請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66785
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 溫政彥 | |
dc.contributor.author | Yu-Tao Sun | en |
dc.contributor.author | 孫宇韜 | zh_TW |
dc.date.accessioned | 2021-06-17T01:08:24Z | - |
dc.date.available | 2020-02-05 | |
dc.date.copyright | 2020-02-05 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-03 | |
dc.identifier.citation | [1] S. Pašić and K. Ilakovac, 'Detector-to-detector Compton backscattering in germanium at 59.5 keV,' Phys. Rev. A, vol. 55, no. 6, pp. 4248-4252, 1997.
[2] D. Dovinos and D. Williams, 'Transport in a lithographically defined Si:Ge Coulomb-blockade island under microwave irradiation,' Phys. Rev. B, vol. 72, no. 8, 2005. [3] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Y. Y. Proskuryakov, 'Interlevel Ge/Si quantum dot infrared photodetector,' J. Appl. Phys., vol. 89, no. 10, pp. 5676-5681, 2001. [4] M. H. Liao, C. Y. Yu, T. H. Guo, C. H. Lin, and C. W. Liu, 'Electroluminescence from the Ge quantum dot MOS tunneling diodes,' IEEE Electr. Device L., vol. 27, no. 4, pp. 252-254, 2006. [5] P. W. Li et al., 'Fabrication of a germanium quantum-dot single-electron transistor with large Coulomb-blockade oscillations at room temperature,' Appl. Phys. Lett., vol. 85, no. 9, pp. 1532-1534, 2004. [6] L. Vescan and T. Stoica, 'Room-temperature SiGe light-emitting diodes,' J. Lumin., vol. 80, no. 1-4, pp. 485-489, 1998. [7] T. Brunhes et al., 'Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,' Appl. Phys. Lett., vol. 77, no. 12, 2000. [8] N. Ozguven and P. C. McIntyre, 'Selective Oxidation of SiGe Alloys: A Route to Ge-on-Insulator Structures with Controlled Biaxial Strain,' Electrochem. Solid St., vol. 11, no. 6, 2008. [9] D. J. Eaglesham and M. Cerullo, 'Dislocation-free Stranski-Krastanow growth of Ge on Si(100),' Phys. Rev. Lett., vol. 64, no. 16, pp. 1943-1946, Apr 16 1990. [10] R. Bruinsma and A. Zangwill, 'Morphological Transitions in Solid Epitaxial Overlayers,' (in English), Europhys. Lett., vol. 4, no. 6, pp. 729-735, Sep 15 1987. [11] F. K. LeGoues, M. Copel, and R. Tromp, 'Novel strain-induced defect in thin molecular-beam epitaxy layers,' Phys. Rev. Lett., vol. 63, no. 17, pp. 1826-1829, Oct 23 1989. [12] T. Zhou and Z. Zhong, 'Dramatically enhanced self-assembly of GeSi quantum dots with superior photoluminescence induced by the substrate misorientation,' APL Mater., vol. 2, no. 2, 2014. [13] S. A. Mala, L. Tsybeskov, D. J. Lockwood, X. Wu, and J. M. Baribeau, 'Fast and intense photoluminescence in a SiGe nano-layer embedded in multilayers of Si/SiGe clusters,' Appl. Phys. Lett., vol. 103, no. 3, 2013. [14] S. Das et al., 'Improved infrared photoluminescence characteristics from circularly ordered self-assembled Ge islands,' Nanoscale. Res. Lett., vol. 6, no. 1, p. 416, 2011. [15] Y. Chen et al., 'Tunable photoluminescence of self-assembled GeSi quantum dots by B+ implantation and rapid thermal annealing,' J. Appl. Phys., vol. 115, no. 23, 2014. [16] M. H. Kuo et al., 'Design of multifold Ge/Si/Ge composite quantum-dot heterostructures for visible to near-infrared photodetection,' Opt. Lett., vol. 40, no. 10, pp. 2401-4, May 15 2015. [17] C. Dais, G. Mussler, T. Fromherz, E. Muller, H. H. Solak, and D. Grutzmacher, 'SiGe quantum dot crystals with periods down to 35 nm,' Nanotechnology, vol. 26, no. 25, p. 255302, Jan 26 2015. [18] H. Groiss et al., 'Photoluminescence enhancement through vertical stacking of defect-engineered Ge on Si quantum dots,' Semicond. Sci. Tech., vol. 32, no. 2, 2017. [19] N. Usami, Y. Shiraki, and S. Fukatsu, 'Role of heterointerface on enhancement of no‐phonon luminescence in Si‐based neighboring confinement structure,' Appl. Phys. Lett., vol. 68, no. 17, pp. 2340-2342, 1996. [20] M. W. Dashiell, U. Denker, and O. G. Schmidt, 'Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon(001),' Appl. Phys. Lett., vol. 79, no. 14, pp. 2261-2263, 2001. [21] K. Nakajima, A. Konishi, and K. Kimura, 'Direct observation of intermixing at Ge/Si (001) interfaces by high-resolution Rutherford backscattering spectroscopy,' Phys. Rev. lett., vol. 83, no. 9, p. 1802, 1999. [22] M. Brehm et al., 'The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,' J. Appl. Phys., vol. 109, no. 12, 2011. [23] N. Modi, L. Tsybeskov, J. M. Baribeau, X. Wu, and D. J. Lockwood, 'Photoluminescence fatigue in three-dimensional silicon/silicon-germanium nanostructures,' J. Appl. Phys., vol. 111, no. 6, 2012. [24] A. Yakimov, N. Stepina, A. Dvurechenskii, A. Nikiforov, and A. Nenashev, 'Excitons in charged Ge/Si type-II quantum dots,' Semicond. Sci. Tech., vol. 15, no. 12, p. 1125, 2000. [25] T. Baier, U. Mantz, K. Thonke, R. Sauer, F. Schaffler, and H. Herzog, 'Type-II band alignment in Si/Si1-xGex quantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory,' Phys. Rev. B Condens. Matter, vol. 50, no. 20, pp. 15191-15196, Nov 15 1994. [26] E. K. Lee, L. Tsybeskov, and T. I. Kamins, 'Photoluminescence thermal quenching in three-dimensional multilayer Si∕SiGe nanostructures,' Appl. Phys. Lett., vol. 92, no. 3, 2008. [27] E. K. Lee, D. J. Lockwood, J. M. Baribeau, A. M. Bratkovsky, T. I. Kamins, and L. Tsybeskov, 'Photoluminescence dynamics and Auger fountain in three-dimensional Si/SiGe multilayer nanostructures,' Phys. Rev. B, vol. 79, no. 23, 2009. [28] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, 'Oxidation studies of SiGe,' J. Appl. Phys., vol. 65, no. 4, pp. 1724-1728, 1989. [29] B. E. Deal and A. S. Grove, 'General Relationship for the Thermal Oxidation of Silicon,' J. Appl. Phys., vol. 36, no. 12, pp. 3770-3778, 1965. [30] O. W. Holland, C. W. White, and D. Fathy, 'Novel oxidation process in Ge+‐implanted Si and its effect on oxidation kinetics,' Appl. Phys. Lett., vol. 51, no. 7, pp. 520-522, 1987. [31] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, 'Effects of Ge concentration on SiGe oxidation behavior,' Appl. Phys. Lett., vol. 59, no. 10, pp. 1200-1202, 1991. [32] M. I. den Hertog et al., 'Control of gold surface diffusion on si nanowires,' Nano Lett., vol. 8, no. 5, pp. 1544-50, May 2008. [33] P. Werner, C. C. Buttner, L. Schubert, G. Gerth, N. D. Zakarov, and U. Gosele, 'Gold-enhanced oxidation of silicon nanowires,' (in English), Int. J. Mater. Res., vol. 98, no. 11, pp. 1066-1070, Nov 2007. [34] C. C. Buttner, N. D. Zakharov, E. Pippel, U. Gosele, and P. Werner, 'Gold-enhanced oxidation of MBE-grown silicon nanowires,' (in English), Semicond. Sci. Tech., vol. 23, no. 7, p. 075040, Jul 2008. [35] S. Y. Kim, S. W. Kim, H. J. Chang, H. K. Seong, H. J. Choi, and D. H. Ko, 'Oxidation characteristics of Si0.85Ge0.15 nanowires,' (in English), Mat. Sci. Semicon. Proc., vol. 11, no. 5-6, pp. 182-186, Oct 2008. [36] C. C. Buttner and M. Zacharias, 'Retarded oxidation of Si nanowires,' (in English), Appl. Phys. Lett., vol. 89, no. 26, p. 263106, Dec 25 2006. [37] E. P. Eernisse, 'Viscous-Flow of Thermal Sio2,' (in English), Appl. Phys. Lett., vol. 30, no. 6, pp. 290-293, 1977. [38] D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, 'Oxidation of silicon nanowires,' (in English), J. Vac. Sci. Technol. B, vol. 24, no. 3, pp. 1333-1336, May-Jun 2006. [39] H. Y. Lee, T. H. Shen, C. Y. Hu, Y. Y. Tsai, and C. Y. Wen, 'Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation,' Nano Lett., vol. 17, no. 12, pp. 7494-7499, Dec 13 2017. [40] J. M. Bae, W. J. Lee, J. W. Ma, M. H. Cho, J. P. Ahn, and H. S. Lee, 'The oxidation characteristics of silicon nanowires grown with an au catalyst,' Nano Res., vol. 5, no. 3, pp. 152-163, 2012. [41] D. E. Perea, N. Li, R. M. Dickerson, A. Misra, and S. T. Picraux, 'Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying,' Nano Lett., vol. 11, no. 8, pp. 3117-22, Aug 10 2011. [42] H. Geaney, E. Mullane, Q. M. Ramasse, and K. M. Ryan, 'Atomically abrupt silicon-germanium axial heterostructure nanowires synthesized in a solvent vapor growth system,' Nano Lett., vol. 13, no. 4, pp. 1675-80, Apr 10 2013. [43] F. M. Ross, J. Tersoff, and M. C. Reuter, 'Sawtooth faceting in silicon nanowires,' Phys. Rev. Lett., vol. 95, no. 14, p. 146104, Sep 30 2005. [44] R. Brydson, Aberration-corrected analytical transmission electron microscopy. Wiley Online Library, 2011. [45] J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, 'The influence of the surface migration of gold on the growth of silicon nanowires,' Nature, vol. 440, no. 7080, pp. 69-71, Mar 2 2006. [46] C. Y. Wen, J. Tersoff, M. C. Reuter, E. A. Stach, and F. M. Ross, 'Step-flow kinetics in nanowire growth,' Phys. Rev. Lett., vol. 105, no. 19, p. 195502, Nov 5 2010. [47] P. Villars, A. Prince, and H. Okamoto, Handbook of ternary alloy phase diagrams. ASM international Materials Park, OH, 1995. [48] H. Okamoto and T. Massalski, 'The Au− Si (gold-silicon) system,' Bulletin of Alloy Phase Diagrams, vol. 4, no. 2, pp. 190-198, 1983. [49] J. H. He, W. W. Wu, Y. L. Chueh, C. L. Hsin, L. J. Chen, and L. J. Chou, 'Formation and evolution of self-assembled crystalline Si nanorings on (001) Si mediated by Au nanodots,' Appl. Phys. Lett., vol. 87, no. 22, 2005. [50] D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, (Revised Reprint). CRC press, 2009. [51] C. Y. Wen, 'Precipitation of Copper Silicide in Voids in Silicon Single Crystals,' Ph. D. dissertation, Harvard University, Cambridge, Massachusetts, September 2005. [52] P. J. Dean, J. R. Haynes, and W. F. Flood, 'New Radiative Recombination Processes Involving Neutral Donors and Acceptors in Silicon and Germanium,' Phys. Rev., vol. 161, no. 3, pp. 711-729, 1967. [53] W. H. Chang et al., 'Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,' Appl. Phys. Lett., vol. 83, no. 14, pp. 2958-2960, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66785 | - |
dc.description.abstract | 矽/矽鍺合金異質接面結構在電子、光電以及能隙工程領域都有應用的潛力。了解矽鍺合金奈米線中異質接面的成長機制在元件應用上材料物理性質的設計方面很有幫助。然而,與直接以VLS機制成長的異質接面奈米線不同,以高溫氧化低鍺濃度矽鍺合金奈米線製造異質接面的方法較為複雜。本研究發現在氧化過程中,奈米線頂端金矽鍺共晶液珠對於矽鍺奈米線的熱侵蝕十分顯著,而矽被優先氧化使得共晶液珠內Ge/Si的比例上升,進而影響了鍺、矽原子的溶解度。因此我們推斷金-矽-鍺三元合金系統在氧化過程中濃度的變化是造成奈米線異質接面處濃度差異的主因。這種藉由高溫氧化進行濃度調整的製程亦可被應用在製造矽鍺量子點上。Si0.99Ge0.01薄膜在700 °C空氣中氧化6小時後,具有較高鍺濃度的矽鍺量子點就會產生,而TEM與STEM影像顯示這些量子點結構是在冷卻過程中從金矽鍺共晶液珠中磊晶析出並鑲嵌在低鍺濃度的矽鍺薄膜中。之後我們更進一步證明藉由調整矽鍺薄膜的初始鍺濃度、氧化時間、氧化溫度等實驗參數,可以控制矽鍺量子點的成分、形貌以及尺寸。最後,我們量測量子點的PL光譜以探討此結構在後續應用上的可能性。 | zh_TW |
dc.description.abstract | Group IV semiconductor Si/SiGe alloy heterojunction structures are potentially useful in electronics, optoelectronics, and bandgap engineering. Understanding the growth mechanism of heterojunctions in Si-Ge alloy nanowires is helpful for designing adequate physical properties in the material for device applications. However, unlike direct growth of heterojunction nanowires using the vapor-liquid-solid method, forming heterojunctions in Si-Ge nanowires by thermal oxidation in low Ge-content Si-Ge nanowires involves more complicated reaction routes. In the oxidation process, thermal etching of the Si-Ge alloy nanowires by the AuGeSi eutectic liquid at nanowire tip is found to be significant. Selective oxidation of Si increases the Ge/Si ratio in the eutectic liquid, which further modulates the solubility of Ge and Si atoms. The compositional variation in the Au-Ge-Si ternary alloy system during the oxidation process accounts for the observed concentration profile in the heterojunction nanowire. Such compositional modulation by thermal oxidation is applied to form Si-Ge quantum dots in a low Ge-content Si-Ge thin film. After Si0.99Ge0.01 thin film is oxidized at 700 °C for 6 hours in air, quantum dots with higher Ge concentration are produced. Transmission electron microscopy and scanning transmission electron microscopy images show that the quantum dots are epitaxially precipitated from the eutectic AuGeSi liquid during the cooling process. The concentration, dimensional, and morphology of the SiGe quantum dots can be controlled by adjusting several parameters such as initial Ge concentration in the SiGe thin film, oxidation time, and oxidation temperature. Photoluminescence spectra of the quantum dots are also measured. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:08:24Z (GMT). No. of bitstreams: 1 ntu-109-R06527080-1.pdf: 4736341 bytes, checksum: 4100282ffdc3553370487f00112da44e (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iv ABSTRACT v 目錄 vii 圖目錄 x Chapter 1 前言 1 Chapter 2 矽鍺合金量子點的成長與光學特性 3 2.1 自組性矽鍺量子點的成長 3 2.2 自組性矽鍺量子點的光電特性 10 Chapter 3 氧化對矽鍺合金的影響 15 3.1 矽鍺合金薄膜的氧化 15 3.2 矽、矽鍺合金奈米線的氧化 17 3.2.1 矽奈米線的氧化 18 3.2.2 矽鍺合金奈米線的氧化 20 3.2.3 藉由氧化矽鍺奈米線製造異質介面結構 21 Chapter 4 實驗方法與設備介紹 27 4.1 成長基板前處理 27 4.2 超高真空氣相沉積系統 27 4.2.1 蒸鍍系統 28 4.2.2 反應氣體 29 4.3 矽鍺異質介面奈米線成長方法 29 4.3.1 以氣液固相法成長矽鍺合金奈米線 29 4.3.2 以氧化方法製備矽鍺異質界面奈米線 30 4.4 矽鍺異質介面奈米點成長方法 30 4.4.1 以化學氣相沉積法成長矽鍺薄膜 31 4.4.2 以氧化方法製備矽鍺異質界面奈米點 31 4.5 金催化劑之去除方法 31 4.6 TEM試片製作 32 4.7 分析設備 33 4.7.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 33 4.7.2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 33 4.7.3 掃描穿透式電子顯微鏡(Scanning Transmission Electron Microscopy, STEM) 34 4.7.4 能量分散光譜(Energy Dispersive Spectroscopy, EDS) 34 4.7.5 光致螢光光譜(Photoluminescence, PL) 35 Chapter 5 實驗結果 36 5.1 藉由氧化矽鍺奈米線製造異質接面之形成機制 36 5.2 藉由氧化矽鍺薄膜製造矽鍺量子點 42 5.2.1 形貌觀察與成分分析 42 5.2.2 量子點形成機制探討 45 5.2.3 光致發光光譜的量測 51 Chapter 6 結論 54 REFERENCE 55 | |
dc.language.iso | zh-TW | |
dc.title | 以高溫氧化矽鍺薄膜驅動固-液-固機制析出矽鍺半導體量子點成長之研究 | zh_TW |
dc.title | Growth of Silicon-Germanium Semiconductor Quantum Dots through Solid-Liquid-Solid Mechanism Motivated by Thermal Oxidation of Silicon-Germanium Thin Film. | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王迪彥,李紹先 | |
dc.subject.keyword | 矽鍺奈米線,異質接面,高溫氧化,金矽鍺共晶液珠,矽鍺量子點,成分調整, | zh_TW |
dc.subject.keyword | SiGe quantum dots,heterojunction,thermal oxidation,AuGeSi eutectic liquid,compositional modulation, | en |
dc.relation.page | 58 | |
dc.identifier.doi | 10.6342/NTU202000305 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 4.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。