Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66752
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋(Lu-Ping Chou)
dc.contributor.authorYu-Ju Chenen
dc.contributor.author陳玉茹zh_TW
dc.date.accessioned2021-06-17T00:55:31Z-
dc.date.available2015-03-02
dc.date.copyright2012-03-02
dc.date.issued2011
dc.date.submitted2011-09-26
dc.identifier.citationReferences
[1] Duker A., Carranza, E. J. M., Hale, M., Hale, M., Arsenic geochemistry and health. Environ Int 2005, 31, 631-641.
[2] Konkola, K., More than a coincidence? The arrival of arsenic and the disappearance of plaque in early modern Europe. J Hist Med Allied Sci 1992, 47, 186-209.
[3] Waxman S., Anderson, K. C., History of the development of arsenic derivatives in cancer therapy. Oncologist, 2001, Suppl 2, 3-10.
[4] Kitchin K. T., Wallace, K., Dissociation of arsenite-peptide complexes: triphasic nature, rate constants, half-lives, and biological importance. J Biochem Mol Toxicol, 2006, 20, 48-56.
[5] Niu C., Yan, H., Yu, T., Sun, H. P., Liu, J. X., Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood, 1999, 94, 3315-3324.
[6] Zhu, J., Chen, Z., Lallemand-Breitenbach, V., de The, H., How acute promyelocytic leukaemia revived arsenic. Nat Rev Cancer 2002, 2, 705-713.
[7] Chen G. Q., Zhu, J., Shi, X. G., Ni, J. H., Zhong, H. J., In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood, 1996, 88, 1052-1061.
[8] Gianni M., Koken, M. H., Chelbi-Alix, M. K., Benoit, G., Lanotte, M., Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood, 1998, 91, 4300-4310.
[9] Wang T. S., Kuo, C. F., Jan, K. Y., Huang, H., Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol, 1996, 169, 256-268.
[10] Akay C., Gazitt, Y., Arsenic trioxide selectively induces early and extensive apoptosis via the APO2/caspase-8 pathway engaging the mitochondrial pathway in myeloma cells with mutant p53. Cell Cycle 2003, 2, 358-368.
[11] Huang, S. C., Lee, T. C., Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells. Carcinogenesis 1998, 19, 889-896.
[12] Li, Y. M., Broome, J. D., Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 1999, 59, 776-780.
[13] Ling, Y. H., Jiang, J. D., Holland, J. F., Perez-Soler, R., Arsenic trioxide produces polymerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines. Mol Pharmacol 2002, 62, 529-538.
[14] Cai, X., Yu, Y., Huang, Y., Zhang, L., Jia P. M., Zhao Q., Chen Z., Tong J. H., Dai W., Chen G. Q., Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells. Leukemia 2003, 17, 1333-1337.
[15] Yih, L. H., Tseng, Y. Y., Wu, Y. C., Lee, T. C., Induction of centrosome amplification during arsenite-induced mitotic arrest in CGL-2 cells. Cancer research 2006, 66, 2098-2106.
[16] Wu, Y. C., Yen, W. Y., Yih, L. H., Requirement of a functional spindle checkpoint for arsenite-induced apoptosis. J Cell Biochem 2008, 105, 678-687.
[17] Nigg, E. A., Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001, 2, 21-32.
[18] Jensen, S., Johnston, L. H., Complexity of mitotic exit. Cell Cycle 2002, 1, 300-303.
[19] Peters, J. M., The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell, 2002, 9, 931-943.
[20] Cleveland D. W., Mao, Y., Sullivan, K. F., Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell, 2003, 112, 407-421.
[21] Li R., Murray, A. W., Feedback control of mitosis in budding yeast. Cell, 1991, 66, 519-531.
[22] Hoyt M. A., Totis, L., Roberts, B. T., cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 1991, 66, 507-517.
[23] Mao Y. Abrieu, A., Cleveland, D. W., Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 2003, 114, 87-98.
[24] Ayscough K., Hayles, J., MacNeill, S. A., Nurse, P., Cold-sensitive mutants of p34cdc2 that suppress a mitotic catastrophe phenotype in fission yeast. Mol Gen Genet, 1992, 232, 344-350.
[25] Jackson J. R., Patrick, D. R., Dar, M. M., Huang, P. S., Targeted anti-mitotic therapies: can we improve on tubulin agents?
[26] Castedo M., Perfettini, J.-L., Roumier, T., Andreau, K., Medema, R., Kroemer G.,
Cell death by mitotic catastrophe: a molecular definition. Oncogene, 2004, 23, 2825-2837.
[27] Kurokawa, M., Kornbluth, S., Stalling in mitosis and releasing the apoptotic brake. EMBO J, 29, 2255-2257.
[28] Terrano D. T., Upreti, M., Chambers, T. C., Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol, 2010, 30, 640-656.
[29] O'Connor D. S., Wall, N. R., Porter, A. C. G., Altieri, D. C., A p34(cdc2) survival checkpoint in cancer. Cancer Cell, 2002, 2, 43-54.
[30] Harley M. E., Allan, L. A., Sanderson, H. S., Clarke, P. R., Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J, 2010, 29, 2407-2420.
[31] Sunkel, C. E., Glover, D. M., polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 1988, 89 ( Pt 1), 25-38.
[32] Donaldson, M. M., Tavares, A. A., Hagan, I. M., Nigg, E. A., Glover, D. M., The mitotic roles of Polo-like kinase. J Cell Sci 2001, 114, 2357-2358.
[33] Glover, D. M., Hagan, I. M., Tavares, A. A., Polo-like kinases: a team that plays throughout mitosis. Genes Dev 1998, 12, 3777-3787.
[34] Lane, H. A., Nigg, E. A., Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol 1996, 135, 1701-1713.
[35] Nigg, E. A., Raff, J. W., Centrioles, centrosomes, and cilia in health and disease. Cell 2009, 139, 663-678.
[36] Petronczki, M., Lenart, P., Peters, J. M., Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev Cell 2008, 14, 646-659.
[37] Strebhardt, K., Ullrich, A., Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 2006, 6, 321-330.
[38] Yamamoto Y., Matsuyama, H., Kawauchi, S., Matsumoto, H., Nagao, K., Ohmi C., Sakano S., Furuya T., Oga A., Naito K., Sasaki K., Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology, 2006, 70, 231-237.
[39] Takai, N., Hamanaka, R., Yoshimatsu, J., Miyakawa, I., Polo-like kinases (Plks) and cancer. Oncogene 2005, 24, 287-291.
[40] Chopra, P., Sethi, G., Dastidar, S. G., Ray, A., Polo-like kinase inhibitors: an emerging opportunity for cancer therapeutics. Expert Opin Investig Drugs 2010, 19, 27-43.
[41] Gomase V. S., Tagore, S., Changbhale, S. S., Kale, K. V., Pharmacogenomics. Curr Drug Metab, 2008, 9, 207-212.
[42] Elia, A. E., Cantley, L. C., Yaffe, M. B., Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 2003, 299, 1228-1231.
[43] Lowery, D. M., Clauser, K. R., Hjerrild, M., Lim, D., Alexander J., Kishi K., Ong S. E., Gammeltoft S., Carr S. A., Yaffe M. B., Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 2007, 26, 2262-2273.
[44] Grosstessner-Hain, K., Hegemann, B., Novatchkova, M., Rameseder, J., Joughin B. A., Hudecz O., Roitinger E., Pichler P., Kraut N., Yaffe M. B., Peters J. M., Mechtler K., Quantitative phospho-proteomics to investigate the Polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics, 2011, [Epub ahead of print].
[45] Santamaria A., Wang, B., Elowe, S., Malik, R., Zhang, F., Bauer M., Schmidt A., Silljé H. H., Körner R., Nigg E. A., The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics, 2011, 10, M110.004457.
[46] Mayer M. P., Bukau, B., Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci, 2005, 62, 670-684.
[47] Evans, C. G., Chang, L., Gestwicki, J. E., Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem, 53, 4585-4602.
[48] Bertelsen, E. B., Chang, L., Gestwicki, J. E., Zuiderweg, E. R., Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 2009, 106, 8471-8476.
[49] Mosser D. D., Morimoto, R. I., Molecular chaperones and the stress of oncogenesis. Oncogene, 2004, 23, 2907-2918.
[50] Zeng B. Y., Medhurst, A. D., Jackson, M., Rose, S., Jenner, P., Proteasomal activity in brain differs between species and brain regions and changes with age. Mech Ageing Dev, 2005, 126, 760-766.
[51] Gadde S., Heald, R., Mechanisms and molecules of the mitotic spindle. Curr Biol, 2004, 14, R797-805.
[52] Wiese C., Zheng, Y., Microtubule nucleation: gamma-tubulin and beyond. J Cell Sci, 2006, 119, 4143-4153.
[53] Sumara I., Gimenez-Abian, J. F., Gerlich, D., Hirota, T., Kraft, C., de la Torre C., Ellenberg J., Peters J. M., Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol, 2004, 14, 1712-1722.
[54] Haren, L., Stearns, T., Luders, J., Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS One 2009, 4, e5976.
[55] Wang W. J., Soni, R. K., Uryu, K., Tsou, M. F., The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J Cell Biol, 2011, 193, 727-739.
[56] Brennan I. M., Peters, U., Kapoor, T. M., Straight, A. F., Polo-like kinase controls vertebrate spindle elongation and cytokinesis. PLoS One, 2007, 2, e409.
[57] Johmura Y., Soung, N. K., Park, J. E., Yu, L. R., Zhou, M., Bang J.K, Kim B. Y., Veenstra T. D., Erikson R. L., Lee K. S., From the Cover: Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc Natl Acad Sci U S A, 2011, 108, 11446-11451.
[58] Schmit, T. L., Ahmad, N., Regulation of mitosis via mitotic kinases: new opportunities for cancer management. Mol Cancer Ther 2007, 6, 1920-1931.
[59] Hunter, T., The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 2007, 28, 730-738.
[60] Jackson, J. R., Patrick, D. R., Dar, M. M., Huang, P. S., Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 2007, 7, 107-117.
[61] Eckerdt, F., Strebhardt, K., Polo-like kinase 1: target and regulator of anaphase-promoting complex/cyclosome-dependent proteolysis. Cancer Res 2006, 66, 6895-6898.
[62] Zhang, X. W., Yan, X. J., Zhou, Z. R., Yang, F. F., Wu Z. Y., Sun H. B., Liang W. X., Song A. X., Lallemand-Breitenbach V., Jeanne M., Zhang Q. Y., Yang H. Y., Huang Q. H., Zhou G. B., Tong J. H., Zhang Y., Wu J. H., Hu H. Y., de Thé H., Chen S. J., Chen Z., Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science (New York, N.Y 2010, 328, 240-243.
[63] Ho, I. C., Yih, L. H., Kao, C. Y., Lee, T. C., Tin-protoporphyrin potentiates arsenite-induced DNA strand breaks, chromatid breaks and kinetochore-negative micronuclei in human fibroblasts. Mutat Res 2000, 452, 41-50.
[64] Huang, S., Huang, C. F., Lee, T., Induction of mitosis-mediated apoptosis by sodium arsenite in HeLa S3 cells. Biochem Pharmacol 2000, 60, 771-780.
[65] Liao, W. T., Lin, P., Cheng, T. S., Yu, H. S., Chang, L. W., Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells. Toxicol Appl Pharmacol 2007, 225, 162-170.
[66] Harley, M. E., Allan, L. A., Sanderson, H. S., Clarke, P. R., Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J, 29, 2407-2420.
[67] Lee, P. C., Kakadiya, R., Su, T. L., Lee, T. C., Combination of bifunctional alkylating agent and arsenic trioxide synergistically suppresses the growth of drug-resistant tumor cells. Neoplasia, 12, 376-387.
[68] Kim, J., Lee, J. J., Gardner, D., Beachy, P. A., Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci U S A, 107, 13432-13437.
[69] Gani, O. A., Engh, R. A., Protein kinase inhibition of clinically important staurosporine analogues. Nat Prod Rep 2010, 27, 489-498.
[70] Lindon, C., Pines, J., Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol 2004, 164, 233-241.
[71] Johnson, E. F., Stewart, K. D., Woods, K. W., Giranda, V. L., Luo, Y., Pharmacological and functional comparison of the polo-like kinase family: insight into inhibitor and substrate specificity. Biochemistry 2007, 46, 9551-9563.
[72] Chan, C. H., Ko, C. C., Chang, J. G., Chen, S. F., Wu M. S., Lin J. T., Chow L. P., Subcellular and functional proteomic analysis of the cellular responses induced by Helicobacter pylori. Mol Cell Proteomics 2006, 5, 702-713.
[73] Yamaguchi, T., Goto, H., Yokoyama, T., Sillje, H., Hanisch A., Uldschmid A., Takai Y., Oguri T., Nigg E. A., Inagaki M., Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol 2005, 171, 431-436.
[74] Arai, T., Haze, K., Iimura-Morita, Y., Machida, T., Iida M., Tanaka K., Komatani H., Identification of beta-catenin as a novel substrate of Polo-like kinase 1. Cell Cycle 2008, 7, 3556-3563.
[75] Yang, C. W., Hung, S. I., Juo, C. G., Lin, Y. P., Fang W. H., Lu I. H., Chen S. T., Chen Y. T.., HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol 2007, 120, 870-877.
[76] Tsai, C. F., Wang, Y. T., Chen, Y. R., Lai, C. Y., Lin P. Y., Pan K. T., Chen J. Y., Khoo K. H., Chen Y. J., Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 2008, 7, 4058-4069.
[77] Savitski, M. M., Lemeer, S., Boesche, M., Lang, M., Mathieson T., Bantscheff M., Kuster B., Confident phosphorylation site localization using the mascot delta score. Mol Cell Proteomics 2011, 10, M110 003830.
[78] Chien, C. W., Ho, I. C., Lee, T. C., Induction of neoplastic transformation by ectopic expression of human aldo-keto reductase 1C isoforms in NIH3T3 cells. Carcinogenesis 2009, 30, 1813-1820.
[79] Wu, Y. C., Yen, W. Y., Lee, T. C., Yih, L. H., Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis. Toxicol Appl Pharmacol 2009, 236, 231-238.
[80] Hansen, D. V., Loktev, A. V., Ban, K. H., Jackson, P. K., Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell 2004, 15, 5623-5634.
[81] Zhang, H., Shi, X., Paddon, H., Hampong, M., Dai W., Pelech S., B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem 2004, 279, 35726-35734.
[82] Yarm, F. R., Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 2002, 22, 6209-6221.
[83] Xiang, M., Xue, C., Huicai, L., Jin, L., Hong L., Dacheng H., Large-scale identification of novel mitosis-specific phosphoproteins. Biochim Biophys Acta 2008, 1784, 882-890.
[84] Thompson, L. J., Bollen, M., Fields, A. P., Identification of protein phosphatase 1 as a mitotic lamin phosphatase. J Biol Chem 1997, 272, 29693-29697.
[85] Heald, R., McKeon, F., Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 1990, 61, 579-589.
[86] Wilker, E. W., van Vugt, M. A., Artim, S. A., Huang, P. H., Petersen C. P., Reinhardt H. C., Feng Y., Sharp P. A., Sonenberg N., White F. M., Yaffe M. B., 14-3-3sigma controls mitotic translation to facilitate cytokinesis. Nature 2007, 446, 329-332.
[87] Dantuma, N. P., Heinen, C., Hoogstraten, D., The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 2009, 8, 449-460.
[88] Sconzo, G., Palla, F., Agueli, C., Spinelli, G., Giudice G., Cascino D., Geraci F., Constitutive hsp70 is essential to mitosis during early cleavage of Paracentrotus lividus embryos: the blockage of constitutive hsp70 impairs mitosis. Biochem Biophys Res Commun 1999, 260, 143-149.
[89] Hut, H. M., Kampinga, H. H., Sibon, O. C., Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities. Mol Biol Cell 2005, 16, 3776-3785.
[90] Daub, H., Olsen, J. V., Bairlein, M., Gnad, F., Oppermann F. S., Körner R., Greff Z., Kéri G., Stemmann O., Mann M., Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 2008, 31, 438-448.
[91] Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar C., Mortensen P., Mann M., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127, 635-648.
[92] Bukau, B., Horwich, A. L., The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351-366.
[93] Somji, S., Todd, J. H., Sens, M. A., Garrett, S. H., Sens, D. A., Expression of the constitutive and inducible forms of heat shock protein 70 in human proximal tubule cells exposed to heat, sodium arsenite, and CdCl(2). Environ Health Perspect 1999, 107, 887-893.
[94] Leu, J. I., Pimkina, J., Frank, A., Murphy, M. E., George, D. L., A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009, 36, 15-27.
[95] Liao, J., Ku, N. O., Omary, M. B., Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. J Biol Chem 1997, 272, 17565-17573.
[96] Wong, O. K., Fang, G., Cdk1 phosphorylation of BubR1 controls spindle checkpoint arrest and Plk1-mediated formation of the 3F3/2 epitope. J Cell Biol 2007, 179, 611-617.
[97] Terrano, D. T., Upreti, M., Chambers, T. C., CDK1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol 2009.
[98] Tamura, Y., Simizu, S., Muroi, M., Takagi, S., Kawatani M., Watanabe N., Osada H., Polo-like kinase 1 phosphorylates and regulates Bcl-x(L) during pironetin-induced apoptosis. Oncogene 2009, 28, 107-116.
[99] Chien, C. W., Chiang, M. C., Ho, I. C., Lee, T. C., Association of chromosomal alterations with arsenite-induced tumorigenicity of human HaCaT keratinocytes in nude mice. Environ Health Perspect 2004, 112, 1704-1710.
[100] Anders, M., Mattow, J., Digweed, M., Demuth, I., Evidence for hSNM1B/Apollo functioning in the HSP70 mediated DNA damage response. Cell Cycle 2009, 8, 1725-1732.
[101] Barnes, J. A., Collins, B. W., Dix, D. J., Allen, J. W., Effects of heat shock protein 70 (Hsp70) on arsenite-induced genotoxicity. Environ Mol Mutagen 2002, 40, 236-242.
[102] Hunt, C. R., Dix, D. J., Sharma, G. G., Pandita, R. K., Gupta A., Funk M., Pandita T. K., Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 2004, 24, 899-911.
[103] Mendez, F., Sandigursky, M., Franklin, W. A., Kenny, M. K., Kureekattil R., Bases R., Heat-shock proteins associated with base excision repair enzymes in HeLa cells. Radiat Res 2000, 153, 186-195.
[104] Li, J. H., Rossman, T. G., Inhibition of DNA ligase activity by arsenite: a possible mechanism of its comutagenesis. Mol Toxicol 1989, 2, 1-9.
[105] Raught, B., Peiretti, F., Gingras, A. C., Livingstone, M., Shahbazian D., Mayeur G. L., Polakiewicz R. D., Sonenberg N., Hershey J. W., Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004, 23, 1761-1769.
[106] Shahbazian, D., Parsyan, A., Petroulakis, E., Topisirovic, I., Martineau Y., Gibbs B. F., Svitkin Y., Sonenberg N., Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol 2010, 30, 1478-1485.
[107] Erikson, E., Haystead, T. A., Qian, Y. W., Maller, J. L., A feedback loop in the polo-like kinase activation pathway. J Biol Chem 2004, 279, 32219-32224.
[108] Cassimeris, L., Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr Opin Cell Biol, 1999, 11, 134-141.
[109] Goshima G., Scholey, J. M., Control of mitotic spindle length. Annu Rev Cell Dev Biol, 2010, 26, 21-57.
[110] Nigg E. A., Raff, J. W., Centrioles, centrosomes, and cilia in health and disease. Cell, 2009, 139, 663-678.
[111] Liang P., MacRae, T. H., Molecular chaperones and the cytoskeleton. J Cell Sci, 1997, 110, 1431-1440.
[112] Kim, S. A., Yoon, J. H., Lee, S. H., Ahn, S. G., Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 2005, 280, 12653-12657.
[113] Liu X. S., Li, H., Song, B., Liu, X., Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep, 2010, 11, 626-632.
[114] Golsteyn, R. M., Mundt, K. E., Fry, A. M., Nigg, E. A., Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol 1995, 129, 1617-1628.
[115] Soung, N. K., Park, J. E., Yu, L. R., Lee, K. H., Lee J. M., Bang J. K., Veenstra T. D., Rhee K., Lee K. S., Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev Cell 2009, 16, 539-550.
[116] Yih, L. H., Lee, T. C., Induction of C-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts. Cancer Res 2003, 63, 6680-6688.
[117] Fukasawa, K., Introduction. Centrosome. Oncogene 2002, 21, 6140-6145.
[118] Eot-Houllier G., Venoux, M., Vidal-Eychenie, S., Hoang, M.-T., Giorgi, D., Rouquier S., Plk1 regulates both ASAP localization and its role in spindle pole integrity. J Biol Chem, 2010, 285, 29556-29568.
[119] Dumont S., Mitchison, T. J., Force and length in the mitotic spindle. Curr Biol,. 2009, 19, R749-761.
[120] Goshima G., Wollman, R., Stuurman, N., Scholey, J. M., Vale, R. D., Length control of the metaphase spindle. Curr Biol, 2005, 15, 1979-1988.
[121] Weller, N. K., A 70 kDa microtubule-associated protein in NIL8 cells comigrates with the 70 kDa heat shock protein. Biol Cell, 1988, 63, 307-317.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66752-
dc.description.abstract在過去的研究中發現HeLa S3細胞處理三氧化二砷 (ATO) 之後會停滯在有絲分裂期;當處理激酶 (kinase) 抑制劑staurosporine會迫使這些停滯的細胞離開有絲分裂期。這過程中的詳細機制至今仍未明,為了瞭解在這些被三氧化二砷處理下所停滯細胞中的分子機制,本論文中採取了高效率的蛋白質體學來分析staurosporine 處理三氧化二砷所停滯的細胞後所產生的磷酸蛋白質體的變化(意指大量或是一系列蛋白質上的磷酸根產生變化,增加或減少 )。在這一系列的蛋白質中,發現有一些蛋白,例如:Hsp70, Rad23B和eIF4B等 的上游激酶是Plk1。這是一個全新的發現,更重要的是Plk1是一個在細胞分裂週期中扮演很重要角色的激酶。由於三氧化二砷會引起細胞大量表現Hsp70,所以我們後續探討Plk1和Hsp70之間的關係。為了進一步證實Hsp70上游的激酶是Plk1,而後利用了二氧化鈦純化和質譜儀來鑑定Plk1磷酸化Hsp70之氨基酸位置,結果顯示在Thr13, Ser362, Ser631和Ser633 這幾個位置都可以被Plk1磷酸化。進一步使用針對Hsp70磷酸化專一性的抗體和抑制Plk1的激酶活性(沒有活性的Plk1加上Plk1的化學專一抑制劑)證實了Plk1的確可以磷酸化Hsp70,至少在Ser631。另外,Plk1和Hsp70的確在三氧化二砷所導致有絲分裂期中是互相結合在一起的。因此,從這部分的研究可以得知在三氧化二砷所誘引的有絲分裂停滯細胞中,Plk1藉由大量磷酸化Hsp70的方法來延緩或避免細胞的死亡。
在有絲分裂期中,紡錘絲會形成雙軸分佈;在每一個特定的細胞種類裡紡錘絲的雙軸之間的距離一般而言是固定的。然而,過去研究發現在三氧化二砷所誘引的有絲分裂期的細胞中,紡錘絲的雙軸之間的距離特別長,為了要瞭解其間究竟是什麼調控了紡錘絲的長度。透過上面的研究,發現Plk1與Hs70之間的交互作用可以在三氧化二砷所導致有絲分裂期的細胞中調控紡錘絲的雙軸之間的距離。利用免疫沈澱以及螢光染色,首先發現了Plk1和Hsp70在細胞中的中心粒的位置互相結合。此外,也進一步利用質譜儀鑑定了在Hsp70上Ser631和Ser633 被Plk1磷酸化會使得Hsp70座落於中心粒上進而調整三氧化二砷所導致有絲分裂期的細胞中調控紡錘絲的雙軸之間得距離。除此之外,利用點突變的方法,將Hsp70上Ser631和Ser633 突變成Asp後,將此突變之Hsp70轉染進入細胞中會使的細胞的紡錘絲對於nocodzole對其降解的速度變慢。由此可推知,在三氧化二砷所導致有絲分裂期的細胞中,Plk1 磷酸化Hsp70上Ser631和Ser633使其座落於中心粒上去調控紡錘絲的雙軸之間得距離,另外可以推測是因為Hsp70具有保護或抑制紡錘絲降解的動力所造成的。
綜合上述,利用蛋白質體學來研究三氧化二砷所導致有絲分裂期的細胞中的分子機制變化,這樣的研究可以幫助未來在使用三氧化二砷於臨床治療的使用。更重要的是,發現了Hsp70為Plk1的全新受質,這不僅是提供了對於三氧化二砷如何影響或調控有絲分裂期間激酶的活性,並提供了Plk1在細胞壓力下的角色,尤其是和Hsp70之間的交互作用調控細胞中有絲分裂的紡錘絲以及死亡機制。
zh_TW
dc.description.abstractIt has been previously demonstrated that when arsenic trioxide (ATO)-induced mitotically arrested HeLa S3 cells (AIMACs) were treated with staurosporine the cells rapidly exited mitosis. To better define the cellular targets and the underlying mechanisms of AIMACs, we applied 2-D DIGE followed by LC-MS/MS analysis and showed that staurosporine induced a significant change in the phosphoproteome of AIMACs. Among the proteins whose phosphorylation was modulated by staurosporine, we identified Hsp70, Rad 23B, and eIF4B as potentially new substrates of Plk1, an essential serine/threonine kinase with versatile mitotic functions. Since Hsp70 is a stress protein responsible for ATO treatment, we further identified Thr13, Ser362, Ser631 and Ser633 on Hsp70 intracellularly phosphorylated in AIMACs by combining TiO2 phospho-peptides enrichment and MS/MS analysis. Using antibody specifically against phosph-Ser631 Hsp70 and further aid by expression of kinase-dead Plk1 and pharmacological inhibition of Plk1, we concluded that Ser631 on Hsp70 is phosphorylated by Plk1 in AIMACs. By immnuofluorescent staining, we found the colocalization of Hsp70 and Plk1 in AIMACs but not in interphase cells. In addition, Plk1-mediated phosphorylation of Hsp70 prevented AIMACs from mitotic death. The results reveal that Hsp70 is a novel substrate of Plk1 and that its phosphorylation contributes to attenuation of ATO-induced mitotic abnormalities.
It is known that the bipolar spindle formation is essential for faithful chromosome segregation mitosis. Moreover, during cell division, the mitotic spindles maintain constant length in given cell types, especially in metaphase. Recently, it has been reported that the abnormal mitotic spindle may result in cellular defects after cell division. However, the abnormal elongated spindle was observed in AIMACs, and how these processes are regulated is unknown. Here, this thesis showed that Plk1 interplayed with Hsp70 to regulate mitotic spindle length in AIMACs. First of all, using immunoprecipitation and immunofluorescence microscopy, Plk1 and Hsp70 were found to colocalize at the centrosome in mitotically arrested cells. Moreover, co-immunoprecipitation of Hsp70 by antibody against γ-tubulin, site-directed mutagenesis, the results showed that Hsp70 located at centrosome was likely phosphorylated by Plk1 at Ser631 and Ser633 in mitotically arrested cells and that these phosphorylations were required direct phosphorylated Hsp70 to the centrosome and thereby set the length of mitotic spindle. Cells with expression of Hsp70 in which Ser631 and Ser633 mutated to Asp were more resistant to nocodazole depolymerization. Therefore, this study concluded that Plk1 contributes to the targeting Hsp70 to mitotic spindle poles, suggesting a model in which Hsp70 regulates spindle length by inhibiting microtubule depolymerizing activities at spindle poles.
Proteomic approach provides a systematic platform to consider insight into the molecular mechanism in AIMACs and thereby a rationale to evaluate the therapeutic effect of ATO, especially the mitotic catastrophe. More importantly, identification of Hsp70 as a novel substrate of Plk1 offers not only a more comprehensive understanding of how ATO can affect mitotic kinase but an important clues for the role of Plk1 under stress condition, especially in mitosis and the dynamics of mitotic spindle mediated by Hsp70.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:55:31Z (GMT). No. of bitstreams: 1
ntu-100-F93442023-1.pdf: 6283138 bytes, checksum: 1e4389bc16d0b34f8b2c8136459cc8a5 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of contents
Acknowledgments …..……..………………….….………………….……….………......i
Abstract in Chinese ………..………………….….………………….……….………....iii
Abstract in English…….….………………….….…………………………….………....v
Table of contents…………………………………………………………………….…viii
List of tables and figures….…..…….…………………………………....……………...x
Abbreviations …..…….……………………………...………….…. …………...…......xii
Chapter 1- Overview and rationale……………………………………………...……...1
1.1 Terapeutic effect/mechanism of ATO…………………………………………..….….2
1.2 The importantance and mechanism of mitotic death…………………………….....….3
1.3 Overview of Polo-like kinase 1 (Plk1)……………….………………………….…….7
1.4 Overview of Heat-shock protein 70 (Hsp70) ……….……………………….…….….8
1.5 Overview of mitotic spindle and centrosome……….…..………………………..........9
1.6 Experimental design and specific aim……………………………………..................11
Chapter 2- Proteomic identification of Hsp70 as a new Plk1 substrate in ATOinduced
mitotically arrest cells……………………...................................13
2.1 Introduction …….………………………………….….…………………..................14
2.2 Materials and Methods.………..….……………….………........................................17
2.3 Results.………………………………………….………..…………..........................24
2.4 Discussion..…………….........…………………….……..…......................................31
Chapter 3- Phosphorylation of Hsp70 mediated the function of Plk1 on spindle length
in ATO-induced Mitotically arrest cells……………………………..…………..…....35
3.1 Introduction …….………………………………….….……………………….…....36
3.2 Materials and Methods…………………………….……….......................................39
3.3 Results.………………………………………….………..………………...…….….43
ix
3.4 Discussion.…………….........…………………….……..…......................................49
Chapter 4- Conclusion and perspectives………………….………………..................53
Tables and Figures…………………………………………………………..………....56
References ……………………………………….…….……..…...................................91
Appendix ……………………………………….…….……..…...................................101
dc.language.isoen
dc.subject有絲分裂期zh_TW
dc.subject中心&#63993zh_TW
dc.subject紡錘絲zh_TW
dc.subjectPlk1zh_TW
dc.subject蛋白質體學zh_TW
dc.subject三氧化二砷zh_TW
dc.subject熱休克蛋白70zh_TW
dc.subject磷酸化zh_TW
dc.subjectarsenic trioxideen
dc.subject2D-DIGEen
dc.subjectspindleen
dc.subjectcentrosomeen
dc.subjectPlk1en
dc.subjectphosphorylationen
dc.subjectmitosisen
dc.subjectHsp70en
dc.title熱休克蛋白70在三氧化二砷誘引有絲分裂停滯細胞為Plk1受質之
探討
zh_TW
dc.titleHsp70 is a new substrate of Plk1 in arsenic trioxide-induced mitotic
arrest cells
en
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.coadvisor李德章(Te-Chang Lee)
dc.contributor.oralexamcommittee唐堂,余兆松,易玲輝
dc.subject.keyword蛋白質體學,三氧化二砷,熱休克蛋白70,有絲分裂期,磷酸化,Plk1,中心&#63993,紡錘絲,zh_TW
dc.subject.keyword2D-DIGE,arsenic trioxide,Hsp70,mitosis,phosphorylation,Plk1,centrosome,spindle,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2011-09-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
6.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved