請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66786完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬(Kung-Bin Sung) | |
| dc.contributor.author | Po-Ting Lin | en |
| dc.contributor.author | 林柏廷 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:08:24Z | - |
| dc.date.available | 2022-02-05 | |
| dc.date.copyright | 2020-02-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2020-02-03 | |
| dc.identifier.citation | 1. Wong, W.L., et al., Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health, 2014. 2(2): p. e106-e116.
2. Dunaief, J.L., et al., The role of apoptosis in age-related macular degeneration. Archives of ophthalmology, 2002. 120(11): p. 1435-1442. 3. Lulli, M., et al., Coenzyme Q10 protects retinal cells from apoptosis induced by radiation in vitro and in vivo. Journal of radiation research, 2012. 53(5): p. 695-703. 4. Kang, J.-H. and S.-Y. Choung, Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Archives of pharmacal research, 2016. 39(12): p. 1703-1715. 5. Zheng, W., N. Thorne, and J.C. McKew, Phenotypic screens as a renewed approach for drug discovery. Drug discovery today, 2013. 18(21-22): p. 1067-1073. 6. Watanabe, M., et al., The Pros and Cons of Apoptosis Assays for Use in the Study of Cells, Tissues, and Organs. Microscopy and Microanalysis, 2002. 8(5): p. 375-391. 7. Kühn, J., et al., Label-free cytotoxicity screening assay by digital holographic microscopy. Assay and drug development technologies, 2013. 11(2): p. 101-107. 8. Rappaz, B., et al., Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Combinatorial chemistry & high throughput screening, 2014. 17(1): p. 80-88. 9. Khmaladze, A., et al., Cell volume changes during apoptosis monitored in real time using digital holographic microscopy. Journal of Structural Biology, 2012. 178(3): p. 270-278. 10. Kemmler, M., et al., Noninvasive time-dependent cytometry monitoring by digital holography. Journal of biomedical optics, 2007. 12(6): p. 064002. 11. Pavillon, N., et al., Early cell death detection with digital holographic microscopy. PloS one, 2012. 7(1): p. e30912. 12. Vicar, T., et al., Detection and characterization of apoptotic and necrotic cell death by time-lapse quantitative phase image analysis. 2019: p. 589697. 13. Cen, H., et al., DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. The FASEB journal, 2008. 22(7): p. 2243-2252. 14. Abbe, E., Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 1873. 9(1): p. 413-418. 15. Elmore, S., Apoptosis: a review of programmed cell death. Toxicologic pathology, 2007. 35(4): p. 495-516. 16. Doncel, J.P., et al., Cytoskeleton rearrangements during the execution phase of apoptosis. Cytoskeleton: Structure, Dynamics, Function and Disease, 2017: p. 151. 17. Hanus, J., C. Anderson, and S. Wang, RPE necroptosis in response to oxidative stress and in AMD. Ageing research reviews, 2015. 24: p. 286-298. 18. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer, 1972. 26(4): p. 239-257. 19. Wyllie, A.H., J.F.R. Kerr, and A.R. Currie, Cell Death: The Significance of Apoptosis, in International Review of Cytology, G.H. Bourne, J.F. Danielli, and K.W. Jeon, Editors. 1980, Academic Press. p. 251-306. 20. Collins, J.A., et al., Major DNA Fragmentation Is a Late Event in Apoptosis. Journal of Histochemistry & Cytochemistry, 1997. 45(7): p. 923-934. 21. Yeung, M.C., Accelerated apoptotic DNA laddering protocol. Biotechniques, 2002. 33(4): p. 734-736. 22. Modak, S.P. and F.J. Bollum, Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Experimental Cell Research, 1972. 75(2): p. 307-313. 23. Kockx, M.M., et al., RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. The American journal of pathology, 1998. 152(4): p. 885-888. 24. Schaper, J., A. Elsässer, and S. Kostin, The role of cell death in heart failure. 1999, Am Heart Assoc. 25. Van den Eijnde, S.M., et al., Phosphatidylserine plasma membrane asymmetry in vivo: a pancellular phenomenon which alters during apoptosis. Cell death and differentiation, 1997. 4(4): p. 311. 26. Gurtu, V., S.R. Kain, and G. Zhang, Fluorometric and Colorimetric Detection of Caspase Activity Associated with Apoptosis. Analytical Biochemistry, 1997. 251(1): p. 98-102. 27. Yashunsky, V., et al., Surface plasmon-based infrared spectroscopy for cell biosensing. Vol. 17. 2012: SPIE. 1-9, 9. 28. Barer, R., Refractometry and Interferometry of Living Cells*†. Journal of the Optical Society of America, 1957. 47(6): p. 545-556. 29. Rinehart, M.T., H.S. Park, and A. Wax, Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography. Biomedical Optics Express, 2015. 6(6): p. 2067-2075. 30. Ikeda, T., et al., Hilbert phase microscopy for investigating fast dynamics in transparent systems. Optics Letters, 2005. 30(10): p. 1165-1167. 31. Schnars, U. and W.J.A.o. Jüptner, Direct recording of holograms by a CCD target and numerical reconstruction. 1994. 33(2): p. 179-181. 32. Popescu, G., Quantitative phase imaging of cells and tissues. 2011: McGraw Hill Professional. 33. Popescu, G., et al., Fourier phase microscopy for investigation of biological structures and dynamics. Optics letters, 2004. 29(21): p. 2503-2505. 34. Park, Y., et al., Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proceedings of the National Academy of Sciences, 2008. 105(37): p. 13730-13735. 35. Popescu, G., et al., Diffraction phase microscopy for quantifying cell structure and dynamics. Optics letters, 2006. 31(6): p. 775-777. 36. Bhaduri, B., et al., Diffraction phase microscopy: principles and applications in materials and life sciences. Advances in Optics and Photonics, 2014. 6(1): p. 57-119. 37. Shaked, N.T., et al., Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Optics Express, 2009. 17(18): p. 15585-15591. 38. Hessler, J.A., et al., Atomic force microscopy study of early morphological changes during apoptosis. Langmuir, 2005. 21(20): p. 9280-9286. 39. Yang, S.-A., et al., Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry Part A, 2017. 91(5): p. 510-518. 40. Makdasi, E., et al., Whole-Cell Multiparameter Assay for Ricin and Abrin Activity-Based Digital Holographic Microscopy. Toxins, 2019. 11(3): p. 174. 41. Sultanova, N., S. Kasarova, and I. Nikolov, Dispersion proper ties of optical polymers. Acta Physica Polonica-Series A General Physics, 2009. 116(4): p. 585. 42. Petrides, L.G.a., P. E. Physiologische Chemie 4 ed. 1988, German. 43. Kim, M.H., et al., Hydrogen Peroxide-Induced Cell Death in a Human Retinal Pigment Epithelial Cell Line, ARPE-19. Korean J Ophthalmol, 2003. 17(1): p. 19-28. 44. Girshovitz, P. and N.T. Shaked, Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time. optics express, 2015. 23(7): p. 8773-8787. 45. Herráez, M.A., et al., Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied optics, 2002. 41(35): p. 7437-7444. 46. 鄭雅馨, 影像切割之醫學系胞追蹤與分析, in 國立臺灣大學電機資訊學院電信工程學研究所. 2016. 47. Xu, X., et al., Characteristic analysis of Otsu threshold and its applications. Pattern recognition letters, 2011. 32(7): p. 956-961. 48. Gedda, M. and S. Svensson, Separation of blob-like structures using fuzzy distance based hierarchical clustering. 2006. 49. Pang, Q., et al. Overlapped cell image segmentation based on distance transform. in 2006 6th World Congress on Intelligent Control and Automation. 2006. IEEE. 50. Otsu, N., A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 1979. 9(1): p. 62-66. 51. Inverso, S., Ellipse detection using randomized Hough transform. Final Project: introduction to computer vision, 2002: p. 4005-4757. 52. Pudil, P., J. Novovičová, and J. Kittler, Floating search methods in feature selection. Pattern recognition letters, 1994. 15(11): p. 1119-1125. 53. Chandrashekar, G. and F. Sahin, A survey on feature selection methods. Computers & Electrical Engineering, 2014. 40(1): p. 16-28. 54. Cuche, E., P. Marquet, and C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Applied Optics, 2000. 39(23): p. 4070-4075. 55. Zheng, C., et al., Diffraction phase microscopy realized with an automatic digital pinhole. Optics Communications, 2017. 404: p. 5-10. 56. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer. 57. Nguyen, T., et al., Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Optics express, 2017. 25(13): p. 15043-15057. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66786 | - |
| dc.description.abstract | 藥物初步開發的流程分為標靶篩選及表徵篩選,而後者為將候選藥物化合物加入培養之細胞或者組織,並使用檢驗的方法量化藥物化合物的療效。細胞死亡檢驗是最常見的表徵篩選檢驗,細胞死亡大致分為細胞凋亡及細胞壞死,區分何種細胞死亡可以提供藥物篩選額外的資訊。使用螢光染劑以觀測不同種類的細胞死亡現象是普遍被接受的方法,其具備高靈敏度及特異性,並且已經出現商業系統,包含顯微鏡、影像處裡軟體及自動資料庫建立流程。但是使用螢光染劑需要樣本前處理、等待染劑反應時間、觀測時可能發生光漂白現象、需要昂貴的螢光染劑等,這些缺點降低了細胞死亡檢測的通量。
定量相位顯微術是一種免標記、快速、可動態觀測的技術,其拍攝之相位影像包含樣本厚度及樣本內部折射率的資訊,在細胞凋亡的檢測上具有優勢,有機會發展為高通量、低成本的檢測工具。最近有研究使用定量相位顯微術判斷細胞壞死及細胞凋亡,在本次研究希望可以使用更多能夠描述細胞凋亡現象的特徵以提升準確率。此研究以螢光標定細胞並使用螢光顯微鏡及定量相位顯微鏡觀測同一視野,從各顆細胞之相位影像萃取出可能代表細胞凋亡之形態變化的特徵,最後將螢光作為判定細胞凋亡的標準以訓練分類器,使用分類器區分細胞是否為細胞凋亡。結果顯示,使用細胞圓形性、離心率、光學體積、細胞核邊界梯度、細胞邊緣相位平均值、細胞邊緣及中央相位比值對於分類結果有最佳的表現,初步分類的結果顯示預測的正確率約87%。其分析流程中,影像分割、特徵的計算方式等等,仍有最佳化的空間,預期未來可以提升正確率並且加速判斷流程,發展為高通量的檢測工具。 | zh_TW |
| dc.description.abstract | In the development of drug, drug discovery can be divided into target-based screening and phenotypic screening. The latter is adding drug in cultural cell or tissue and quantifying the performance of those candidates. Cell death assay is one of the most common assay in phenotypic screening, and it includes apoptosis and necrosis assay. Different sorts of cell death represent different information for phenotypic screening. It is prevalent to use fluorescence-based method to sensitive and specific observe cell death. It has developed a commercial system integrated with microscope, image processing software and database. However, there are some drawbacks such as sample preprocessing, time-consuming incubation, photobleaching, expensive fluorescent reagent, which decrease the throughput of assay.
Quantitative phase imaging(QPI) is a label-free, fast, time-lapse technique which generates quantitative phase images related to both the intracellular refractive index and the cell thickness. QPI has the potential to be developed as a high throughput and cost-efficient tool to identify apoptosis. In this research, we expect to find more features to increase the accuracy of prediction. We apply fluorescence-based method and QPI to observe cells in the same FOV, and extract some features from each cell in phase images. A classifier is trained by using these features and the fluorescent label which is regarded as the ground truth of apoptosis. In the result, the accuracy of identification is approximate 87% by using features, including circularity, eccentricity, optical volume, nuclear edge gradient index, peripheral phase, and the ratio of peripheral and central phase. The procedures such as image segmentation, calculation of features need to be improved. To sum up, we expect QPI can develop into a high throughput tool after enhancing the accuracy and accelerating the procedures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:24Z (GMT). No. of bitstreams: 1 ntu-108-R06945048-1.pdf: 9183143 bytes, checksum: 6a35446ad857ac00d03d00303613c958 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 碩士學位論文口試委員會審定書 I
誌謝 II 中文摘要 III ABSTRACT IV 圖目錄 A 表目錄 D 第一章 : 導論 1 1.1 研究背景 1 1.2 研究動機及目標 2 第二章 : 文獻回顧與探討 5 2.1 細胞凋亡 5 2.2 檢測細胞凋亡的方法 6 2.2.1 穿透式電子顯微鏡(TEM, transmission electron microscopy) 6 2.2.2 DNA laddering 7 2.2.3 TUNEL 8 2.2.4 Annexin V 8 2.2.5 Caspase-3 activity 9 2.2.6 Mitochondrial assay 9 2.3 相位體 10 2.4 定量式相位影像系統之原理及回顧 11 2.4.1 繞射相位顯微鏡架構 12 2.4.2 繞射相位顯微術的原理 13 2.4.3 繞射相位顯微術之頻率限制 13 2.5 以定量相位顯微術檢測細胞死亡 15 2.6 定量相位顯微術觀測細胞凋亡 17 2.7 以定量相位顯微術判斷細胞凋亡 20 第三章 : 研究方法與步驟 22 3.1 光學架構 22 3.1.1. 繞射相位顯微術 24 3.1.2. 螢光顯微術 28 3.1.3. 微型培養系統 29 3.1.4. 驗證光學架構的樣本 29 3.2 細胞實驗設計 30 3.2.1 人類視網膜色素上皮細胞培養 31 3.2.2 背景區域 33 3.2.3 誘導細胞凋亡 34 3.2.4 螢光染劑 34 3.3 相位回復 35 3.4 相位影像分析 36 3.4.1 細胞分割 36 3.4.2 細胞追蹤(cell tracking) 41 3.4.3 細胞特徵萃取 41 3.5 時序特徵處理 49 3.6 分類器 50 3.6.1 資料集 51 3.6.2 訓練分類器 52 3.6.3 分類器表現評估 53 3.6.4 特徵選擇 53 第四章 實驗結果 55 4.1. 光學架構驗證 55 4.1.1. 驗證繞射相位顯微鏡 55 4.1.2. 整合螢光及繞射相位顯微鏡光路 64 4.1.3. 相位影像及螢光影像 66 4.2. 相位影像分析 66 4.2.1. 細胞影像分割 66 4.2.2. 細胞追蹤 67 4.2.3. 螢光訊號 68 4.2.4. 觀測時間 69 4.2.5. 細胞特徵萃取 70 4.3. 時序特徵處理 72 4.2.6. 特徵變化量 72 4.2.7. 資料縮放及伽瑪校正 76 4.4. 探索式資料分析 76 4.4.1. 特徵變化量之間的線性關係 76 4.4.2. 資料空間 77 4.5. 分類結果 78 4.5.1. 決定分類器參數 78 4.5.2. 特徵選擇 80 4.5.3. 分類結果 80 4.5.4. 錯誤分析 82 4.5.5. 獨立測試實驗 87 第五章 討論與結論 89 第六章 未來展望 91 第七章 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非線性支持向量機 | zh_TW |
| dc.subject | 特徵萃取 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 定量相位顯微術 | zh_TW |
| dc.subject | Quantitative phase imaging | en |
| dc.subject | apoptosis | en |
| dc.subject | features extraction | en |
| dc.subject | non-linear support vector machine | en |
| dc.title | 利用定量相位顯微術判斷視網膜色素上皮細胞之細胞凋亡 | zh_TW |
| dc.title | Identification of Apoptosis of Retinal Pigment Epithelial Cells by Quantitative Phase Imaging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 丁建均(Jian-Jiun Ding),林劭品(Shau-Ping Lin) | |
| dc.subject.keyword | 定量相位顯微術,細胞凋亡,特徵萃取,非線性支持向量機, | zh_TW |
| dc.subject.keyword | Quantitative phase imaging,apoptosis,features extraction,non-linear support vector machine, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202000278 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 8.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
