請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66807
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊曜宇(Eric Y. Chuang) | |
dc.contributor.author | Yan-Jun Liu | en |
dc.contributor.author | 劉晏均 | zh_TW |
dc.date.accessioned | 2021-06-17T01:08:41Z | - |
dc.date.available | 2025-03-03 | |
dc.date.copyright | 2020-03-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-30 | |
dc.identifier.citation | 1. Gilbert, C., A. Ropiquet, and A. Hassanin, Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Molecular phylogenetics and evolution, 2006. 40(1): p. 101-117.
2. Douzery, E. and E. Randi, The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Molecular Biology and Evolution, 1997. 14(11): p. 1154-1166. 3. Hundertmark, K.J., et al., Genetic relationships deduced from cytochrome-b sequences among moose. Alces, 2002. 38: p. 113-122. 4. Ohtaishi, N. and Y. Gao, A review of the distribution of all species of deer (Tragulidae, Moschidae and Cervidae) in China. Mammal Review, 1990. 20(2‐3): p. 125-144. 5. Demarchi, M.W. and F.L. Bunnell, Estimating Forest Canopy Effects on Summer Thermal Cover for Cervidae (Deer Family). Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 1993. 23(11): p. 2419-2426. 6. Moss, S.J. and M.E. Wilson, Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi and Borneo. Biogeography and geological evolution of SE Asia, 1998. 133: p. 163. 7. Zhenxing, Z., Prospect and Development Strategy of Deer Industry in China [J]. Journal of Economic Animal Science, 2003. 7(2): p. 1-4. 8. Lin, J.-Y., et al., Stream physical parameters and habitat requirement: the case of the Formosan salmon. Ecological Engineering, 2004. 22(4-5): p. 305-309. 9. Kang, S., et al., Establishment of estrus synchronization and artificial insemination techniques in Formosan Sambar deer. Journal of Taiwan Livestock Research, 2009. 42(3): p. 199-209. 10. Chen, C.-H., et al., Characterization of mitochondrial genome of Formosan sambar (Rusa unicolor swinhoei). Biologia, 2011. 66(6): p. 1196-1201. 11. Fennessy, P. and J. Suttie, Antler growth: nutritional and endocrine factors. Biology of Deer Production. New Zealand: Royal Soc. New Zealand, 1985. 1(985): p. 239-250. 12. Bubenik, G.A., Neuroendocrine regulation of the antler cycle, in Horns, pronghorns, and antlers. 1990, Springer. p. 265-297. 13. Gosch, B. and K. Fischer, Seasonal changes of testis volume and sperm quality in adult fallow deer (Dama dama) and their relationship to the antler cycle. Reproduction, 1989. 85(1): p. 7-17. 14. Pereira, R.J.G., J.M.B. Duarte, and J.A. Negrão, Seasonal changes in fecal testosterone concentrations and their relationship to the reproductive behavior, antler cycle and grouping patterns in free-ranging male Pampas deer (Ozotoceros bezoarticus bezoarticus). Theriogenology, 2005. 63(8): p. 2113-2125. 15. QIU, F.-p., et al., Study on the purification and activity of antler plate protein [J]. Journal of Changchun University of Technology (Natural Science Edition), 2007. 2. 16. Metzker, M.L., Sequencing technologies—the next generation. Nature reviews genetics, 2010. 11(1): p. 31. 17. Mardis, E.R., Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 2008. 9: p. 387-402. 18. Masella, A.P., et al., PANDAseq: paired-end assembler for illumina sequences. BMC bioinformatics, 2012. 13(1): p. 31. 19. Leggett, R.M., et al., NextClip: an analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics, 2013. 30(4): p. 566-568. 20. McCarthy, A., Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chemistry & biology, 2010. 17(7): p. 675-676. 21. Zhu, P. and H.G. Craighead, Zero-mode waveguides for single-molecule analysis. Annual review of biophysics, 2012. 41: p. 269-293. 22. Laver, T., et al., Assessing the performance of the oxford nanopore technologies minion. Biomolecular detection and quantification, 2015. 3: p. 1-8. 23. Simpson, J.T., et al., Detecting DNA cytosine methylation using nanopore sequencing. Nature methods, 2017. 14(4): p. 407. 24. Seo, J.-S., et al., De novo assembly and phasing of a Korean human genome. Nature, 2016. 538(7624): p. 243. 25. Zheng, G.X., et al., Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nature biotechnology, 2016. 34(3): p. 303. 26. Lee, H., et al., Third-generation sequencing and the future of genomics. BioRxiv, 2016: p. 048603. 27. Li, Z., et al., Comparison of the two major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-graph. Briefings in functional genomics, 2012. 11(1): p. 25-37. 28. Wajid, B. and E. Serpedin, Review of general algorithmic features for genome assemblers for next generation sequencers. Genomics, proteomics & bioinformatics, 2012. 10(2): p. 58-73. 29. Roumpeka, D.D., et al., A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Frontiers in genetics, 2017. 8: p. 23. 30. Randi, E., et al., New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1998. 265(1398): p. 793-801. 31. Zhang, W. and M. Zhang, Phylogeny and evolution of Cervidae based on complete mitochondrial genomes. Genetics and Molecular Research, 2012. 11(1): p. 628-635. 32. Thorne, J.L. and H. Kishino, Divergence time and evolutionary rate estimation with multilocus data. Systematic biology, 2002. 51(5): p. 689-702. 33. Wada, K., M. Nishibori, and M. Yokohama, The complete nucleotide sequence of mitochondrial genome in the Japanese Sika deer (Cervus nippon), and a phylogenetic analysis between Cervidae and Bovidae. Small ruminant research, 2007. 69(1-3): p. 46-54. 34. Ohta, T., Gene conversion and evolution of gene families: an overview. Genes, 2010. 1(3): p. 349-356. 35. Tenaillon, O., et al., Second-order selection in bacterial evolution: selection acting on mutation and recombination rates in the course of adaptation. Research in microbiology, 2001. 152(1): p. 11-16. 36. Sonnhammer, E.L. and E.V. Koonin, Orthology, paralogy and proposed classification for paralog subtypes. TRENDS in Genetics, 2002. 18(12): p. 619-620. 37. Thornton, J.W. and R. DeSalle, Gene family evolution and homology: genomics meets phylogenetics. Annual review of genomics and human genetics, 2000. 1(1): p. 41-73. 38. Orgel, L.E. Evolution of the genetic apparatus: a review. in Cold Spring Harbor Symposia on Quantitative Biology. 1987. Cold Spring Harbor Laboratory Press. 39. Kryazhimskiy, S. and J.B. Plotkin, The population genetics of dN/dS. PLoS genetics, 2008. 4(12): p. e1000304. 40. Spielman, S.J. and C.O. Wilke, The relationship between dN/dS and scaled selection coefficients. Molecular biology and evolution, 2015. 32(4): p. 1097-1108. 41. Wood, D.E. and S.L. Salzberg, Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 2014. 15(3): p. R46. 42. Yeo, S., et al., ARCS: scaffolding genome drafts with linked reads. Bioinformatics, 2017. 34(5): p. 725-731. 43. Gurevich, A., et al., QUAST: quality assessment tool for genome assemblies. Bioinformatics, 2013. 29(8): p. 1072-1075. 44. Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997, 2013. 45. Waterhouse, R.M., et al., BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular biology and evolution, 2017. 35(3): p. 543-548. 46. Simão, F.A., et al., BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015. 31(19): p. 3210-3212. 47. Tarailo‐Graovac, M. and N. Chen, Using RepeatMasker to identify repetitive elements in genomic sequences. Current protocols in bioinformatics, 2009. 25(1): p. 4.10. 1-4.10. 14. 48. Jurka, J., et al., Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and genome research, 2005. 110(1-4): p. 462-467. 49. Stanke, M., et al., AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic acids research, 2004. 32(suppl_2): p. W309-W312. 50. Haas, B.J., et al., Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology, 2008. 9(1): p. R7. 51. Consortium, U., The universal protein resource (UniProt) in 2010. Nucleic acids research, 2009. 38(suppl_1): p. D142-D148. 52. Waterhouse, R.M., et al., BUSCO applications from quality assessments to gene prediction and phylogenomics. 2017. 35(3): p. 543-548. 53. Simão, F.A., et al., BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. 2015. 31(19): p. 3210-3212. 54. Deng, L. and Z. Chen, An integrated framework for functional annotation of protein structural domains. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2015. 12(4): p. 902-913. 55. Supek, F., et al., REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one, 2011. 6(7): p. e21800. 56. Moriya, Y., et al., KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic acids research, 2007. 35(suppl_2): p. W182-W185. 57. Li, L., C.J. Stoeckert, and D.S.J.G.r. Roos, OrthoMCL: identification of ortholog groups for eukaryotic genomes. 2003. 13(9): p. 2178-2189. 58. Edgar, R.C.J.N.a.r., MUSCLE: multiple sequence alignment with high accuracy and high throughput. 2004. 32(5): p. 1792-1797. 59. Castresana, J., Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution, 2000. 17(4): p. 540-552. 60. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 2014. 30(9): p. 1312-1313. 61. Drummond, A.J. and A. Rambaut, BEAST: Bayesian evolutionary analysis by sampling trees. BMC evolutionary biology, 2007. 7(1): p. 214. 62. Drummond, A.J. and M.A. Suchard, Bayesian random local clocks, or one rate to rule them all. BMC Biol, 2010. 8: p. 114. 63. Drummond, A.J., et al., Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 2002. 161(3): p. 1307-20. 64. Posada, D. and K.A. Crandall, MODELTEST: testing the model of DNA substitution. Bioinformatics, 1998. 14(9): p. 817-8. 65. Karev, G.P., et al., Gene family evolution: an in-depth theoretical and simulation analysis of non-linear birth-death-innovation models. BMC Evol Biol, 2004. 4: p. 32. 66. Kumar, S., et al., TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol Biol Evol, 2017. 34(7): p. 1812-1819. 67. De Bie, T., et al., CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 2006. 22(10): p. 1269-71. 68. Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007. 24(8): p. 1586-91. 69. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 70. Na, D., H. Son, and J. Gsponer, Categorizer: a tool to categorize genes into user-defined biological groups based on semantic similarity. BMC Genomics, 2014. 15: p. 1091. 71. Kim, D., et al., Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019. 37(8): p. 907-915. 72. Pertea, M., et al., StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015. 33(3): p. 290-5. 73. Frazee, A.C., et al., Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol, 2015. 33(3): p. 243-6. 74. Yao, B., et al., Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology. Biotechnology letters, 2012. 34(5): p. 813-822. 75. Yao, B., et al., De novo characterization of the antler tip of Chinese Sika deer transcriptome and analysis of gene expression related to rapid growth. Molecular and cellular biochemistry, 2012. 364(1-2): p. 93-100. 76. Jia, B.-Y., et al., Transcriptome analysis of sika deer in China. Molecular Genetics and Genomics, 2016. 291(5): p. 1941-1953. 77. Zhao, Y., et al., Comparative analysis of differentially expressed genes in Sika deer antler at different stages. Molecular biology reports, 2013. 40(2): p. 1665-1676. 78. Liu, M., et al., Identification of novel reference genes using sika deer antler transcriptome expression data and their validation for quantitative gene expression analysis. Genes & genomics, 2014. 36(5): p. 573-582. 79. Szklarczyk, D., et al., STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res, 2015. 43(Database issue): p. D447-52. 80. Zhou, C., et al., Comparative Genomics Reveals the Genetic Mechanisms of Musk Secretion and Adaptive Immunity in Chinese Forest Musk Deer. Genome Biol Evol, 2019. 11(4): p. 1019-1032. 81. Cadar, D., et al., Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. Infect Genet Evol, 2012. 12(6): p. 1163-71. 82. Randi, E., et al., New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proc Biol Sci, 1998. 265(1398): p. 793-801. 83. Ritz, L.R., et al., Phylogenetic analysis of the tribe Bovini using microsatellites. Anim Genet, 2000. 31(3): p. 178-85. 84. Li, W.H., et al., Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci U S A, 1990. 87(17): p. 6703-7. 85. Sasaki, T., et al., TGFβ-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development. Development, 2006. 133(2): p. 371-381. 86. Novoselov, V., et al., Expression zones of three novel genes abut the developing anterior neural plate of Xenopus embryo. Gene expression patterns, 2003. 3(2): p. 225-230. 87. Li, C., et al., Nerve growth factor mRNA expression in the regenerating antler tip of red deer (Cervus elaphus). PloS one, 2007. 2(1): p. e148. 88. Li, C., et al., Pedicle and antler development following sectioning of the sensory nerves to the antlerogenic region of red deer (Cervus elaphus). Journal of Experimental Zoology, 1993. 267(2): p. 188-197. 89. Carlson, D.F., et al., Production of hornless dairy cattle from genome-edited cell lines. Nature biotechnology, 2016. 34(5): p. 479. 90. Couly, G., et al., Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development, 2002. 129(4): p. 1061-1073. 91. Betancur, P., M. Bronner-Fraser, and T. Sauka-Spengler, Assembling neural crest regulatory circuits into a gene regulatory network. Annual review of cell and developmental biology, 2010. 26: p. 581-603. 92. Zhou, C., et al., Comparative Genomics Reveals the Genetic Mechanisms of Musk Secretion and Adaptive Immunity in Chinese Forest Musk Deer. Genome biology and evolution, 2019. 11(4): p. 1019-1032. 93. Davis, E.B., K.A. Brakora, and A.H. Lee, Evolution of ruminant headgear: a review. Proceedings of the Royal Society B: Biological Sciences, 2011. 278(1720): p. 2857-2865. 94. Janis, C.M. and K.M. Scott, The interrelationships of higher ruminant families: with special emphasis on the members of the Cervoidea. American Museum novitates; no. 2893. 1987. 95. Chen, L., et al., Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science, 2019. 364(6446): p. eaav6202. 96. Sauka-Spengler, T. and M. Bronner-Fraser, A gene regulatory network orchestrates neural crest formation. Nature reviews Molecular cell biology, 2008. 9(7): p. 557. 97. Simões-Costa, M. and M.E. Bronner, Establishing neural crest identity: a gene regulatory recipe. Development, 2015. 142(2): p. 242-257. 98. Wang, Y., et al., Genetic basis of ruminant headgear and rapid antler regeneration. Science, 2019. 364(6446): p. eaav6335. 99. Carlson, B.M., Principles of regenerative biology. 2011: Elsevier. 100. Gaspar‐López, E., et al., Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus). Reproduction in Domestic Animals, 2010. 45(2): p. 243-249. 101. Martin, P. and S.M. Parkhurst, Parallels between tissue repair and embryo morphogenesis. Development, 2004. 131(13): p. 3021-3034. 102. Bosch, T.C., Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration. Developmental biology, 2007. 303(2): p. 421-433. 103. Lin, G. and J.M. Slack, Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Developmental biology, 2008. 316(2): p. 323-335. 104. Gurley, K.A., J.C. Rink, and A.S. Alvarado, β-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science, 2008. 319(5861): p. 323-327. 105. Wilsman, N.J., et al., Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. Journal of Orthopaedic Research, 1996. 14(6): p. 927-936. 106. Li, C. and J.M. Suttie, Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). The Anatomical Record, 1994. 239(2): p. 198-215. 107. Hartmann, C., Transcriptional networks controlling skeletal development. Current opinion in genetics & development, 2009. 19(5): p. 437-443. 108. Wang, W., et al., Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development, 2009. 136(24): p. 4143-4153. 109. Arnold, M.A., et al., MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Developmental cell, 2007. 12(3): p. 377-389. 110. Hess, J., et al., Defective endochondral ossification in mice with strongly compromised expression of JunB. Journal of cell science, 2003. 116(22): p. 4587-4596. 111. Hattori, T., et al., SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development, 2010. 137(6): p. 901-911. 112. Ivkovic, S., et al., Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development, 2003. 130(12): p. 2779-2791. 113. Li, T.-F., R.J. O’Keefe, and D. Chen, TGF-β signaling in chondrocytes. Frontiers in bioscience: a journal and virtual library, 2005. 10: p. 681. 114. French, D.M., et al., WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair. The American journal of pathology, 2004. 165(3): p. 855-867. 115. Fisher, M.C., et al., Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth. Bone, 2005. 37(6): p. 741-750. 116. Mak, K.K., et al., Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development, 2008. 135(11): p. 1947-1956. 117. Van Berkum, N.L., et al., Hi-C: a method to study the three-dimensional architecture of genomes. JoVE (Journal of Visualized Experiments), 2010(39): p. e1869. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66807 | - |
dc.description.abstract | 台灣水鹿又名四目鹿,目前被歸類為台灣特有亞種。本篇研究利用10x定序技術,完成台灣水鹿全基因體的序列草圖,並經由組裝結果的統計結果與偶蹄類共通的同源基因進行測試來確認其優異品質。其基因體草圖包含2.71Gb的序列,21,398個蛋白質編譯碼基因序列。將台灣水鹿與其他偶蹄類動物進行比較,發現鹿科與牛科大約在2,530萬年前開始分化。在角骨骼演化方面,我們發現有角下目物種生物礦物組織發育和內骨型態發育相關的同源基因家族有明顯擴張,類似功能的基因在正向選擇基因上也有發現,同時,我們根據正向選擇與基因家族擴張的分析中,找出多個有角下目的基因家族與顱神經脊細胞生成有關,揭示了有角下目的單一進化起源的假說。另外,在鹿角演化方面,我們發現鹿科動物在軟骨分化與神經分化相關的同源基因家族有明顯擴張,並且類似功能的基因在正向選擇基因上也有發現,並揭示了鹿角再生在演化上的機制。最後,本篇研究找出台灣水鹿鹿角快速生長的相關基因,並說明軟骨細胞增殖和分化以及蛋白合成的轉錄因子和訊號分子與鹿角的生長息息相關。本篇研究提供了有價值的高品質台灣水鹿的全基因體訊息,並進一步探討基因體演化特徵,揭示角骨骼,鹿角在演化上的機制以及鹿角生長的相關機制。 | zh_TW |
dc.description.abstract | The Formosan sambar deer (Rusa unicolor swinhoei) which is an endemic species in Taiwan. This deer provides an opportunity to realize the antler and horn evolutionary processes. Currently, rapid development of next-generation sequencing technology provides an opportunity to get wealth of information from animal genomes. Furthermore, the whole-genome sequencing is a critical foundation for genomic research. In this study, we sequenced high quality Formosan sambar deer genome, which is the first whole-genome assembly by using only 10x Genomics linked-reads. The draft genome contained 2.71 Gb of DNA, 14.1 Mb N50 length and over 90 % of complete genes were evaluated by the BUSCO benchmark. The 23,110 predicted genes were identified in the genome. Of these genes, 21,398 were annotated as protein-coding genes. Comparing with other artiodactyls, the Formosan sambar deer diverged from bovine families approximately 25.3 million years ago. First, we annotated and analyzed the size changes of gene families in the pecora The results indicated that the gene family related to biomineralization and epidermal growth showed significant expansion. In addition, analyzing the positive selection genes in evolution found that the gene families related to crest neural growth were identified.
Then, we annotated and analyzed the size changes of gene families in the and among pecora and the common ancestor of and Formosan sambar deer and white tail deer. The results indicated that the gene family related to epidermal growth and Nervous system development showed significant expansion. In conclusion, this study provided a valuable genomic resource for the Formosan sambar deer and reveal insights into the antler and horn evolutionary characteristics form its genome. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:41Z (GMT). No. of bitstreams: 1 ntu-109-R06945016-1.pdf: 2927338 bytes, checksum: abc2ba1ae725557da7aef27377bb4a27 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Contents
Chapter1. Introduction 1 1.1 鹿科 1 1.2 台灣水鹿 2 1.3 鹿茸 3 1.4 次世代定序 5 1.5 單分子實時定序與納米孔定序 6 1.6 10x Genomics定序 8 1.7 De novo assembly的組裝方式 9 1.8 系統發育樹分析 10 1.9 擴增與縮減的基因家族 11 1.10 正向選擇 12 1.11 具體目標 14 Chapter2. Materials and Method 15 2.1 資料定序與資料過濾 15 2.2 全基因體組裝分析及品質評估 15 2.3 粒線體基因體組裝分析 16 2.4 基因預測及註釋 17 2.5 系統發育樹與基因家族分析 18 2.6 基因演化與正向選擇分析 19 2.7 差異表現分析 20 Chapter3. Results 21 3.1. 基因組裝與評估 21 3.2. 基因預測與註釋 22 3.3. 台灣水鹿的演化分析 23 3.4. 基因家族演化 24 3.5. 正向選擇基因 26 3.6. 差異表現基因 28 Chapter4. Discussion 29 4.1. 台灣水鹿的基因體組裝 29 4.2. 台灣水鹿的系統發育樹 29 4.3. 角骨骼單一演化源的證據 30 4.4. 鹿角再生演化的證據 31 4.5. 鹿角生長的證據 32 4.6. 未來研究的方向與前景 34 Chapter5. Conclusion 36 Reference 37 Figures 45 Tables 56 | |
dc.language.iso | zh-TW | |
dc.title | 台灣水鹿全基因體組裝及鹿角的演化分析 | zh_TW |
dc.title | De Novo genome assembly and antler evolution of Formosan sambar deer (Rusa unicolor swinhoei) | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蔡孟?(Mong-Hsun Tsai) | |
dc.contributor.oralexamcommittee | 朱有田(YU-TEN JU),賴亮全(LIANG-CHUAN LAI) | |
dc.subject.keyword | 台灣水鹿,基因體,基因體組裝,10X Genomics, | zh_TW |
dc.subject.keyword | Formosan sambar deer,De novo genome assembly,10x Genomics, | en |
dc.relation.page | 124 | |
dc.identifier.doi | 10.6342/NTU202000195 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。