Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真(Yu-Jane Sheng)
dc.contributor.authorChun-Min Linen
dc.contributor.author林俊民zh_TW
dc.date.accessioned2021-06-17T00:56:09Z-
dc.date.available2013-10-21
dc.date.copyright2011-10-21
dc.date.issued2011
dc.date.submitted2011-09-17
dc.identifier.citation1. E. Mendez, M. Fernandez, G. Pazo, M. A. Grompone, Food Chemistry 45 (1992) 179-181.
2. N. H. Battey, N. C. James, A. J. Greenland, C. Brownlee, The Plant Cell 11 (1999) 643–659.
3. J. R. McKee, and T. McKee, Biochemistry: The Molecular Basis of Life. (Third Edition by University of the Sciences in Philadelphia)
4. DD Lasic, Liposomes: From Physics to Applications (Elsevier, Amsterdam, 1993).
5 . D. R. Fattal, D. Andelman, A. Ben-Shaul, Langmuir 11(1995) 1154-1161.
6. K. C. Huang, C. M. Lin, H. K. Tsao, Y. J. Sheng, J. Chem. Phys. 130 (2009) 245101.
7. V. P. Torchilin, Adv. Drug Deliv. Rev. 58 (2006) 1532–1555.
8. The images are taken from the following web sites http://en.wikipedia.org/wiki/Lipid
9. J. A. Karlowsky, G. G. Zhanel, Clin. Infect. Dis. 15(1992) 654–667.
10. G. C. Kresheck, H. B. Long, Colloids and Surfaces 30 (1988) 133-143.
11. J. Schnur, Science 262 (1993) 1669.
12. A. Jain, T. Sanghvi, S. H. Yalkowsky, AAPS PharmSciTech 4 (2003) 413.
13. A. D. Banghama, R. W. Horne, J. Mol. Biol. 8 (1964) 660-668.
14. M. H. W. Milsmann, R. A. Schwendener, H. G. Weder, Biochimica et Biophysica Acta, 512 (1978) 147—155.
15. L. T. Mimms, G. Zampighi, Y. Nozaki, C. Tanford, J. A. Reynolds, Biochemistry 1981, 20, 833-840.
16. Y. Kagawa, E. Racker. J. Biol. Chem. 246 (1971) 5477–5487.
17. J. Brunner, P. Skrabal, H. Hauser, Biochim. Biophys. Acta. 455 (1976) 322–331.
18. U. Bilati, E. Allemann, E. Doelker, Pharm. DeV. Technol. 8 (2003) 1–9.
19. Y. Barenholzt, S. Amselem, D. Lichtenberg, FEBS Letters 99 (1979) 210.
20. R. J. Pace, S. I. Chan, J. Chem. Phys. 76 (1982) 4228.
21. S. L. Regen, N. K. P. Samuel, J. M. Khurana, J. Am. Chem. Soc. 107 (1985) 5804-5805.
22. L. Ayres, P. Hans, J. Adams, D. W. P. M. Lowik, J. C. M. van Hest, J. Polym. Sci., Part A: Polym. Chem. 43 (2005), 6355.
23. X. Y. Xiong, W. He, Z. C. Li, F. M. Li, Chin J Chem 19 (2001) 1108-1115.
24. F. Ahmed, D. E. Discher, J. Controlled Release 96 (2004) 37– 53.
25. M. Discher, Y. Y. Won, S. Ege, C-M. Lee, S. Bates, E. Discher, Science 284 (1999) 1143.
26. G. White, J. Pencer, B. G. Nickel, J. M. Wood, F. R. Hallett, Biophys. J. 71 (1996) 2701-2715.
27. J. A. Bouwstra, G.S. Gooris, W. Bras, H. Talsma, Chem. Phys. Lipid 64 (1993) 83-98.
28. M. Bergstrom, J. S. Pedersen, J. Phys. Chem. B 103 (1999) 9888-989.
29. H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, D. E. Discher, Macromolecules 35 (2002) 8203-8208.
30. A. Choucair, C. Lavigueur, A. Eisenberg, Langmuir 20 (2004) 3894-3900.
31. W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, E. Evans, Biophys. J. 79 (2000) 328–339.
32.C. A. Rutkowski, L. M. Williams, T. H. Haines, H. Z. Cummins. Biochemistry 30 (1991) 5688–5696.
33. B. L.-S. Mui, P. R. Cullis, E. A. Evans, T. D. Madden. Biophys. J. 64 (1993) 443–453.
34. F. R. Hallett, J. Marsh, B. G. Nickle, J. M. Wood. Biophys. J. 64 (1993) 435–442.
35. B. W. Koenig, H. H. Strey, K. Gawrisch. Biophys. J. 73 (1997) 1954–1966.
36. David H. Boal, Mechanics of the cell. (2001) Cambridge, UK: Cambridge University Press
37. H. J. Deuling, W. Helfrich, J. Physique 37 (1976) 1335.
38. E. Evans, W. Rawicz, Phys. Rev. Lett. 64 (1990) 2094.
39. E. Evans, W. Rawicz, Phys. Rev. Lett. 79 (1997) 2379.
40. R. Kwok, E. Evans, Biophys. J . 35 (1981) 637-652.
41. P. Barbero, L. Bittova, S.R. Pfeffer, J. Cell Biol 156 (2002) 511–518.
42. X. Li, Y. Liu, L. Wang, M. Deng, H. Liang, Phys. Chem. Chem. Phys. 11 (2009) 4051–4059.
43. C. K. Haluska, K. A. Riske, V. Marchi-Artzner, J. M. Lehn, R. Lipowsky, R. Dimova PNAS 103 (2006) 15841–15846.
44. Tanford C: The Hydrophobic Effect. Chichester: John Wiley & Sons;1980. (book)
45. R. Jahn, H. Grubmuller, Curr. Opin. Cell Biol. 14 (2002) 488–495.
46. J. Lee and R. Lentz, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 9274.
47. S. A. Safran, T. L. Kuhl, J. N. Israelachvili, Biophys. J. 81 (2001) 659.
48. B. R. Lentz, Eur Biophys J. 36 (2007) 315–326.
49. G. Kohler, C. Milstein. Nature. 256. (1975) 495-497.
50. B. R. Lentz. Chem. Phys. Lipids. 73. (1994) 91-106.
51. C. A. Jordan, E. Neumann, A. E. Sowers, 'Electroporation and Electrofusion in Cell Biology'. 1989: Springer
52. R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. Knorr, R. Lipowsky, Soft Matter 3 (2007) 817–827.
53. K. A. Riske, N. Bezlyepkuna, R. Lipowsky, R. Dimova, Biophysical Reviews and Letters 1 (2006) 387–400.
54. N. G. Stoicheva, S. W. Hui, Biochim. Biophys. Acta 1195 (1994) 31-38.
55. D. Needham, R. M.. Hochmunt, Biophys. J. 55 (1989) 1001-1009.
56. H. Noguchi, M. Takasu, Biophys. J. 83 (2002) 299–308.
57. M. Muller, K. Katsov, M. Schick, J. Chem. Phys. 116 (2002) 2342.
58. J. C. Shillcock, R. Lipowsky, J. Phys. Condens. Matter 18 (2006) S1191–S1219.
59. V. Knecht, A. E. Mark, S. J. Marrink, J. Am. Chem. Soc. 128 (2006) 2030-2034.
60. V. Knecht, S. J. Marrink, Biophys. J. 92 (2007) 4254–4261.
61. M. J. Stevens, J. H. Hoh, T. B.Woolf, Phys. Rev. Lett. 91 (2003) 188102-1.
62. S. J. Marrink and A. E. Mark, J. Am. Chem. Soc. 125 (2003) 11144-11145.
63. L. Gao, R. Lipowsky and J. Shillcock, Soft Matter 2008, 4, 1208–1214.
64. A. Grafmuller, J. Shillcock, R. Lipowsky, Molecular Simulation 35 (2009) 554-560.
65. L. Gao, R. Lipowsky, J. Shillcock, Soft Matter 4 (2008) 1208-1214.
66. T. Lian, R. J. Y. Ho, J. Pharm. Sci. 90 (2001) 667.
67. Y. Kaneda, Adv. Drug Delivery Rev. 43 (2000) 197–205.
68. K. Letchford, H. Burt, Eur J Pharm Biopharm. 65 (2007) 259–269.
69. F. Ahmed, D. E. Discher, J. Controlled Release 96 (2004) 37– 53.
70. F. Meng, C. Hiemstra, G. H. M. Engbers, J. Feijen, Macromolecules 36 (2003) 3004-3006.
71. P. J. Photos, L. Bacakova, B. Discher, F. S. Bates, D. E. Discher, J. Controlled Release 90 (2003) 323–334.
72. F. K. Bedu-Addo, P. Tang, Y. Xu, L. Huang, Pharm. Res. 13 (1996) 710.
73. S. C. Semple, A. Chonn, P. R. Cullis, Adv. Drug Delivery Rev. 32 (1998) 3–17.
74. K. J. Hanley, T. P. Lodge, C. I. Huang, Macromolecules 33 (2000) 5918-5931.
75. M. Markstrom, A. Gunnarsson, O. Orwar, A. Jesorka, Soft Matter 3 (2007) 587–595.
76. S. Mann, J. P. Hannington, J. Colloid Interface Sci. 122 (1988) 326.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66761-
dc.description.abstract以耗散粒子動力學法研究尺寸影響囊胞的行為,包括脂質膜上的特性和機械性質。藉由控制脂質的濃度可以自發形成不同尺寸的囊胞,自發形成的囊胞處於介穩狀態。當囊胞的尺寸下降時,膜厚度愈來愈薄且表面的親水頭基密度下降。然而,內層表面的親水頭基密度高於外層。從內外層排列參數結果表明,外層的脂質像一個被截斷的圓錐形,但在內部的脂質類似於一個倒截錐形。根據局部範圍的整齊度參數可以發現隨著囊胞尺寸變小而整齊度下降,而脂雙層變薄的主要原因是來自於脂質無序的排列。而脂質膜的張力可通Young-Laplace方程式計算出,囊胞張力隨著囊泡的尺寸下降而張力上升。因此,小顆囊胞較不穩定易發生融合。也可以使用充水的方法計算出拉伸模數和彎曲模數,而拉伸模數和彎曲模數隨著囊胞尺寸下降而上升。但是彎曲模數、拉伸模數和膜厚仍然具有固定常數的關係。最後,利用簡單介穩狀態的囊胞模型推測說明囊胞尺寸對膜厚、整齊度和張力的影響行為。
利用耗散粒子動力學法探討小顆囊胞的充水行為,包括膨脹、破裂、復原和融合機制。將自發所形成的囊胞充水時,囊胞的尺寸會增加且膜厚度會下降。當充水過程中,內層表面的親水性頭基密度下降的比外層迅速。還有內層與外層的排列參數都變成截錐形即使內層原先為倒截錐形而外層為截錐形。從局部範圍的整齊度參數可以發現隨著充水的量增加,脂質排列性變得更凌亂無序。從疏水尾端分佈圖可以發現內層與外層發生了交叉穿插的結構。脂質膜的張力可通過Young-Laplace方程式計算出,囊胞張力隨著充水量增加而上升。當充水越多囊胞越不穩定,更容易發生融合現象。最後不論囊胞尺寸為何,只要由同一種脂質所組成的囊胞在達破裂前其所有的物理及機械性質幾乎達到一致。
研究發現只有適當的界面活性劑才具有能力可以溶解囊胞形成小顆的混合微胞,當界面活性劑不夠殊水時,只會有少許界面活性劑會進入囊胞內其他大多傾向停留在囊胞外。因此囊胞結構不受界面活性劑濃度的影響。相反地,疏水的界面活性劑會使囊胞結構隨著活性劑濃度增加而混合聚集成空心圓柱狀,甜甜圈狀,平面雙層結構…等。此外對於中度疏水性界面活性劑,囊胞溶解形成混合微胞前會先看到開孔的囊胞,因此囊胞溶解機制比之前提的三階段假說更複雜。當界面活性劑達到臨界微胞濃度,界面活性劑開始發生聚集且囊胞同時發生扭曲行為,當界面活性劑濃度達到適量時,囊胞開始出現穿孔,且隨著界面活性劑的濃度增加囊胞的開孔越大,當界面活性劑濃度更高時,脂質開始離開囊胞並且與界面活性劑混合形成微胞,最後達到整個囊胞溶解。
zh_TW
dc.description.abstractThe size-dependent behavior of small unilamellar vesicles is explored by dissipative particle dynamics, including the membrane characteristics and mechanical properties. The spontaneously formed vesicles are in the metastable state and the vesicle size is controlled by the concentration of model lipids. As the vesicle size decreases, the bilayer thickness is getting thinner and the area density of heads declines. Nonetheless, the area density in the inner leaflet is higher than that in the outer. The packing parameters are calculated for both leaflets. The result indicates that the shape of lipid in the outer leaflet is like a truncated cone but that in the inner leaflet resembles an inverted truncated cone. Based on a local order parameter the orientation order is found to decay with reducing vesicle size and this fact reveals that the thinner bilayer is mainly attributed to the orientation disorder. The membrane tension can be obtained through the Young-Laplace equation. The tension is found to grow with reducing vesicle size. Therefore, small vesicles are less stable against fusion. Using the inflation method, the area stretching and bending moduli can be determined and those moduli are found to grow with reducing size. Nonetheless, the general relation among the bending modulus, area stretching modulus, and bilayer thickness are still followed with a small numerical constant. Finally, a simple metastable model is proposed to explain the size-dependent behavior of bilayer thickness, orientation, and tension.
The swelling of small unilamellar vesicles is explored by dissipative particle dynamics, including the growth, rupture, healing, and fusion process. The spontaneously formed vesicles are inflated by adding water into the inner water region. As the water is added into the vesicle, the vesicle size increases and the bilayer thickness decreases. It is also found that the area density of the tail group in the outer leaflet is greater than that of the inner leaflet during the swelling process; however, the area density of the outer head is less than that of the inner head. The results of the packing parameters for both leaflets reveal that the shape of lipid in the inner leaflet resembles an inverted truncated cone and in the outer leaflet is like a truncated cone. The outcome of local order parameter points out the orientation order is found to decay as the vesicle is inflated demonstrating that the bilayer becomes thinner partly attributed to the orientation disorder. The distribution of the lipid tail beads for the inner and outer leaflets indicates an interdigitated formation takes place within the bilayer of an inflated vesicle. The membrane tension can be obtained through the Young-Laplace equation is applied to estimate the membrane tension and the tension is found to grow with the inflation of the vesicle. Therefore, inflated vesicles are less stable against fusion. Finally, it is found that spontaneously formed vesicles of different sizes rupture at distinct degree of inflation. However, certain membrane properties, such as packing parameter, order parameter, and membrane thickness need to reach the same critical values before rupture.
It is found that only surfactants with suitable hydrophobicity are able to solubilize vesicles by forming small mixed micelles. Surfactants with inadequate hydrophobicity tend to stay in the bulk solution and only a few of them enter into the vesicle. Consequently, the vesicle structure remains intact for all surfactant concentrations studied. On the contrary, surfactants with excessive hydrophobicity are inclined to incorporate with the vesicle and thus the vesicle size continues to grow as the surfactant concentration increases. Instead of forming discrete mixed micelles, lipid and surfactant are associated into large aggregates taking the shapes of cylinders, donuts, bilayers, etc. For addition of surfactant with moderate hydrophobicity, perforated vesicles are observed before the formation of mixed micelles and thus the solubilization mechanism is more intricate than the well-known three-stage hypothesis. As the apparent critical micellar concentration is attained, pure surfactant micelles form and the vesicle deforms because the distribution of surfactant within the bilayer is no longer uniform. When the surfactant concentration reaches medium concentration, the vesicle perforates. The extent of perforation grows with increasing surfactant concentration. The solubilization process begins at excess of concentration and lipids leave the vesicle and join surfactant micelles to form mixed micelles. Eventually total collapse of the vesicle is observed.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:56:09Z (GMT). No. of bitstreams: 1
ntu-100-D95549002-1.pdf: 9333944 bytes, checksum: 4a4014eee61716686ff630c900d7b39a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract I
Content VI
Figure Captions XI
Table Captions XXIV
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Vesicles 5
1-2-1 Formation of Vesicle 5
1-2-2 Properties of Vesicles 10
1-3 Fusion 14
1-4 Application of Vesicle 21
1-5 Reference 24
Chapter 2 Simulation Method 28
2-1 Introduction 28
2-1-1Time Scale and Space Scale in Computing Simulation System 30
2-2 Dissipative Particle Dynamic Method 31
2-2-1 Coarse-Grained Model 32
2-2-2 DPD Main Forces 33
2-2-3 Integration Algorithm of DPD Method 36
2-2-4 Noise Distribution 38
2-3 Other Parameters in DPD Method 39
2-3-1 Dimensionless 39
2-3-2 Temperature and Pressure 40
2-4 The Flory-Huggins Theory and Repulsion Parameter 41
2-4-1 Mapping onto Flory-Huggins Theory 43
2-4-2 The Choosing of the χ Parameter 46
2-5 DPD Additional Forces 48
2-5-1 Spring Force on Lipid Tails 49
2-5-2 Bending Force on Lipid Tails 50
2-6 Analysis Tools 52
2-6-1 Order Parameter of Lipid Tails 52
2-6-2 Configuration of Lipids 54
2-6-3 Surface Tension of Membrane 55
2-7 Reference 57
Chapter 3 Size-dependent Properties of Small Vesicles Formed by Model Lipids 60
3-1 Introduction 60
3-2 Model and Simulation Method 63
3-2-1 Interactions Between Beads 63
3-2-2 System Parameters 65
3-3 Results and Discussions 67
3-3-1 Spontaneous Formation of Vesicles with Different Sizes 68
3-3-2 Membrane Characteristics (lipid packing and orientation) 69
1. Blayer thickness 69
2. Area density 70
3. Packing parameter 72
4. Lipid orientation 73
3-3-3 Mechanical Properties 75
3-3-4 Simple Metastable Model 79
3-4 Conclusion 81
3-5 Reference 83
Chapter 4 Swelling of Vesicles: Membrane Properties 「Growth, Rupture, Healing, and Fusion」 101
4-1 Introduction 101
4-2 Model and simulation method 103
4-2-1 Interactions Between Beads 103
4-2-2 System Parameters 106
4-3 Results and Discussions 107
4-3-1 Inflation of Vesicles with Different sizes 108
4-3-2 Membrane Characteristics (membrane thickness, area density, lipid packing and orientation) 109
1. Blayer thickness 110
2. Area density 110
3. Packing parameter 112
4. Lipid orientation 114
4-3-3 Mechanical Properties 115
4-3-4 Thermodynamic properties 117
4-3-5 Membrane characteristics and surface tension induce fusion 118
4-4 Conclusion 119
4-5 Reference 122
Chapter 5 Solubilization Mechanism of Vesicles by Surfactants: Effect of Hydrophobicity 141
5-1 Introduction 141
5-2 Model and Simulation Methods 143
5-3 Results and Discussions 149
5-3-1 Critical Micellar Concentration in a Surfactant only System 150
5-3-2 Critical Micellar Concentration in a Vesicle/Surfactant System 152
5-3-3 Vesicle/Surfactant Interactions for Surfactants with Inadequate Hydrophobicity 153
5-3-4 Vesicle/Surfactant Interactions for Surfactants with Excessive Hydrophobicity 154
5-3-5 Vesicle/Surfactant Interactions for Surfactants with Moderate Hydrophobicity 154
5-3-6 Molecular Viewpoint of Vesicle Solubilization 157
5-4 Conclusion 160
5-5 Reference 162
Chapter 6 Conclusion 185
dc.language.isoen
dc.subject融合zh_TW
dc.subject耗散粒子動力學zh_TW
dc.subject囊胞zh_TW
dc.subjectFusionen
dc.subjectDissipative Particle Dynamicen
dc.subjectVesicleen
dc.title以耗散粒子動力學法研究囊胞之物理性質與融合機制zh_TW
dc.titleStudies of Physical Properties and Fusion Mechanism of Vesicles by Dissipative Particle Dynamic Simulationsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee曹恆光(Heng-Kwong Tsao),林祥泰(Shiang-Tai Lin),戴子安(Chi-An Dai),陸駿逸(Lu, Chun-Yi David)
dc.subject.keyword耗散粒子動力學,囊胞,融合,zh_TW
dc.subject.keywordDissipative Particle Dynamic,Vesicle,Fusion,en
dc.relation.page190
dc.rights.note有償授權
dc.date.accepted2011-09-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
9.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved