請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66725
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊榮輝 | |
dc.contributor.author | Sze-Han Chien | en |
dc.contributor.author | 錢思翰 | zh_TW |
dc.date.accessioned | 2021-06-17T00:53:44Z | - |
dc.date.available | 2012-01-17 | |
dc.date.copyright | 2012-01-17 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-10-14 | |
dc.identifier.citation | Alizadeh, Z., S. Kageyama, and F. Aoki. 'Degradation of Maternal Mrna in Mouse Embryos: Selective Degradation of Specific Mrnas after Fertilization.' Mol Repro Dev 72, no. 3 (2005): 281-90.
Boder, E. T., K. S. Midelfort, and K. D. Wittrup. 'Directed Evolution of Antibody Fragments with Monovalent Femtomolar Antigen-Binding Affinity.' Proc. Natl. Acad. Sci. USA 97, (2000): 10701-10705. Boder, E. T., and K. D. Wittrup. 'Yeast Surface Display for Screening Combinatorial Polypeptide Libraries.' Nat. Biotechnol. 15, (1997): 553-557. Burton, D. R. 'A Large Array of Human Monoclonal Antibodies to Type 1 Human Immunodeficiency Virus from Combinatorial Libraries of Asymptomatic Individuals.' Proc. Natl. Acad. Sci. USA 88, (1991): 10134-10137. Chames, P., S. E. Hufton, P. G. Coulie, B. Uchanska-Ziegler, and H. R. Hoogenboom. 'Direct Selection of a Human Antibody Fragment Directed against the Tumor T-Cell Epitope Hla-A1-Mage-A1 from a Nonimmunized Phage-Fab Library.' Proc. Natl. Acad. Sci. USA 97, (2000): 7969-7974. Chao, G., W. L. Lau, B. J. Hackel, S. L. Sazinsky, S. M. Lippow, and K. D. Wittrup. 'Isolating and Engineering Human Antibodies Using Yeast Surface Display.' Nat Protoc 1, no. 2 (2006): 755-68. Clackson, T., H. R. Hoogenboom, A. D. Griffiths, and G. Winter. 'Making Antibody Fragments Using Phage Display Libraries.' Nature 352, (1991): 624-628. Coco-Martin, J. M., J. W. Oberink, T. A. van der Velden-de Groot, and E. C. Beuvery. 'The Potential of Flow Cytometric Analysis for the Characterization of Hybridoma Cells in Suspension Cultures.' Cytotechnology 8, no. 1 (1992): 65-74. de Haard, H. J. 'A Large Non-Immunized Human Fab Fragment Phage Library That Permits Rapid Isolation and Kinetic Analysis of High Affinity Antibodies.' J. Biol. Chem. 274, (1999): 18218-18230. de St. Groth, S. Fazekas, and Doris Scheidegger. 'Production of Monoclonal Antibodies: Strategy and Tactics.' J.Immunol. Methods 35, no. 1-2 (1980): 1-21. Dooley, K., and L. I. Zon. 'Zebrafish: A Model System for the Study of Human Disease.' Curr Opin Genet Dev 10, no. 3 (2000): 252-6. Driever, W., D. Stemple, A. Schier, and L. Solnicakrezel. 'Zebrafish - Genetic Tools for Studying Vertebrate Development.' Trends Genet 10, no. 5 (1994): 152-159. Edgar, B. A., and G. Schubiger. 'Parameters Controlling Transcriptional Activation During Early Drosophila Development.' Cell 44, no. 6 (1986): 871-7. Farley, B. M., and S. P. Ryder. 'Regulation of Maternal Mrnas in Early Development.' Crit Rev Biochem Mol Biol 43, no. 2 (2008): 135-62. Foe, V. E., and B. M. Alberts. 'Studies of Nuclear and Cytoplasmic Behaviour During the Five Mitotic Cycles That Precede Gastrulation in Drosophila Embryogenesis.' J Cell Sci 61, (1983): 31-70. Graindorge, A., R. Thuret, N. Pollet, H. B. Osborne, and Y. Audic. 'Identification of Post-Transcriptionally Regulated Xenopus Tropicalis Maternal Mrnas by Microarray.' Nucleic Acids Res 34, no. 3 (2006): 986-95. Griffiths, A. D. 'Isolation of High Affinity Human Antibodies Directly from Large Synthetic Repertoires.' EMBO J. 13, (1994): 3245-3260. Grunwald, D. J., and J. S. Eisen. 'Headwaters of the Zebrafish -- Emergence of a New Model Vertebrate.' Nat Rev Genet 3, no. 9 (2002): 717-24. Heikinheimo, O., and W. E. Gibbons. 'The Molecular Mechanisms of Oocyte Maturation and Early Embryonic Development Are Unveiling New Insights into Reproductive Medicine.' Mol Hum Reprod 4, no. 8 (1998): 745-56. Hisaoka, K. Kenneth, and Helen I. Battle. 'The Normal Developmental Stages of the Zebrafish, Danio Rerio.' J. of Morphol. 102 no. 2 (2005): 311 - 327 Hoet, R. M. 'Generation of High-Affinity Human Antibodies by Combining Donor-Derived and Synthetic Complementarity-Determining-Region Diversity.' Nat. Biotechnol. 23, (2005): 344-348. Hoogenboom, H. R. 'Overview of Antibody Phage-Display Technology and Its Applications.' Methods Mol. Biol. 178, (2002): 1-37. Hoogenboom, H. R. 'Selecting and Screening Recombinant Antibody Libraries.' Nat Biotechnol 23, no. 9 (2005): 1105-16. Huie, M. A. 'Antibodies to Human Fetal Erythroid Cells from a Nonimmune Phage Antibody Library.' Proc. Natl. Acad. Sci. USA 98, (2001): 2682-2687. Huse, W. D. 'Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda.' Science 246, (1989): 1275-1281. Jurisicova, A., K. E. Latham, R. F. Casper, and S. L. Varmuza. 'Expression and Regulation of Genes Associated with Cell Death During Murine Preimplantation Embryo Development.' Mol Repro Dev 51, no. 3 (1998): 243-53. Karsten, U., P. Stolley, I. Walther, G. Papsdorf, S. Weber, K. Conrad, L. Pasternak, and J. Kopp. 'Direct Comparison of Electric Field-Mediated and Peg-Mediated Cell Fusion for the Generation of Antibody Producing Hybridomas.' Hybridoma 7, no. 6 (1988): 627-33. Keller, E. T., and J. M. Murtha. 'The Use of Mature Zebrafish (Danio Rerio) as a Model for Human Aging and Disease.' Comp Biochem Physiol C Toxicol Pharmacol 138, no. 3 (2004): 335-41. Kimmel, C. B. 'Genetics and Early Development of Zebrafish.' Trends Genet 5, no. 8 (1989): 283-8. Knappik, A. 'Fully Synthetic Human Combinatorial Antibody Libraries (Hucal) Based on Modular Consensus Frameworks and Cdrs Randomized with Trinucleotides.' J. Mol. Biol. 296, (2000): 57-86. Kohler, G., and C. Milstein. 'Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity.' Nature 256, no. 5517 (1975): 495-7. Kramer, R. A. 'The Human Antibody Repertoire Specific for Rabies Virus Glycoprotein as Selected from Immune Libraries.' Eur. J. Immunol. 35, (2005): 2131-2145. Latham, K. E., and R. M. Schultz. 'Embryonic Genome Activation.' Front Biosci 6, (2001): D748-59. Link, V., A. Shevchenko, and C. P. Heisenberg. 'Proteomics of Early Zebrafish Embryos.' BMC Dev Biol 6, (2006): 1. Lipovsek, D., and A. Pluckthun. 'In-Vitro Protein Evolution by Ribosome Display and Mrna Display.' J. Immunol. Methods 290, (2004): 51-67. Lu, D. 'Tailoring in Vitro Selection for a Picomolar Affinity Human Antibody Directed against Vascular Endothelial Growth Factor Receptor 2 for Enhanced Neutralizing Activity.' J. Biol. Chem. 278, (2003): 43496-43507. Marks, J. D. 'By-Passing Immunization: Human Antibodies from V-Gene Libraries Displayed on Phage.' J. Mol. Biol. 222, (1991): 581-597. Mazor, Y., T. Van Blarcom, R. Mabry, B. L. Iverson, and G. Georgiou. 'Isolation of Engineered, Full-Length Antibodies from Libraries Expressed in Escherichia Coli.' Nat Biotechnol 25, no. 5 (2007): 563-5. McCafferty, J., A. D. Griffiths, G. Winter, and D. J. Chiswell. 'Phage Antibodies: Filamentous Phage Displaying Antibody Variable Domains.' Nature 348, (1990): 552-554. Moulard, M. 'Broadly Cross-Reactive Hiv-1-Neutralizing Human Monoclonal Fab Selected for Binding to Gp120-Cd4-Ccr5 Complexes.' Proc. Natl. Acad. Sci. USA 99, (2002): 6913-6918. Nagata, S., K. Yamamoto, Y. Ueno, T. Kurata, and J. Chiba. 'Production of Monoclonal Antibodies by the Use of Ph-Dependent Vesicular Stomatitis Virus-Mediated Cell Fusion.' Hybridoma 10, no. 2 (1991): 317-22. Ohkohchi, N., H. Itagaki, H. Doi, Y. Taguchi, S. Satomi, and S. Satoh. 'New Technique for Producing Hybridoma by Using Laser Radiation.' Lasers Surg Med 27, no. 3 (2000): 262-8. Orlandi, R., D. H. Gussow, P. T. Jones, and G. Winter. 'Cloning Immunoglobulin Variable Domains for Expression by the Polymerase Chain Reaction.' Proc. Natl. Acad. Sci. USA 86, (1989): 3833-3837. Pelegri, F. 'Maternal Factors in Zebrafish Development.' Dev Dyn 228, no. 3 (2003): 535-54. Perkins, S., U. Zimmermann, and S. K. Foung. 'Parameters to Enhance Human Hybridoma Formation with Hypoosmolar Electrofusion.' Hum Antibodies Hybridomas 2, no. 3 (1991): 155-9. Peterson, R. T., S. Y. Shaw, T. A. Peterson, D. J. Milan, T. P. Zhong, S. L. Schreiber, C. A. MacRae, and M. C. Fishman. 'Chemical Suppression of a Genetic Mutation in a Zebrafish Model of Aortic Coarctation.' Nat Biotechnol 22, no. 5 (2004): 595-9. Pichler, F. B., S. Laurenson, L. C. Williams, A. Dodd, B. R. Copp, and D. R. Love. 'Chemical Discovery and Global Gene Expression Analysis in Zebrafish.' Nat Biotechnol 21, no. 8 (2003): 879-83. Potireddy, S., R. Vassena, B. G. Patel, and K. E. Latham. 'Analysis of Polysomal Mrna Populations of Mouse Oocytes and Zygotes: Dynamic Changes in Maternal Mrna Utilization and Function.' Dev Biol 298, no. 1 (2006): 155-66. Schier, A. F. 'The Maternal-Zygotic Transition: Death and Birth of Rnas.' Science 316, no. 5823 (2007): 406-7. Schier, R. 'Isolation of Picomolar Affinity Anti-C-Erbb-2 Single-Chain Fv by Molecular Evolution of the Complementarity Determining Regions in the Center of the Antibody Binding Site.' J. Mol. Biol. 263, (1996): 551-567. Shirahata, S., Y. Katakura, and K. Teruya. 'Cell Hybridization, Hybridomas, and Human Hybridomas.' Methods Cell Biol 57, (1998): 111-45. Steenbakkers, P. G., F. C. van Meel, and W. Olijve. 'A New Approach to the Generation of Human or Murine Antibody Producing Hybridomas.' J Immunol Methods 152, no. 1 (1992): 69-77. Stitzel, M. L., and G. Seydoux. 'Regulation of the Oocyte-to-Zygote Transition.' Science 316, no. 5823 (2007): 407-8. Tadros, W., J. T. Westwood, and H. D. Lipshitz. 'The Mother-to-Child Transition.' Dev Cell 12, no. 6 (2007): 847-9. Vaughan, T. J. 'Human Antibodies with Sub-Nanomolar Affinities Isolated from a Large Non-Immunized Phage Display Library.' Nat. Biotechnol. 14, (1996): 309-314. Ward, E. S., D. Gussow, A. D. Griffiths, P. T. Jones, and G. Winter. 'Binding Activities of a Repertoire of Single Immunoglobulin Variable Domains Secreted from Escherichia Coli.' Nature 341, (1989): 544-546. Wojchowski, D. M., and A. J. Sytkowski. 'Hybridoma Production by Simplified Avidin-Mediated Electrofusion.' J Immunol Methods 90, no. 2 (1986): 173-7. Wu, Y. J., H. M. Chen, T. T. Wu, J. S. Wu, R. M. Chu, and R. H. Juang. 'Preparation of Monoclonal Antibody Bank against Whole Water-Soluble Proteins from Rapid-Growing Bamboo Shoots.' Proteomics 6, no. 22 (2006): 5898-902. Yang, W. P. 'Cdr Walking Mutagenesis for the Affinity Maturation of a Potent Human Anti-Hiv-1 Antibody into the Picomolar Range.' J. Mol. Biol. 254, (1995): 392-403. Zon, L. I., and R. T. Peterson. 'In Vivo Drug Discovery in the Zebrafish.' Nat Rev Drug Discov 4, no. 1 (2005): 35-44. 蔡和成. '綠竹筍生長過程差異性蛋白質體及其抗體庫之建立.' 國立台灣大學微生物與生化學研究所, (2008). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66725 | - |
dc.description.abstract | 柯勒 (Köhler) 與麥爾斯坦 (Milstein) 利用細胞融合技術成功地將B細胞與骨髓瘤細胞融合成融合瘤細胞 (hybridoma),透過不斷增殖與篩選,生產對特定抗原專一性的單株抗體 (monoclonal antibody)。2006年本實驗室吳裕仁博士提出抗體庫概念,利用綠竹筍水溶性的整個蛋白質體,產出對所有蛋白質的抗體庫,但因為此方法所需的時間、資源龐大且繁瑣,因此在2008年由蔡和成提出差異性蛋白質抗體庫,以兩個不同時期的總體蛋白質免疫小鼠,分別得到融合瘤細胞後,再利用流式細胞儀篩選出具差異性的細胞,所分泌的抗體可以區別上述兩個蛋白質體。本研究的主題,母源轉胚源時期 (maternal to zygotic transition, MZT) 是早期胚胎發育的第一個重要時期,對於胚胎在後續之發育成長扮演重要角色。我們選擇斑馬魚早期胚胎MZT前期的128-cell stage和後期的sphere-cell stage當作差異性的兩組樣本。先以實驗室建立的融合瘤細胞成功自model test-1實驗中分離出來,確定融合瘤細胞膜上有抗體分子。再以斑馬魚128細胞及sphere時期之抗原分別免疫,經過融合反應後,細胞以抗原標定 (antigen labeling) 接上螢光,再以流式細胞儀負篩選 (negative selection),去除產生相同抗體的細胞,結果無法篩得具差異性的抗體。因此,設計了model test-2實驗,以vitellogenin、六種標準蛋白質、phytochelatin synthase、六種標準蛋白質的混合物,當作兩組不同時期的蛋白質體免疫小鼠,經融合反應後先進行正篩選 (positive selection),以保留抗體分泌強的細胞,經培養後再做負篩選。正篩選確定挑出了分泌抗體較強的細胞,但負篩選還是無差異性。再次建立差異性抗體庫時,選擇斑馬魚胚胎卵黃較少的sphere時期和75%-epiboly時期進行篩選流程,但還是無法有效篩得到差異性細胞分群的結果。所以差異性抗體庫的技術仍有待改進的空間。 | zh_TW |
dc.description.abstract | Köhler and Milstein reported a novel technique by fusing B cell with myeloma cell and producing hybridoma cell lines which secreted monoclonal antibodies. Starting from this idea, we proposed a concept of massive antibody production by immunizing the total water-soluble proteins from an organism to yield antibody library against the whole proteome rather than immunizing single antigen to obtain single mAb. However, this approach consumed time, and needed huge human and material resources. Subsequently, Tsai proposed an alternative approach for differential antibody library, which focused on the different antigens of two comparable proteomes. After the immunization and cell fusion, hybridoma cells were screened using flow cytometer by the differences of the proteins samples. To validate this new approach, we focused on the maternal to zygotic transition (MZT) which is an essential period in early embryonic development. We took the earlier 128-cell stage and the sphere-cell stage of zebrafish embryo development as the two periods for comparison. In a preliminary test, an established hybridoma line was isolated successfully using this process. Then we immunized the embryonic total proteins in mice. After cell fusion, flow cytometer sorted out cells which produced antibody recognizing the fluorescent-labeled antigens shared by the two proteomes (negative screening). The remaining cells might produce antibodies which could bind to the differential proteins between the two proteomes. However, we can not harvest cell line producing useful antibody. Owing to this result, we then set up model test-2 using two sets of defined protein mixture as the antigens: (1) vitellogenin and low molecular weight markers, and (2) phytochelatin synthase and low molecular weight markers. After the cell fusion, positive selection was performed first to pick the high antibodies-secreting cell lines out, and then negative screening to remove the common cell lines subsequently. Results revealed that positive selection did identify antibodies-secreting cells, but we can not isolate differential cells in negative selection. Finally, we took zebrafish embryo proteins as the antigens to test its application in complex proteome, but still can not obtain the differential cell distribution. As a result, we should improve the whole preparation system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:53:44Z (GMT). No. of bitstreams: 1 ntu-100-R98b47202-1.pdf: 11173961 bytes, checksum: 2df84bba1ae3d3a3ebde5b0d749d1056 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii 第一章 緒論 1 1.1抗體庫 (antibodies library) 1 1.1.1抗體庫概述 1 1.1.2差異性蛋白質抗體庫 2 1.1.3標定原理及篩選流程 3 1.1.4 Phytochelatin synthase (PCS) 及D5b細胞 4 1.2抗體生成及單株抗體 4 1.2.1單株抗體技術 5 1.3斑馬魚 5 1.3.1斑馬魚為模式動物 6 1.3.2母源因子 (maternal factors) 6 1.3.3母源轉胚源時期 (Maternal-Zygotic Transition : MZT) 7 1.5研究動機及目的 8 第二章 材料與方法 13 2.1利用流式細胞儀建立模式測定1 (Model test-1) 13 2.1.1細胞解凍法 13 2.1.2純化D5b目標蛋白質PCS (phytochelatin synthase) 13 2.1.3將目標蛋白質PCS進行生物素標定 (biotin labeling) 14 2.1.4利用流式細胞儀進行細胞分選 15 2.2利用流式細胞儀建立模式測定2 (Model test-2) 15 2.2.1標準蛋白質處理 15 2.2.2免疫VTG-marker及PCS-marker 15 2.2.3細胞融合 16 2.2.4將VTG-marker及PCS-marker進行生物素標定 18 2.2.5利用流式細胞儀進行差異性分選 18 2.3利用流式細胞儀建立斑馬魚差異性蛋白質抗體庫 18 2.3.1斑馬魚飼養條件 18 2.3.2斑馬魚受精卵收集 19 2.3.3去除卵殼及卵黃 19 2.3.4破斑馬魚胚胎細胞沉澱 20 2.3.5甲醇-氯仿沈澱 20 2.3.6一維電泳 (等電焦集法) 20 2.3.7二維電泳 (SDS-PAGE) 20 2.3.8免疫共沉澱 (immunoprecipitation) 21 2.3.9免疫斑馬魚蛋白質樣本 22 2.3.10細胞融合 22 2.3.11斑馬魚蛋白質抗原進行生物素標定 22 2.3.12利用流式細胞儀進行差異性分選 22 第三章 結果 23 3.1建立模式測定1 (model test-1) 23 3.1.1純化PCS (phytochelatin synthase) 23 3.1.2將PCS標定biotin 23 3.1.3以抗原標定D5b使其分開混合之細胞 23 3.2建立斑馬魚差異性蛋白質抗體庫 (128時期與sphere時期) 24 3.2.1去除卵黃程度分析 24 3.2.2選擇破細胞方式 24 3.2.3以二維電泳分析斑馬魚胚胎128及sphere時期 24 3.2.4建立斑馬魚胚胎128及sphere時期蛋白質體抗體庫 25 3.2.5斑馬魚胚胎128及sphere時期蛋白質體進行Biotinylation 25 3.2.6以流式細胞儀進行差異分選 26 3.2.7測定128-cell對sphere TP差異性抗體細胞之免疫染色 26 3.2.8以propidium iodide和7-amino-actinomycin D染色比較細胞存活率 27 3.2.9以feeder cell培養融合瘤細胞 27 3.2.10以正篩選 (positive selection) 確認細胞分泌抗體能力是否有差異 28 3.2.11改變model test-1策略以複雜抗原代替單一抗原模擬真實狀態 28 3.3建立模式測定2 (model test-2) 29 3.3.1找尋合適的已知蛋白質 29 3.3.2免疫VTG-M和PCS-M於小鼠產生抗體 29 3.3.3 VTG-M和PCS-M進行biotinylation 30 3.3.4以流式細胞儀進行差異分選 30 3.3.5測定正篩選及負篩選之免疫染色 31 3.4重新建立斑馬魚差異性蛋白質抗體庫 (sphere時期與75%-epiboly時期) 31 3.4.1比較sphere和75%-epiboly時期之SDS-PAGE和2-DE電泳差異 32 3.4.2製備vitellogenin單株抗體 32 3.4.3免疫共沉澱吸附vitellogenin 33 3.4.4建立斑馬魚胚胎sphere及75%-epiboly時期蛋白質體抗體庫 33 3.4.5細胞融合後觀察 33 3.4.6流式細胞儀進行篩選 34 圖表集 35 第四章 討論 71 4.1差異性蛋白質抗體庫 71 4.2製備斑馬魚胚胎128時期及sphere時期差異性抗體庫 71 4.2.1以複雜抗原取代單一抗原模擬真實狀態 72 4.2.2提出正篩選方法確定細胞螢光訊號往正向移動 73 4.2.3免疫沉澱吸附vitellogenin 73 4.3融合瘤細胞處於混雜狀態使得抗體分泌不均的改善方法 74 4.4模式測定2 (Model test-2) 74 4.5製備斑馬魚胚胎sphere時期及75%-epiboly時期差異性抗體庫 75 第五章 結論 79 參考文獻 81 答問錄 87 附錄 91 | |
dc.language.iso | zh-TW | |
dc.title | 差異性蛋白質抗體庫之模式建立 | zh_TW |
dc.title | Model Construction of the Antibody Library of the Differential Proteome | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李士傑,陳俊任,陳翰民,張世宗 | |
dc.subject.keyword | 抗體庫,融合瘤細胞,母源轉胚源時期,抗原標定, | zh_TW |
dc.subject.keyword | antibody library,hybridoma,maternal to zygotic transition,antigen labeling, | en |
dc.relation.page | 101 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-10-14 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 10.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。