Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66743
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳克強
dc.contributor.authorChun-Wei Yuen
dc.contributor.author游竣惟zh_TW
dc.date.accessioned2021-06-17T00:54:52Z-
dc.date.available2016-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-09-28
dc.identifier.citationAasland, R., Gibson, T.J., and Stewart, A.F. (1995). The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56-59.
Ahmad, A., Takami, Y., and Nakayama, T. (2003). WD dipeptide motifs and LXXLL motif of chicken HIRA are necessary for transcription repression and the latter motif is essential for interaction with histone deacetylase-2 in vivo. Biochem. Biophys. Res. Commun. 312, 1266-1272.
Alinsug, M., Yu, C.W., and Wu, K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol. 9, 37.
Amasino, R. (2004). Take a cold flower. Nature Genet. 36, 111-112.
Aravind, L., and Iyer, L.M. (2002). The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3, research0039.1-7.
Aufsatz, W., Stoiber, T., Rakic, B., and Naumann, K. (2007). Arabidopsis histone deacetylase 6: a green link to RNA silencing. Oncogene 26, 5477-5488.
Aufsatz, W., Mette, M.F., Van Der Winden, J., Matzke, M., and Matzke, A.J.M. (2002). HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J. 21, 6832-6841.
Ausin, I., Alonso-Blanco, C., Jarillo, J.A., Ruiz-Garcia, L., and Martinez-Zapater, J.M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genet. 36, 162-166.
Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., and Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167.
Baumberger, N., and Baulcombe, D. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. U. S. A. 102, 11928-11933.
Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407-412.
Bond, D.M., Dennis, E.S., Pogson, B.J., and Finnegan, E.J. (2009). Histone acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the vernalization response. Mol. Plant 2, 724-737.
Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16, S18-S31.
Byrne, M.E. (2005). Networks in leaf development. Curr. Opin. Plant Biol. 8, 59-66.
Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martienssen, R.A. (2000). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967-971.
Chen, Fang-Fang (2010). HDA6 and HDA19 regulate leaf morphology by interacting with AS1 and AS2. Master Thesis of National Taiwan University.
Chen, L.T., and Wu, K. (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal. Behav. 5, 1318-1320.
Chen, L.T., Luo, M., Wang, Y.Y., and Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J. Exp. Bot. 61, 3345-3353.
Chen, Z.J., and Tian, L. (2007). Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim. Biophys. Acta. 1769, 295-307.
Chuck, R.S., Williams, J.M., Goldberg, M.A., and Lubniewski, A.J. (1996). Recurrent corneal ulcerations associated with smokeable methamphetamine abuse. Am. J. Ophthalmol. 121, 571-572.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method forAgrobacterium mediated transformation ofArabidopsis thaliana. Plant J. 16, 735-743.
De Lucia, F., Crevillen, P., Jones, A.M.E., Greb, T., and Dean, C. (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. 105, 16831-16836.
Deng, W.W., Liu, C.Y., Pei, Y.X., Deng, X., Niu, L.F., and Cao, X.F. (2007). Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol. 143, 1660-1668.
Deniaud, E., and Bickmore, W.A. (2009). Transcription and the nuclear periphery: edge of darkness. Curr. Opin. Genet. Dev. 19, 187-191.
Dennis, E., and Peacock, W. (2007). Epigenetic regulation of flowering. Curr. Opin. Plant Biol. 10, 520-527.
Devoto, A., Nieto Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457-466.
Earley, K., Lawrence, R.J., Pontes, O., Reuther, R., Enciso, A.J., Silva, M., Neves, N., Gross, M., Viegas, W., and Pikaard, C.S. (2006). Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 20, 1283-1293.
Earley, K.W., Pontvianne, F., Wierzbicki, A.T., Blevins, T., Tucker, S., Costa-Nunes, P., Pontes, O., and Pikaard, C.S. (2010). Mechanisms of HDA6-mediated rRNA gene silencing: suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes Dev. 24, 1119-1132.
Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F., and Bowman, J.L. (2003). Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768-1774.
Finnegan, J.E., Kovac, K.A., Jaligot, E., Sheldon, C.C., James Peacock, W., and Dennis, E.S. (2005). The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J. 44, 420-432.
Gendrel, A.V., Lippman, Z., Martienssen, R., and Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213-218.
Greb, T., Mylne, J.S., Crevillen, P., Geraldo, N., An, H., Gendall, A.R., and Dean, C. (2007). The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr. Biol. 17, 73-78.
Guo, M., Thomas, J., Collins, G., and Timmermans, M.C.P. (2008). Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell 20, 48-58.
Hamant, O., and Pautot, V. (2010). Plant development: a TALE story. C. R. Biol. 333, 371-381.
He, Y., and Amasino, R.M. (2005). Role of chromatin modification in flowering-time control. Trends Plant Sci. 10, 30-35.
He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751-1754.
Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., and Dennis, E.S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high molecular weight protein complex. Plant J. 46, 183-192.
Henderson, I.R., and Dean, C. (2004). Control of Arabidopsis flowering: the chill before the bloom. Development 131, 3829-3838.
Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. J. Integr. Plant Biol. 50, 875-885.
Huang, L., Sun, Q., Qin, F., Li, C., Zhao, Y., and Zhou, D.X. (2007). Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol. 144, 1508-1519.
Ikezaki, M., Kojima, M., Sakakibara, H., Kojima, S., Ueno, Y., Machida, C., and Machida, Y. (2010). Genetic networks regulated by ASYMMETRIC LEAVES1 (AS1) and AS2 in leaf development in Arabidopsis thaliana: KNOX genes control five morphological events. Plant J. 61, 70-82.
Iwakawa, H., Ueno, Y., Semiarti, E., Onouchi, H., Kojima, S., Tsukaya, H., Hasebe, M., Soma, T., Ikezaki, M., and Machida, C. (2002). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol. 43, 467-478.
Jackson, D., Veit, B., and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405-413.
Jiang, D., Yang, W., He, Y., and Amasino, R.M. (2007). Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19, 2975-2987.
Jin, J.B., Jin, Y.H., Lee, J., Miura, K., Yoo, C.Y., Kim, W.Y., Van Oosten, M., Hyun, Y., Somers, D.E., and Lee, I. (2008). The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J. 53, 530-540.
Katz, A., Oliva, M., Mosquna, A., Hakim, O., and Ohad, N. (2004). FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 37, 707-719.
Kidner, C.A., Timmermans, M.C.P., Byrne, M.E., and Martienssen, R.A. (2002). Developmental genetics of the angiosperm leaf. Adv. Bot. Res. 38, 191-202.
Kim, H.J., Hyun, Y., Park, J.Y., Park, M.J., Park, M.K., Kim, M.D., Lee, M.H., Moon, J., and Lee, I. (2004). A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genet. 36, 167-171.
Lawrence, R.J., Earley, K., Pontes, O., Silva, M., Chen, Z.J., Neves, N., Viegas, W., and Pikaard, C.S. (2004). A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell 13, 599-609.
Lee, M.G., Wynder, C., Bochar, D.A., Hakimi, M.A., Cooch, N., and Shiekhattar, R. (2006). Functional interplay between histone demethylase and deacetylase enzymes. Mol. Cell. Biol. 26, 6395-6402.
Li, H., Xu, L., Wang, H., Yuan, Z., Cao, X., Yang, Z., Zhang, D., Xu, Y., and Huang, H. (2005). The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell 17, 2157-2171.
Lin, W., Shuai, B., and Springer, P.S. (2003). The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15, 2241-2252.
Lippman, Z., May, B., Yordan, C., Singer, T., and Martienssen, R. (2003). Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1, e67.
Liu, F., Quesada, V., Crevillen, P., Baurle, I., Swiezewski, S., and Dean, C. (2007). The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol. Cell 28, 398-407.
Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66-69.
Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V., Kohalmi, S.E., Keller, W.A., Tsang, E.W.T., and Harada, J.J. (2010). Arabidopsis homolog of the yeast TREX 2 mRNA export complex: components and anchoring nucleoporin. Plant J. 61, 259-270.
Magnani, E., and Hake, S. (2008). KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell 20, 875-887.
Marja, C., Hudson, A., Becraft, P.W., and Nelson, T. (1999). ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284, 151-153.
McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M.K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709-713.
Michaels, S.D. (2009). Flowering time regulation produces much fruit. Curr. Opin. Plant Biol. 12, 75-80.
Michaels, S.D., and Amasino, R.M. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13, 935-941.
Murfett, J., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13, 1047-1061.
Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., and Laufs, P. (2006). The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18, 2929-2945.
Ori, N., Eshed, Y., Chuck, G., Bowman, J.L., and Hake, S. (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523-5532.
Otsuga, D., DeGuzman, B., Prigge, M.J., Drews, G.N., and Clark, S.E. (2001). REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25, 223-236.
Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30, 5036-5055.
Phelps-Durr, T.L., Thomas, J., Vahab, P., and Timmermans, M.C.P. (2005). Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 17, 2886-2898.
Probst, A.V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., Lawrence, R.J., Pikaard, C.S., Murfett, J., Furner, I., Vaucheret, H., and Mittelsten Scheid, O. (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16, 1021-1034.
Qian, C., Zhang, Q., Li, S.D., Zeng, L., Walsh, M.J., and Zhou, M.M. (2005). Structure and chromosomal DNA binding of the SWIRM domain. Nat. Struct. Mol. Biol. 12, 1078-1085.
Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513-520.
Ringrose, L., and Paro, R. (2007). Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223-232.
Schmitz, R.J., and Amasino, R.M. (2007). Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochim. Biophys. Acta. 1769, 269-275.
Schubert, D., Primavesi, L., Bishopp, A., Roberts, G., Doonan, J., Jenuwein, T., and Goodrich, J. (2006). Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J. 25, 4638-4649.
Scofield, S., and Murray, J.A.H. (2006). KNOX gene function in plant stem cell niches. Plant Mol. Biol. 60, 929-946.
Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C., and Machida, Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128, 1771-1783.
Sharov, A.A., Dudekula, D.B., and Ko, M.S.H. (2005). A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21, 2548-2549.
Shi, Y.J., Matson, C., Lan, F., Iwase, S., Baba, T., and Shi, Y. (2005). Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857-864.
Sinha, N., Williams, R., and Hake, S. (1993). Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev. 7, 787-795.
Sung, S., and Amasino, R.M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164.
Tanaka, M., Kikuchi, A., and Kamada, H. (2008). The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 146, 149-161.
Tang, G., Reinhart, B.J., Bartel, D.P., and Zamore, P.D. (2003). A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49-63.
Tian, L., and Chen, Z.J. (2001). Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc. Natl. Acad. Sci. 98, 200-205.
Tian, L., Wang, J., Fong, M.P., Chen, M., Cao, H., Gelvin, S.B., and Chen, Z.J. (2003). Genetic control of developmental changes induced by disruption of Arabidopsis histone deacetylase 1 (AtHD1) expression. Genetics 165, 399-409.
Tian, L., Fong, M.P., Wang, J.J., Wei, N.E., Jiang, H., Doerge, R., and Chen, Z.J. (2005). Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development. Genetics 169, 337-345.
Tsiantis, M., Schneeberger, R., Golz, J.F., Freeling, M., and Langdale, J.A. (1999). The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284, 154-156.
Tsukaya, H., and Uchimiya, H. (1997). Genetic analyses of the formation of the serrated margin of leaf blades in Arabidopsis: Combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules. Mol. Gen. Genet. 256, 231-238.
Ueno, Y., Ishikawa, T., Watanabe, K., Terakura, S., Iwakawa, H., Okada, K., Machida, C., and Machida, Y. (2007). Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in leaves of Arabidopsis. Plant Cell 19, 445-457.
Vollbrecht, E., Reiser, L., and Hake, S. (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127, 3161-3172.
Wu, K., Malik, K., Tian, L., Brown, D., and Miki, B. (2000). Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Mol. Biol. 44, 167-176.
Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 59, 225-234.
Xia, Z.B., Anderson, M., Diaz, M.O., and Zeleznik-Le, N.J. (2003). MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc. Natl. Acad. Sci. U. S. A. 100, 8342-8347.
Xu, L., and Shen, W.H. (2008). Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr. Biol. 18, 1966-1971.
Xu, L., Xu, Y., Dong, A., Sun, Y., Pi, L., and Huang, H. (2003). Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130, 4097-4107.
Xu, Y., Sun, Y., Liang, W., and Huang, H. (2002). The Arabidopsis AS2 gene encoding a predicted leucine-zipper protein is required for the leaf polarity formation. Acta Bot. Sin. 44, 1194-1202.
Yang, J.Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X., and Chua, N.H. (2008).
Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis. Plant Physiol. 156, 173-184.
Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17, 1196-1204.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66743-
dc.description.abstract在真核生物中,組蛋白的乙醯化及去乙醯化對基因的活化或抑制扮演著非常重要的角色。HDA6是屬於RPD3類型的組蛋白去乙醯化酵素,我們的研究發現HDA6基因的突變株(axe1-5)會產生延遲開花的現象。經由遺傳學分析顯示,晚開花的現象是因為HDA6直接影響開花的負調控因子(FLC)所造成的。雙螢光互補(BiFC)、In vitro pull down和免疫共沉澱(Co-IP)實驗分析中顯示,HDA6可以直接與組蛋白去甲基化酵素(FLD)相互作用並調控阿拉伯芥開花。更進一步,我們證明了FLD是利用N端區域的SWIRM domain與HDA6的C端區域相互作用。在axe1-5及fld-6突變株中,染色質免疫沉澱證實較高的組蛋白乙醯化(H3K9K14Ac)及組蛋白甲基化(H3K4Me3)發生在FLC, MAF4及MAF5基因。這些結果顯示,組蛋白去乙醯化酵素與組蛋白去甲基化酵素可以經由HDA6與FLD的物理性相互作用產生crosstalk。染色質免疫沉澱實驗也證實了HDA6蛋白可以直接調控幾個下游的目標基因,包括FLC及MAF4基因。DNA 晶片(microarray)分析顯示,除了開花調控相關基因外,參與逆境和基因靜默調控的相關基因也受到HDA6所影響,證明了HDA6具有多樣化的功能。此外,我們也發現許多轉座子在HDA6基因的突變株中被大量表現,同時具有較高的組蛋白乙醯化(H3K9K14Ac)程度。這些結果顯示HDA6可以藉由影響轉座子的組蛋白去乙醯化程度,進而調控轉座子的基因表現。
在hda6突變株axe1-5和sil1中,葉子的邊緣會產生捲曲和鋸齒的性狀。藉由基因表現分析axe1- 5和sil1突變體,發現KNATM基因表現量明顯的增加。此外,我們還發現KNATM基因的組蛋白H3K9K14高度乙醯化,顯示HDA6可能通過調節組蛋白去乙醯化進而影響KNATM的表達。相對於單突變體,as1-1/axe1-5和as2-1/axe1-5雙突變體顯示更嚴重的葉片捲曲和葉柄變短的表型。雙突變體中,leaflob的頻率和leaflet like的結構也明顯增加了,這表示HDA6可能與AS1和AS2共同調節阿拉伯芥的葉片發育。通過使用雙螢光互補(BiFC)、In vitro pull-down和免疫共沉澱(Co-IP)實驗分析,我們證明了HDA6可以與 AS1和AS2相互作用。這些數據表明,HDA6是AS1- AS2蛋白質複合體的一部分,進而調節KNATM的基因表達。
zh_TW
dc.description.abstractHistone acetylation and deacetylation play an important role in epigenetic controls of gene expression. HDA6 is a RPD3-type histone deacetylase and the hda6 mutant axe1-5 displayed a late flowering phenotype. axe1-5/flc-3 double mutants flowered earlier than axe1-5 plants, indicating that the late-flowering phenotype of axe1-5 was FLC dependent. Bimolecular fluorescence complementation, in vitro pull down and co-immunoprecipitation assays revealed the protein-protein interaction between HDA6 and the histone demethylase FLD. It was found that the SWIRM domain in the N-terminal region of FLD and the C-terminal region of HDA6 are responsible for the interaction between these two proteins. Increased levels of histone H3 acetylation and H3K4 trimethylation at FLC, MAF4 and MAF5 were found in both axe1-5 and fld-6 plants, suggesting functional interplay between histone deacetylase and demethylase in flowering control. These results support a scenario in which histone deacetylation and demethylation crosstalk mediated by physical association between HDA6 and FLD. Chromatin immunoprecipitation analysis indicated that HDA6 bound to the chromatin of several potential target genes including FLC and MAF4. Genome-wide gene expression analysis revealed that in addition to genes related to flowering, genes involved in gene silencing and stress response were also affected in hda6 mutants, revealing multiple functions of HDA6. Furthermore, a subset of transposons was up-regulated and displayed increased histone hyperacetylation, suggesting that HDA6 can also regulate transposons through deacetylating histone.
The hda6 mutants, axe1-5 and sil1, also displayed curling and serrated leaves. The expression of one of the KNOX family genes, KNATM, was up-regulated in axe1-5 and sil1 mutants. In addition, hyperacetylation of histone H3K9K14 at KNATM was found in both axe1-5 and sil1 mutants, suggesting the HDA6 may regulate KNATM expression through histone deacetylation. Compared with the single mutants, the as1-1/axe1-5 and as2-1/axe1-5 double mutants displayed more severe curling leaf and short petiole phenotypes. In addition, the frequencies of leaf lobes and leaflet-like structures were also increased in as1-1/axe1-5 and as2-1/axe1-5 double mutants, suggesting that HDA6 may function together with AS1 and AS2 to regulated the leaf development in Arabidopsis. By using the in vitro pull-down, BiFC and Co-IP assays, we demonstrated that HDA6 can interact with AS1 and AS2. These data indicate that HDA6 is part of the AS1-AS2 repression complex to regulate the expression of KNATM.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:54:52Z (GMT). No. of bitstreams: 1
ntu-100-D95b42004-1.pdf: 11761010 bytes, checksum: 3389f2d2bfcab18336131183f83f22eb (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF APPDENDIXES…………………………………………………………......xiii
LIST OF ABBREVIATION………………………………………………………… xiv
Chapter 1 Introduction 1
1.1 Histone decaetylases (HDACs) in Arabidopsis……………………………….1
1.2 Control of the flowering time by histone acetylation in Arabidopsis…….......3
1.3 Regulation of leaf development by KNOX genes……………………………..3
Chapter 2 Materials and Methods ……………………………………………… 6
2.1 Plant materials ………………………………………………………………… 6
2.2 Quick DNA Extraction………………………………………………………… 6
2.3 RNA Isolation………………………………………………………………….. 7
2.4 DNase Treatment………………………………………………………………. 8
2.5 Quantitative RT-PCR Analysis……………………………………………….... 8
2.6 Microarray analysis……………………………………………………………. 9
2.7 Chromatin immunoprecipitation assay………………………………………. 10
2.8 Bimolecular Fluorescence Complementation (BiFC) Assays……………….. 17
2.9 Transfection of tobaco leaves by Agrobacterium……………………………. 20
2.10 In vitro pull-down assay……………………………………………………. 23
2.11 Yeast two-hybrid assays……………………………………………………. 25
2.12 Co-immunoprecipitation assay……………………………………………… 25
2.13 Purify GST-HDA6 recombinant protein and generate the HDA6 antibody… 27
2.14 Purify HDA6 antibody……………………………………………………..... 29
2.15 Yeast two-hybrid library screening………………………………………….. 32
Chapter 3 Results 33
3.1 HDA6 interacts with FLD and regulates flowering in Arabidopsis 33
3.1.1 axe1-5 and HDA6-RNAi plants displayed delayed flowering 33
3.1.2 The late-flowering phenotype of axe1-5 is FLC dependent………......33
3.1.3 Histone H3 acetylation and H3K4 trimethylation levels of FLC, MAF4 and MAF5 are increased in axe1-5 and fld-6 plants…………...…………... .34
3.1.4 Interaction of HDA6 and FLD………………………………………36
3.1.5 Genome wide transcriptomic analysis of HDA6-RNAi plants………37
3.1.6 Genes upregulated in axe1-5 plants are hyperacetylated………...…. .39
3.2 HDA6 intracts with AS1 and AS2 and is involved in leaf development 40
3.2.1 HDA6 mutant sil1 displays a delayed flowering phenotype 40
3.2.2 axe1-5 and sil1 displayed the curling and serrated leaves 41
3.2.3 as1-1/axe1-5 and as2-1/axe1-5 double mutant displayed a more severe phenotype compared to the single mutants………………………...…………42
3.2.4 KNATM was highly expressed and hyperacetylated in as1-1/axe1-5 and as2-1/axe1-5 plants……………………………………..... 44
3.2.5 HDA6 interacted with AS1 and AS2 in vitro and in vivo………...… 44
3.2.6 AS1 and AS2 can interact and form heter-dimers………………….. 45
3.2.7 AS1 directly bound to KNATM chromatin………………………..…. 46
3.3 HDA6 and HDA19 were functionally redundant in leaf development and flowering control………………………………………………………………….47
3.3.1 The hda19 mutant athd1-t1 displayed pleiotropic phenotypes………47
3.3.2 HDA19 and HDA6 were functionally redundant in flowering control……………………………………………………………………….48
3.3.3 Both HDA6 and HDA19 interact with FLD and FVE……………....49
3.3.4 HDA6 and HDA19 mutants were hypersensitive to TSA treatment…50
3.3.5 Identify the HDA6 interaction proteins by yeast two-hybrid screening..........................................................................................................50
3.3.6 Purify GST-HDA6 recombinant protein and generate the HDA6 antibody……………………………………………………………………...51
Chapter 4 Discussions 53
4.1 HDA6 regulates the flowering repressors FLC, MAF4 and MAF5…………………………………………………………………………….. .53
4.2 HDA6 and FLD function together to control flowering in Arabidopsis 54
4.3 Genome-wide gene expression reveals the multiple functions of HDA6 56
4.4 HDA6 is required for repressing the expression of transposons 57
4.5 HDA6 regulates the KNATM expression ...……………………………….....57
4.6 KNATM is a novel target of the AS1-AS2 complex………………………. 58
4.7 The AS1-AS2 complex recruits HDA6 to repress KNATM expression…... 59
4.8 HDA6 and HDA19 function redundantly in controlling flowering time and leaf development………………………………………………………………… .60
Chapter 5 References 62
Appdendix……………………………………………………………………………145
dc.language.isoen
dc.subjectKNATMzh_TW
dc.subject葉片發育zh_TW
dc.subjectAS1zh_TW
dc.subject基因晶片zh_TW
dc.subject開花zh_TW
dc.subjectFLDzh_TW
dc.subjectHDA6zh_TW
dc.subject組蛋白去乙醯化&#37238zh_TW
dc.subjectKNOXzh_TW
dc.subjectAS2zh_TW
dc.subjectHDA6en
dc.subjectleaf developmenten
dc.subjectKNATMen
dc.subjectKNOXen
dc.subjectAS2en
dc.subjecthistone deacetylaseen
dc.subjectAS1en
dc.subjectmicroarrayen
dc.subjectfloweringen
dc.subjectFLDen
dc.title阿拉伯芥組蛋白去乙醯化酶HDA6對開花時間及葉片發育調控之研究zh_TW
dc.titleFunction of HDA6 in controlling flowering time and leaf development in Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄭石通,謝旭亮,鄭貽生,金洛仁,張英?
dc.subject.keyword組蛋白去乙醯化&#37238,HDA6,FLD,開花,基因晶片,AS1,AS2,KNOX,KNATM,葉片發育,zh_TW
dc.subject.keywordhistone deacetylase,HDA6,FLD,flowering,microarray,AS1,AS2,KNOX,KNATM,leaf development,en
dc.relation.page171
dc.rights.note有償授權
dc.date.accepted2011-09-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
11.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved