Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 管理學院企業管理專班(Global MBA)
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孔令傑(Ling-Chieh Kung)
dc.contributor.authorYu-Yin Liuen
dc.contributor.author劉育吟zh_TW
dc.date.accessioned2021-06-17T01:08:26Z-
dc.date.available2020-02-24
dc.date.copyright2020-02-24
dc.date.issued2020
dc.date.submitted2020-02-03
dc.identifier.citationBibliography
Ahn, J.J., H.W. Byun, K.J. Oh, and T.Y. Kim. (2012). Using ridge regression with genetic
algorithm to enhance real estateappraisal forecasting. Expert Systems with
Applications, pp. 8369-8379.
Amazon. (2019). FBA inventory storage limit. Retrieved from Amazon Seller Central:
https://sellercentral.amazon.com/gp/help/external/XLRKWL8L5BMSHWB
Cook, A., and T. Goette. (2006). Mobile Electronic Commerce: What Is It? Who Uses It?
And Why Use It? Communications of the IIMA , pp. 49-58.
Cui, G., H.K. Lui, and X. Guo. (2012). The Effect of Online Consumer Reviews on New
Product Sales. International Journal of Electronic Commerce, pp. 39-58.
Thorsten, H.T., and W. Gianfranco. (2004). Electronic Word-of-Mouth: Motives for and
Consequences of Reading Customer Articulations on the Internet. International
Journal of Electronic Commerce, pp. 51-74.
Hoerl, E., and W.K. Robert. (1969). Ridge Regression: Biased Estimation for
Nonorthogonal Problems. Technometrics, pp. 55-67.
Huang, J.H., and Y.F. Chen. (2006). Herding in Online Product Choice. Psychology &
Marketing, pp. 413-428.
64
Krishna, A., V. Akhilesh, A. Aich, and C. Hegde. (2018). Sales-forecasting of Retail
Stores using Machine Learning Techniques. IEEE, pp. 160-166.
Lin, K.J. (2008). E-Commerce Technology Back to a Prominent Future. IEEE, pp. 60-65.
Ma, S., R. Fildes, and T. Huang. (2016). Demand forecasting with high dimensional data:
The case of SKU retailsales forecasting with intra- and inter-category promotional
information. European Journal of Operational Research, pp. 245-257.
Nikolay, O., G. Vishal, and S. Sridhar. (2013). Sales Forecasting with Financial
Indicators and Experts’ Input. Production and Operations Management, pp.
1056-1076.
Ripley, B.D. (1996). Pattern Recognition and Neural Networks.
Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Royal
Statistical Society, pp. 267-288.
Yeo, J., S. Kim, E. Koh, S. Hwang, and N. Lipka. (2016). Browsing2purchase: Online
Customer Model for Sales Forecasting in an E-Commerce Site. (pp. 133-134).
WWW '16 Companion.
Yves, R.S., E. Aghezzaf, N. Kourentzes, and B. Desmet. (2017). Tactical sales
forecasting using a very large set of macroeconomic indicators. Belgium.
Zhou, C. (2015). Impact of Electronic Commerce on the Sporting Goods Market. The
Open Cybernetics & Systemics, pp. 2135-2140.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66788-
dc.description.abstractAbstract
In this study, we research on a company’s sport good sales forecasting on Amazon.com. We analyze data including transactions, advertisement reports, customer reviews, competitors’ prices and customer reviews, holiday-or-not, and weekend-or-not for more than 500 days. We implement machine learning models to tackle the sales forecasting problem. The main objective of this study is to discover the most efficient model among linear, LASSO, and Ridge regression by comparing their mean absolute error in the testing set. We find that the most efficient model is LASSO regression in general, whose performance may be better than linear regression by 87 % on a certain product.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:08:26Z (GMT). No. of bitstreams: 1
ntu-109-R07749018-1.pdf: 6037684 bytes, checksum: 702e9d205867de4e8bf2780344449367 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
Acknowledgements ........................................................................................................... I
Abstract ............................................................................................................................. II
List of Tables .................................................................................................................. VI
List of Figures ................................................................................................................ VII
Chapter 1 Introduction .............................................................................................. 1
1.1 Background and motivation ................................................................................. 1
1.2 Research objectives ............................................................................................. 4
1.3 Research plan ...................................................................................................... 5
Chapter 2 Literature Review ..................................................................................... 6
2.1 E-commerce ....................................................................................................... 6
2.2 Customer reviews ................................................................................................ 7
2.3 Sales/demand forecasting ..................................................................................... 8
2.4 Machine learning ................................................................................................ 9
2.4.1 LASSO regression ........................................................................................... 10
2.4.2 Ridge regression .............................................................................................. 10
Chapter 3 Problem definition and research method ................................................ 12
3.1 Data collection .................................................................................................. 13
3.1.1 Company T’s transaction records ........................................................................ 13
3.1.2 Company T’s advertising report .......................................................................... 13
3.1.3 Competitor reviews .......................................................................................... 14
3.1.4 Star bar .......................................................................................................... 15
3.1.5 Time related variables ...................................................................................... 18
3.1.6 Variable table ................................................................................................. 19
3.2 Regression model .............................................................................................. 22
3.2.1 Training, validation, and testing sets .................................................................... 22
3.2.2 Linear regression ............................................................................................. 23
3.2.3 LASSO regression ........................................................................................... 24
3.2.4 Ridge regression .............................................................................................. 25
3.3 Regression performance metric: MAE ................................................................ 26
Chapter 4 Analysis and Results ............................................................................... 28
4.1 Data cleansing ................................................................................................... 28
4.2 Technical result ................................................................................................. 29
4.2.1 Model comparison ........................................................................................... 30
4.2.2 Investigation for Yoga Mat Strap ........................................................................ 38
4.2.3 Result of different splitting ratio ......................................................................... 41
4.3 Managerial implications .................................................................................... 57
Chapter 5 Conclusions and Future Works ............................................................... 60
5.1 Conclusions ...................................................................................................... 60
5.2 Future works ..................................................................................................... 61
Bibliography ................................................................................................................... 63
Appendix ........................................................................................................................ 65
dc.language.isoen
dc.subject套索回歸zh_TW
dc.subject嶺回歸zh_TW
dc.subject機器學習zh_TW
dc.subject銷售預測zh_TW
dc.subject電子商務zh_TW
dc.subjecte-commerceen
dc.subjectsales forecastingen
dc.subjectmachine learningen
dc.subjectLASSO regressionen
dc.subjectRidge regressionen
dc.title運用正規化迴歸分析線上銷售預測: 以在亞馬遜上的運動商品為例zh_TW
dc.titleOnline Sales Forecasting by Regularized Regression
for functional products: Taking Sport Goods on Amazon.com as an Example.
en
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳聿宏(Yu-Hung Chen),林真如(Chen-Ju Lin)
dc.subject.keyword電子商務,銷售預測,機器學習,套索回歸,嶺回歸,zh_TW
dc.subject.keyworde-commerce,sales forecasting,machine learning,LASSO regression,Ridge regression,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202000275
dc.rights.note有償授權
dc.date.accepted2020-02-03
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept企業管理碩士專班zh_TW
顯示於系所單位:管理學院企業管理專班(Global MBA)

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
5.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved