. J. Yen and G. S. Liou, Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog. Polym. Sci., 2019. 89: p. 250-287.
Y. W. Chuang, H. J. Yen, J. H. Wu and G. S. Liou, Colorless Triphenylamine-Based Aliphatic Thermoset Epoxy for Multicolored and Near-Infrared Electrochromic Applications. ACS Appl. Mater. Inter., 2014. 6(5): p. 3594-3599.
E. Frackowiak and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950.
S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan and A. C. Dillon, Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications. Adv. Mater., 2006. 18(6): p. 763-766.
J. Wang, E. Khoo, P. S. Lee and J. Ma, Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods. J. Phys. Chem. C, 2008. 112(37): p. 14306-14312.
C. Xiong, A. E. Aliev, B. Gnade and K. J. Balkus, Fabrication of Silver Vanadium Oxide and V2O5 Nanowires for Electrochromics. ACS Nano, 2008. 2(2): p. 293-301.
S. I. Cho and S. B. Lee, Fast Electrochemistry of Conductive Polymer Nanotubes: Synthesis, Mechanism, and Application. Accounts Chem. Res., 2008. 41(6): p. 699-707.
T. M. Nguyen, S. Cho, N. Varongchayakul, D. Yoon, J. Seog, K. Zong and S. B. Lee, Electrochemical synthesis and one step modification of PMProDot nanotubes and their enhanced electrochemical properties. Chem. Commun., 2012. 48(21): p. 2725-2727.
J. Wei, S. Xiong, Y. Bai, P. Jia, J. Ma and X. Lu, Polyaniline nanoparticles doped with star-like poly(styrene sulfonate): Synthesis and electrochromic properties. Sol. Energ. Mat. Sol. C., 2012. 99: p. 141-147.
K. Wang, H. Wu, Y. Meng, Y. Zhang and Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energ. Environ. Sci., 2012. 5(8): p. 8384-8389.
C. H. Yang, L. R. Huang, Y. K. Chih, W. C. Lin, F. J. Liu and T. L. Wang, Molecular assembled self-doped polyaniline copolymer ultra-thin films. Polymer, 2007. 48(11): p. 3237-3247.
D. Ge, L. Yang, Z. Tong, Y. Ding, W. Xin, J. Zhao and Y. Li, Ion diffusion and optical switching performance of 3D ordered nanostructured polyaniline films for advanced electrochemical/electrochromic devices. Electrochim Acta, 2013. 104: p. 191-197.
H. Elzanowska, E. Miasek, and V. I. Birss, Electrochemical formation of Ir oxide/polyaniline composite films. Electrochim Acta, 2008. 53(6): p. 2706-2715.
M. Deepa, A. K. Srivastava, K. N. Sood and A. V. Murugan, Nanostructured Tungsten Oxide-Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Hybrid Films: Synthesis, Electrochromic Response, and Durability Characteristics. J. Electrochem. Soc., 2008. 155(11): p. D703-D710.
S. F. Hong, S. C. Hwang, and L. C. Chen, Deposition-order-dependent polyelectrochromic and redox behaviors of the polyaniline–prussian blue bilayer. Electrochim Acta, 2008. 53(21): p. 6215-6227.
G. Kickelbick, Hybrid materials: synthesis, characterization, and applications. 2007: John Wiley & Sons.
C. J. Brinker and G. W. Scherer, CHAPTER 1 - Introduction, in Sol-Gel Science, C.J. Brinker and G.W. Scherer, Editors. 1990, Academic Press: San Diego. p. xvi-18.
T. Graham, XXXV.—On the properties of silicic acid and other analogous colloidal substances. J. Chem. Soc., 1864. 17(0): p. 318-327.
C. B. Hurd, Theories for the Mechanism of the Setting of Silicic Acid Gels. Chem. Rev., 1938. 22(3): p. 403-422.
Y. Chen and J. O. Iroh, Synthesis and Characterization of Polyimide/Silica Hybrid Composites. Chem. Mater., 1999. 11(5): p. 1218-1222.
A. C. Balazs, T. Emrick, and T. P. Russell, Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science, 2006. 314(5802): p. 1107.
G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu and W. C. Chen, Flexible nanocrystalline-titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability. J. Polym. Sci. Pol. Chem., 2010. 48(6): p. 1433-1440.
G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai and W. C. Chen, Highly flexible and optical transparent 6F-PI/TiO2 optical hybrid films with tunable refractive index and excellent thermal stability. J. Mater. Chem., 2010. 20(3): p. 531-536.
C. L. Tsai, H. J. Yen, and G. S. Liou, Highly transparent polyimide hybrids for optoelectronic applications. React. Funct. Polym., 2016. 108: p. 2-30.
Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, L. E. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov and A. Ostendorf, Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers, 2014. 6(7).
B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak and J. E. McGrath, New high-refractive-index organic/inorganic hybrid materials from sol-gel processing. Macromolecules, 1991. 24(11): p. 3449-3450.
L. H. Lee and W. C. Chen, High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)−Titania Materials. Chem. Mater., 2001. 13(3): p. 1137-1142.
A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk and N. Serpone, Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material:  Powdered and Colloidal ZrO2 Sols. Langmuir, 1998. 14(18): p. 5011-5022.
L. Chen, Y. Liu, and Y. Li, Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloy Compd., 2004. 381(1): p. 266-271.
S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi and U. Paik, Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites. J. Mater. Chem., 2008. 18(15): p. 1751-1755.
C. L. Tsai and G. S. Liou, Highly transparent and flexible polyimide/ZrO2 nanocomposite optical films with a tunable refractive index and Abbe number. Chem. Commun., 2015. 51(70): p. 13523-13526.
G. Denuault, M. Sosna, and K.-J. Williams, 11 - Classical Experiments, in Handbook of Electrochemistry, C.G. Zoski, Editor. 2007, Elsevier: Amsterdam. p. 431-469.
O. Heaviside, Electrical Papers. 1892, London: Macmillan.
A. E. Kennelly, Impedance. American Institute of Electrical Engineers Transactions, 1893. 10: p. 175-232.
C. P. Steinmetz. Complex quantities and their use in electrical engineering. in Proceedings of the International Electrical Congress. 1893.
W. Nernst, Methode zur bestimmung von dielektrizitätskonstanten. Z Phys. Chem., 1894. 14(1): p. 622-663.
H. Fricke, THE ELECTRIC CAPACITY OF SUSPENSIONS WITH SPECIAL REFERENCE TO BLOOD. J. Gen. Physiol., 1925. 9(2): p. 137-152.
H. Fricke and S. Morse, THE ELECTRIC RESISTANCE AND CAPACITY OF BLOOD FOR FREQUENCIES BETWEEN 800 AND 4(1/2) MILLION CYCLES. J. Gen. Physiol., 1925. 9(2): p. 153-167.
E. Bozler and K. S. Cole, Electric impedance and phase angle of muscle in rigor. J. Cell. Compar. Physl., 1935. 6(2): p. 229-241.
K. S. Cole, ELECTRIC PHASE ANGLE OF CELL MEMBRANES. J. Gen. Physiol., 1932. 15(6): p. 641-649.
C. W. Carter, Graphic representation of the impedance of networks containing resistances and two reactances. Bell Sys. Tech. J., 1925. 4(3): p. 387-401.
P. H. Smith, Transmission line calculator. Int. J. Electron., 1939. 12(1): p. 29.
K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys., 1941. 9(4): p. 341-351.
A. Frumkin, Part II.—(A) Electrokinetic equations. The study of the double layer at the metal-solution interface by electrokinetic and electrochemical methods. T. Faraday Soc., 1940. 35(0): p. 117-127.
D. C. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev., 1947. 41(3): p. 441-501.
P. Dolin and B. Ershler, The kinetics of discharge and ionization of hydrogen adsorbed at Pt-electrode. Acta Physicochim. URS., 1940. 13: p. 747.
J. E. B. Randles, Kinetics of rapid electrode reactions. Discuss. Faraday Soc., 1947. 1(0): p. 11-19.
R. De Levie, Electrochemical response of porous and rough electrodes. Adv. Eletroch. El . Eng., 1967. 6: p. 329-397.
E. Levart and D. Schuhmann, Sur la détermination générale de l'impédance de concentration (diffusion convective et réaction chimique) pour une électrode à disque tournant. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974. 53(1): p. 77-94.
R. D. Armstrong, R. E. Firman, and H. R. Thirsk, The a.c. impedance of complex electrochemical reactions. Faraday Discussions of the Chemical Society, 1973. 56(0): p. 244-263.
I. Epelboin, M. Keddam, and J. C. Lestrade, Faradaic impedances and intermediates in electrochemical reactions. Faraday Discussions of the Chemical Society, 1973. 56(0): p. 264-275.
J. R. Macdonald and J. A. Garber, Analysis of Impedance and Admittance Data for Solids and Liquids. J. Electrochem. Soc., 1977. 124(7): p. 1022-1030.
J. R. Macdonald, J. Schoonman, and A. P. Lehnen, Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982. 131: p. 77-95.
R. S. Lillard, A Novel Method for Generating Quantitative Local Electrochemical Impedance Spectroscopy. J. Electrochem. Soc., 1992. 139(4): p. 1007.
M. E. Orazem and B. Tribollet, Electrical Circuits, in Electrochemical Impedance Spectroscopy. 2017. p. 75-88.
M. E. Orazem and B. Tribollet, Electrochemistry, in Electrochemical Impedance Spectroscopy. 2017. p. 89-127.
Chapter 2
S. K. Deb, A Novel Electrophotographic System. Appl. Opt., 1969. 8(S1): p. 192-195.
J. R. Platt, Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. J. Chem. Phys., 1961. 34(3): p. 862-863.
M. Weil and W.-D. Schubert, The beautiful colours of tungsten oxides. International Tungsten Industry Association: London, UK, 2013: p. 1-9.
M. K. Carpenter, R. S. Conell, and D. A. Corrigan, The electrochromic properties of hydrous nickel oxide. Sol. Energ. Mater., 1987. 16(4): p. 333-346.
W. Estrada, A. M. Andersson, and C. G. Granqvist, Electrochromic nickel‐oxide‐based coatings made by reactive dc magnetron sputtering: Preparation and optical properties. J. Appl. Phys., 1988. 64(7): p. 3678-3683.
J. S. E. M. Svensson and C. G. Granqvist, Optical properties of electrochromic hydrated nickel oxide coatings made by rf sputtering. Appl. Opt., 1987. 26(8): p. 1554-1556.
R. J. Mortimer and D. R. Rosseinsky, Iron hexacyanoferrate films : spectroelectrochemical distinction and electrodeposition sequence of 'soluble' (K+-containing) and 'insoluble' (K+-free) Prussian Blue, and composition changes in polyelectrochromic switching. J. Chem. Soc. Dalton, 1984(9): p. 2059-2062.
V. D. Neff, Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. J. Electrochem. Soc., 1978. 125(6): p. 886-887.
L. Michaelis and E. S. Hill, THE VIOLOGEN INDICATORS. J. Gen. Physiol., 1933. 16(6): p. 859-873.
J. F. Stargardt and F. M. Hawkridge, Computer decomposition of the ultraviolet-visible absorption spectrum of the methyl viologen cation radical and its dimer in solution. Anal. Chim. Acta, 1983. 146: p. 1-8.
F. Rourke and J. A. Crayston, Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3–/4– ions. J. Chem. Soc. Faraday T., 1993. 89(2): p. 295-302.
B. C. Sherman, W. B. Euler, and R. R. Force, The Modern Student Laboratory: Polyaniline-A Conducting Polymer: Electrochemical Synthesis and Electrochromic Properties. J. Chem. Educ., 1994. 71(4): p. A94.
K. Y. Chiu, T. X. Su, J. H. Li, T. H. Lin, G. S. Liou, and S. H. Cheng, Novel trends of electrochemical oxidation of amino-substituted triphenylamine derivatives. J. Electroanal. Chem., 2005. 575(1): p. 95-101.
H. J. Yen and G. S. Liou, Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym. Chem., 2018. 9(22): p. 3001-3018.
H. S. Liu, B. C. Pan, D. C. Huang, Y. R. Kung, C. M. Leu, and G. S. Liou, Highly transparent to truly black electrochromic devices based on an ambipolar system of polyamides and viologen. NPG Asia Mater., 2017. 9(6): p. e388-e388.
J. T. Wu and G. S. Liou, A novel panchromatic shutter based on an ambipolar electrochromic system without supporting electrolyte. Chem. Commun., 2018. 54(21): p. 2619-2622.
B. C. Pan, W. H. Chen, S. H. Hsiao, and G. S. Liou, A facile approach to prepare porous polyamide films with enhanced electrochromic performance. Nanoscale, 2018. 10(35): p. 16613-16620.
B. C. Pan, W. H. Chen, T. M. Lee, and G. S. Liou, Synthesis and characterization of novel electrochromic devices derived from redox-active polyamide–TiO2 hybrids. J. Mater. Chem. C, 2018. 6(45): p. 12422-12428.
S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, and A. C. Dillon, Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications. Adv. Mater., 2006. 18(6): p. 763-766.
J. Wang, E. Khoo, P. S. Lee, and J. Ma, Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods. J. Phys. Chem. C, 2008. 112(37): p. 14306-14312.
C. Xiong, A. E. Aliev, B. Gnade, and K. J. Balkus, Fabrication of Silver Vanadium Oxide and V2O5 Nanowires for Electrochromics. ACS Nano, 2008. 2(2): p. 293-301.
G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, and W. C. Chen, Flexible nanocrystalline-titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability. J. Polym. Sci. Pol. Chem., 2010. 48(6): p. 1433-1440.
G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai, and W. C. Chen, Highly flexible and optical transparent 6F-PI/TiO2 optical hybrid films with tunable refractive index and excellent thermal stability. J. Mater. Chem., 2010. 20(3): p. 531-536.
H. J. Yen and G. S. Liou, Solution-Processable Novel Near-Infrared Electrochromic Aromatic Polyamides Based on Electroactive Tetraphenyl-p-Phenylenediamine Moieties. Chemistry of Materials, 2009. 21(17): p. 4062-4070.
R. S. Nicholson and I. Shain, Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal. Chem., 1964. 36(4): p. 706-723.
J. H. Wu and G. S. Liou, High-Performance Electrofluorochromic Devices Based on Electrochromism and Photoluminescence-Active Novel Poly(4-Cyanotriphenylamine). Adv. Funct. Mater., 2014. 24(41): p. 6422-6429.
Chapter 3
S. K. Deb, A Novel Electrophotographic System. Appl. Opt., 1969. 8(S1): p. 192-195.
J. R. Platt, Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. The Journal of Chemical Physics, 1961. 34(3): p. 862-863.
S.-H. Cheng, S.-H. Hsiao, T.-H. Su, and G.-S. Liou, Novel Aromatic Poly(Amine-Imide)s Bearing A Pendent Triphenylamine Group:  Synthesis, Thermal, Photophysical, Electrochemical, and Electrochromic Characteristics. Macromolecules, 2005. 38(2): p. 307-316.
H. J. Yen and G. S. Liou, Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym. Chem., 2018. 9(22): p. 3001-3018.
T. Niwa and O. Takai, All-solid-state reflectance-type electrochromic devices using iridium tin oxide film as counter electrode. Thin Solid Films, 2010. 518(18): p. 5340-5344.
A. Azens and C. Granqvist, Electrochromic smart windows: energy efficiency and device aspects. J. Solid State Electr., 2003. 7(2): p. 64-68.
R. J. Mortimer, A. L. Dyer, and J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays, 2006. 27(1): p. 2-18.
S. Xiong, P. S. Lee, and X. Lu, Nanostructures in Electrochromic Materials. Electrochromic Materials and Devices, 2013: p. 249-288.
B. C. Pan, W. H. Chen, S. H. Hsiao, and G. S. Liou, A facile approach to prepare porous polyamide films with enhanced electrochromic performance. Nanoscale, 2018. 10(35): p. 16613-16620.
B. C. Pan, W. H. Chen, T. M. Lee, and G. S. Liou, Synthesis and characterization of novel electrochromic devices derived from redox-active polyamide–TiO2 hybrids. J. Mater. Chem. C, 2018. 6(45): p. 12422-12428.
V. K. Thakur, G. Ding, J. Ma, P. S. Lee, and X. Lu, Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications. Advanced Materials, 2012. 24(30): p. 4071-4096.
S. Xiong, S. L. Phua, B. S. Dunn, J. Ma, and X. Lu, Covalently Bonded Polyaniline−TiO2 Hybrids: A Facile Approach to Highly Stable Anodic Electrochromic Materials with Low Oxidation Potentials. Chem. Mater., 2010. 22(1): p. 255-260.
J. S. Yang and J. L. Yan, Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem. Commun., 2008(13): p. 1501-1512.
P. D. Bartlett, M. J. Ryan, and S. G. Cohen, Triptycene1 (9,10-o-Benzenoanthracene). J. Am. Chem. Soc., 1942. 64(11): p. 2649-2653.
G. Wittig and R. Ludwig, Triptycen aus Anthracen und Dehydrobenzol. Angewandte Chemie, 1956. 68(1): p. 40-40.
V. R. Skvarchenko, V. K. Shalaev, and E. I. Klabunovskii, Advances in the Chemistry of Triptycene. Russian Chemical Reviews, 1974. 43(11): p. 951-966.
N. T. Tsui, A. J. Paraskos, L. Torun, T. M. Swager, and E. L. Thomas, Minimization of Internal Molecular Free Volume:  A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility. Macromolecules, 2006. 39(9): p. 3350-3358.
N. T. Tsui, L. Torun, B. D. Pate, A. J. Paraskos, T. M. Swager, and E. L. Thomas, Molecular Barbed Wire: Threading and Interlocking for the Mechanical Reinforcement of Polymers. Adv. Func. Mater., 2007. 17(10): p. 1595-1602.
W. S. Tan, T. Y. Lee, Y. F. Hsu, S. J. Huang, and J. S. Yang, Iptycene substitution enhances the electrochemical activity and stability of polyanilines. Chem. Commun., 2018. 54(43): p. 5470-5473.
H.-J. Yen and G.-S. Liou, Solution-Processable Novel Near-Infrared Electrochromic Aromatic Polyamides Based on Electroactive Tetraphenyl-p-Phenylenediamine Moieties. Chem. Mater., 2009. 21(17): p. 4062-4070.
S. K. Kundu, W. S. Tan, J.-L. Yan, and J.-S. Yang, Pentiptycene Building Blocks Derived from Nucleophilic Aromatic Substitution of Pentiptycene Triflates and Halides. The Journal of Organic Chemistry, 2010. 75(13): p. 4640-4643.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66835-
dc.description.abstract本論文分成四個章節:第一章為緒論,講述功能性高分子、電致變色的歷史與發展、電致變色材料中的奈米結構以及有機−無機複合材料的介紹;第二章探討同時加入由電解質所形成的孔洞結構及用二氧化鋯形成的混成材料是否對於聚醯胺膜的電致變色行為有加成的效果;第三章則是討論將產生分子內自由體積的五苯荑結構導入電致變色聚醯胺所形成的共聚物相對於對應的均聚物是否在電致變色行為上有增進的結果;而所有結果總結於第四章。zh_TW
dc.description.abstractThis study has been divided into four chapters. Chapter 1 gives a general introduction of high performance polymers, the history and development of electrochromism, nanostructures in electrochromism, and organic-inorganic hybrids. In chapter 2, porous polyamide hybrid films were prepared to investigate the synergistic effect of porous structure and organic-inorganic hybrids toward electrochromic (EC) behaviors. Porous structure produced by the electrolyte and hybrid content through sol-gel reaction with metal oxide had been shown to enhance EC properties in different mechanisms: the former provides channels for counter-ions to diffuse in and out of the film more easily, and the latter offers an electron-storage group that can assist charge transferring during the redox process. Therefore, by combining both of the modifications, a more advanced EC performance is expected to be obtained. In chapter 3, pentiptycene structure is introduced to the polymer chain. There are V-cavities and U-cavities in the scaffold of pentiptycene, which form the internal molecular free volume (IMFV). The free volume it caused may be analogue to the porous structure, implying that pentiptycene could give a positive effect on the EC properties. Though the pentiptycene used in this study was not electrochromic, if the structure was combined with EC centers, the material would be very promising. Finally, all the results are concluded in Chapter 4.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:09:13Z (GMT). No. of bitstreams: 1
ntu-109-R06549001-1.pdf: 21391306 bytes, checksum: 6cee3de6e0abc6068a135137ca98b375 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsACKNOWLEDGEMENTS ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ i
ABSTRACT ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ ii
中文摘要 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ iii
TABLE OF CONTENTS ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ iv
LIST OF TABLESꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ ix
LIST OF FIGURES ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ x
LIST OF SCHEMES ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ xvi
CHAPTER 1 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 1
References ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 67
CHAPTER 2 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 80
References ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 110
CHAPTER 3 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 113
References ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 131
CHAPTER 4 ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 134
APPENDIX ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 137
LIST OF PUBLICATION ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 138
dc.language.isoen
dc.subject電致變色聚醯胺膜zh_TW
dc.subject孔洞結構zh_TW
dc.subject二氧化鋯混成材料zh_TW
dc.subject五苯荑zh_TW
dc.subject分子內自由體積zh_TW
dc.subjectinternal molecular free volume (IMFV)en
dc.subjectelectrochromic polyamide filmen
dc.subjectporous structureen
dc.subjectZrO2 hybriden
dc.subjectpentiptyceneen
dc.title藉孔洞結構聚醯胺混成膜及固有孔洞聚醯胺膜提升電致變色應答表現之研究zh_TW
dc.titleStudy of Enhancing Electrochromic Switching Response with
Porous Polyamide/ZrO2 Films and Polyamide Films Containing
Intrinsic Pores from Pentiptycene Moieties
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊吉水,蕭勝輝,龔宇睿,張嘉文
dc.subject.keyword電致變色聚醯胺膜,孔洞結構,二氧化鋯混成材料,五苯荑,分子內自由體積,zh_TW
dc.subject.keywordelectrochromic polyamide film,porous structure,ZrO2 hybrid,pentiptycene,internal molecular free volume (IMFV),en
dc.relation.page138
dc.identifier.doi10.6342/NTU201902437
dc.rights.note有償授權
dc.date.accepted2020-01-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
20.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved