Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66672
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峰輝(Feng-Huei Lin)
dc.contributor.authorChen-Chie Wangen
dc.contributor.author王禎麒zh_TW
dc.date.accessioned2021-06-17T00:50:20Z-
dc.date.available2012-01-16
dc.date.copyright2012-01-16
dc.date.issued2011
dc.date.submitted2011-11-24
dc.identifier.citation[1] Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002;10(6):432-63.
[2] Lebaron RG, Athanathious KA. Ex vivo synthesis of articular cartilage. Biomaterials 2000;21(24):2575-87.
[3] Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bul 2008;87:77-95.
[4] Temenoff JS, Mikos AG. Review: Tissue engineering for regeneration of articular cartilage. Biomaterial 2000;21(5):431-44.
[5] Newman AP. Articular Cartilage Repair. Am J Sports Med 1998;26:309-24.
[6] Martin JA, Buckwalter JA. The role of chondrocyte matrix interactions in maintaining and repairing articular cartilage. Biorheology 2000;37:129–40.
[7] Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum 1998;41:1331–42.
[8] Roughley PJ. The structure and functions of cartilage proteoglycans. Europ Cells Mat 2006;12:92-101.
[9] Jordan JM, Kraus VB, Hochberg MC. Genetics of osteoarthritis. Curr Rheumatol Rep 2004;6:7-13.
[10] Buckwalter JA, Mankin HJ. Articular cartilage: Degeneration and osteoarthrosis, repair, regeneration and transplantation. J Bone Joint Surg 1997;79A:612–32.
[11] Bank RA, Soudry M, Maroudas A, Mizrahi J, TeKoppele JM. The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 2000;43:2202–10.
[12] Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix: implication of pentoses in the aging process. J Biol Chem 1989; 264:21597–602.
[13] Blaschke UK, Eikenberry EF, Hulmes DJ, Galla HJ, Bruckner P. Collagen XI Nucleates Self-assembly and Limits Lateral Growth of Cartilage Fibrils. J Biol Chem 2000;275:10370-78.
[14] Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000;275:39027–31.
[15] Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage: the age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 1998;330:345–51.
[16] Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI. Aggrecan degradation in human cartilage: evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest 1997;100:93–106.
[17] Fosang AJ, Last K, Maciewicz RA. Aggrecan is degraded by matrix metalloproteinases in human arthritis: evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest 1996;98:2292–99.
[18] Smith RL. Degradative enzymes in osteoarthritis. Front Biosci 1999;4:704–12.
[19] Clark IM, Powell LK, Ramsey S, Hazleman BL, Cawston TE. The measurement of collagenase, tissue inhibitor of metalloproteinases (TIMP), and collagenase–TIMP complex in synovial fluids from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 1993;36:372–79.
[20] MacNaul KL, Chartrain N, Lark M, Tocci MJ, Hutchinson NI. Discoordinate expression of stromelysin, collagenase, and tissue inhibitor of metalloproteinases-1 in rheumatoid human synovial fibroblasts: synergistic effects of interleukin-1 and tumor necrosis factor-alpha on stromelysin expression. J Biol Chem 1990;265: 17238–45.
[21] Harada Y, Tomita N, Wakitani S, Mii Y, Oka M, Tsutsumi S. Use of Controlled Mechanical Stimulation in Vivo to Induce Cartilage Layer Formation on the Surface of Osteotomized Bone. Tissue Engineering. 2002;8(6):969-78.
[22] Sgaglione NA. Biologic approaches to articular cartilage surgery: future trends. Orthop Clin North Am 2005;36(4):485-95.
[23] Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003;19:477–84.
[24] Hangody L, Vásárhelyi G, Hangody LR, Sükösd Z, Tibay G, Bartha L, et al. Autologous osteochondral grafting--technique and long-term results. Injury 2008;39(S1):S32-39.
[25] Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 1994;2:192–201.
[26] Outerbridge HK, Outerbridge AR, Outerbridge RE. The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee. J Bone Joint Surg Am 1995;77(1):65-72.
[27] Iwasaki N, Kato H, Kamishima T, Suenaga N, Minami A. Donor site evaluation after autologous osteochondral mosaicplasty for cartilaginous lesions of the elbow joint. Am J Sports Med 2007;35:2096-100.
[28] Brucker PU, Braun S, Imhoff AB. Mega-OATS technique--autologous osteochondral transplantation as a salvage procedure for large osteochondral defects of the femoral condyle. Oper Orthop Traumatol 2008;20(3):188-98.
[29] Williams SK, Amiel D, Ball ST. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am 2003;85A(11):2111 – 20.
[30] Gross AE, Agnidis Z, Hutchinson CR. Osteochondral defects of the talus treated with fresh osteochondral allograft transplantation. Foot Ankle Int 2001;22(5):385 – 91.
[31] Hahn DB, Aanstoos ME, Wilkins RM. Osteochondral lesions of the talus treated with fresh talar allografts. Foot Ankle Int 2010;31(4):277-82.
[32] Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg Am 2003;85A(S2): 25-32.
[33] Laprell H, Petersen W. Autologous osteochondral transplantation using the diamond bone-cutting system (DBCS): 6-12 years' follow-up of 35 patients with osteochondral defects at the knee joint. Archives Orthop Trauma Surg 2001;121(5):248-53.
[34] Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331:889-95.
[35] Peterson L, Brittberg M, Kiviranta I, Åkerlund EL, Lindahl A. Autologous chondrocyte transplantation biomechanics and long-term durability. Am J sports Med 2002;30(1):2-12.
[36] Brittberg M. Autologous chondrocyte implantation—Technique and long-term follow-up. Injury 2008;39(S1):S40-9.
[37] Ochi M, Uchio Y, Tobita M, Kuriwaka M. Current Concepts in Tissue Engineering Technique for Repair of Cartilage Defect. Artificial Organs 2001;25:172–9.
[38] Magnussen RA, Dunn WR, Carey JL, Spindler KP. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Rel Res 2008;466:952-62.
[39] Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E. Autologous chondrocyte implantation compared with microfracture in the knee. a randomized trial. J Bone Joint Surg Am 2004;86A(3):455–64.
[40] Knutsen G, Drogset JO, Engebretsen L, Grondvedt T, Isaksem V, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007;89(10):2105–12.
[41] Lanza RP, Langer R, Vacanti J. Principles of tissue engineering. Academic press, San Diego, California, USA, 2000
[42] Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, Lust G. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 1994;12(4):485–97.
[43] Caplan A. Mesenchymal stem cells. J Orthop Res 1991;9:641-50.
[44] Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994;76(4):579-92.
[45] Woodfield TB, Bezemer JM, Pieper JS, van Blitterswijk CA, Riesle J. Scaffolds for tissue engineering of cartilage. Crit Rev Eukaryot Gene Expr 2002;12:209–36.
[46] Capito RM, Spector M. Scaffold-based articular cartilage repair. IEEE Eng Med Biol Mag 2003;22:42–50.
[47] Kang HW, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 1999;20(14):1339–44.
[48] Vacanti CA, Langer R, Schloo B, Vacanti JP. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 1991;88:753-59.
[49] Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:11-23.
[50] Gray ML, Pizzanelli AM, Grodzinskey AJ, Lee RC. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J orthop Res 1988;6(6):777-92.
[51] Prockop D. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71-4.
[52] Spain T, Agrawal C, Athanasiou K. New technique to extend the useful life of a biodegradable cartilage implant. Tissue Eng 1998;4:343-52.
[53] Cao Y, Rodrigues A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 1998;9(5):475-87.
[54] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21(24):2529-43.
[55] Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 2005;23(2):425-32.
[56] Barralet JE, Wang L, Lawson M, Triffitt JT, Cooper PR, Shelton RM. Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. J Mater Sci: Mater Med 2005;16(6):515-19.
[57] Lee CS, Gleghorn JP, Won Choi N, Cabodi M, Stroock AD, Bonassar LJ. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 2007;28(19):2987-93.
[58] Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH, et al. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials 2006;27(9):1876-88.
[59] Ma Z, Gao C, Gong Y, Shen J. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 2005;26(11):1253-59.
[60] Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 2009;30(13):2544-51.
[61] Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, et al. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater 2010;6(3):1167-77.
[62] Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 2010;28(3):325-47.
[63] Boyan BD, Lohmann CH, Romero J, Schwartz Z. Bone and cartilage tissue engineering. Clin Plast Surg 1999;26(4):629-45.
[64] George PA, Quinn K, Cooper-White JJ. Hierarchical scaffolds via combined macro- and micro-phase separation. Biomaterials 2010;31(4):641-47.
[65] Salerno A, Oliviero M, Di Maio E, Iannace S, Netti PA. Design of porous polymeric scaffolds by gas foaming of heterogeneous blends. J Mater Sci: Mater Med 2009;20(10):2043-51.
[66] Dai W, Kawazoe N, Lin X, Dong J, Chen G. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 2010;31(8):2141-52.
[67] Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4(7):518-24.
[68] Daniel G, Nicholas F, Yang S, Derek JH. Multilayer micromolding of degradable polymer tissue engineering scaffolds. Materials Science and Engineering: C 2008;28(3):353-8.
[69] Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, et al. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A 2007;83(3):747-58.
[70] Hahn MS, Miller JS, West JL. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Advanced Materials 2006;18(20):2679-84.
[71] Lee JW, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews 2008;14(1):61-86.
[72] Kotov NA, Liu Y, Wang S, Cumming C, Eghtedari M, Vargas G, et al. Inverted colloidal crystals as three-dimensional cell scaffolds. Langmuir 2004;20(19):7887-92.
[73] Garstecki P, Fuerstman MJ, Whitesides GM. Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 2005;94(23):234502.
[74] Lorenceau E, Sang YYC, Höhler R, Cohen-Addad S. A high rate flow-focusing foam generator. Phys Fluids 2006;18:097103.
[75] Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 2006;6(3):437-46.
[76] Christopher GF, Anna SL. Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 2007;40(19):R319-R336.
[77] Chung KY, Mishra NC, Wang CC, Lin FH, Lin LH. Fabricating scaffolds by microfluidics. Biomicrofluidics 2009;3(2):022403.
[78] Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, Birke O, McDonald M, Little D, Dunstan CR. The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomaterials 2010;31(12):3175-84.
[79] Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 2004;25(1):129-38.
[80] Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 2010;31(3):404-12.
[81] Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I. Mapping the depth dependence of shear properties in articular cartilage. J Biomech 2008;41(11):2430–7.
[82] Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content. J Biomech 2009;42(14):2279–85.
[83] Buckley MR, Bergou AJ, Fouchard J, Bonassar LJ, Cohen I. High-resolution spatial mapping of shear properties in cartilage. J Biomech 2010;43(4):796-800.
[84] Berridge MV, Tan AS, McCoy KD, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 1996;4:15-9.
[85] Altman FP. Tetrazolium salts and formazans. Progress in histochemistry an dcytochemistry 1976;9:1-56.
[86] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.
[87] Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K. An improved colorimetric assay for interleukin 2. J Immunol Methods 1986;93:157-65.
[88] Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods 1983;64:313-20.
[89] Decker T, Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 1988;115:61-9.
[90] Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 1986; 883:173-7.
[91] Sabiston P, Adams ME, Ho YA. Automation of 1,9-dimethylmethylene blue dye-binding assay for sulfated glycosamioglycans with application to cartilage microcultures. Analytical Biochemi 1985;149:543-8.
[92] Muller G, Hanschke M. Quantitative and qualitative analysis of proteoglycans in cartilage extracts by precipitation with 1,9-dimethylmethylene blue. Connect Tissue Res 1996;33:243-8.
[93] Yang SH, Chen PQ, Chen YF, Lin FH. An in-vitro study on regeneration of human nucleus pulposus by using gelatin/chondroitin-6-sulfate/hyaluronan tri-copolymer scaffold. Artif Organs 2005;29(10):806-14.
[94] Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential. Biotechniques 1999;26:112-22.
[95] Raeymaekers L. Basic principles of quantitative PCR. Mol Biotech 2000;15:115-22.
[96] Antonov J, Goldstein DR, Oberli A, Baltzer A, Pirotta M, Fleischmann A, Altermatt HJ, Jaggi R. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest 2005;85:1040-50.
[97] Wang HP, Wei B. Thermophysical property of undercooled liquid binary alloy composed of metallic and semiconductor elements. J Phys D Appl Phys 2009;42(3):035414.
[98] Monique Martina, Dietmar W. Biodegradable polymers applied in tissue engineering research: a review. Polymer International 2007;56(2):145-57.
[99] Lee DA, Reisler T, Bader DL. Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques. Acta Orthop Scand 2003;74(1):6-15.
[100] Khattak SF, Bhatia SR, Roberts SC. Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng 2005;11(5-6):974-83.
[101] Yang KC, Wu CC, Lin FH, Qi Z, Cheng YH, Chen MP, et al. Chitosan/Gelatin Hydrogel as Immunoisolative Matrix for Injectable Bioartificial Pancreas. Xenotransplantation 2008;15:407-16.
[102] Chan LW, Heng PW. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials 2002;23(5):1319-26.
[103] Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2006;2(3):313-20.
[104] Yamane S, Iwasaki N, Kasahara Y, Harada K, Majima T, Monde K, et al. Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A 2007;81(3):586-93.
[105] George J, Onodera J, Miyata T. Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J Biomed Mater Res A 2008;87(4):1103-11.
[106] Kataoka K, Suzuki Y, Kitada M, Ohnishi K, Suzuki K, Tanihara M, et al. Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats. J Biomed Mater Res 2001;54(3):373-84.
[107] Mathe Z, Bucher P, Bosco D, Andres A, Fux C, Toso C, et al. Short-term immunosuppression reduces fibrotic cellular infiltration around barium-M-alginate microbeads injected intraportally. Transplant Proc 2004;36(4):1199-200.
[108] Wan Y, Chen W, Yang J, Bei J, Wang S. Biodegradable poly(L-lactide)-poly(ethylene glycol) multiblock copolymer: synthesis and evaluation of cell affinity. Biomaterials 2003;24(13):2195-203.
[109] Liu CZ, McKenna FM, Liang H, Johnstone A, Abel EW. Enhanced cell colonization of collagen scaffold by ultraviolet/ozone surface processing. Tissue Eng C 2010;16(6):1305-14.
[110] Huang GS; Dai LG; Yen BL; Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011;32(29):6929-45.
[111] Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 2009;5(2):670-79.
[112] Chang W, Tu C, Pratt S, Chen TH, Shoback D. Extracellular Ca(2+)-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 2002;143(4):1467-74.
[113] Bonen DK, Schmid TM. Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 1991;115(4):1171-78.
[114] Gigout A, Jolicoeur M, Buschmann MD. Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture. Osteoarthritis Cartilage 2005;13(11):1012-24.
[115] van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 2002;10(8):631-7.
[116] Pullig O, Weseloh G, Ronneberger D, Käkönen S, Swoboda B. Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 2000;67(3):230-40.
[117] Wang CC, Yang KC, Lin KH, Liu HC, Lin FH. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials. 2011;32(29):7118-26.
[118] Leddy HA, Awad HA, Guilak F. Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J Biomed Mater Res B Appl Biomater 2004;70(2):397-406.
[119] Coleman RM, Case ND, Guldberg RE. Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors. Biomaterials 2007 28(12):2077-86.
[120] Saim AB, Cao Y, Weng Y, Chang CN, Vacanti MA, Vacanti CA, et al. Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 2000;110(10):1694-7.
[121] Vacanti CA; Kim W; Upton J; Vacanti MP; Mooney D; Schloo B, et al. Tissue-engineered growth of bone and cartilage. Transplant Proc 1993;25:1019–21.
[122] Rodriguez A; Cao YL; Ibarra C; Pap S; Vacanti M; Eavey RD; Vacanti CA. Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg 1999;103:1111–19.
[123] Hunziker EB. Articular cartilage repair: problems and perspectives. Biorheology 2000;37(1-2):163-4.
[124] Athanasiou K, Shah A, Hernandez R, Le BR. Basic science of articular cartilage repair. Clin Sports Med 2001;20:223–47.
[125] Poole AR. Imbalances of anabolism and catabolism of cartilage matrix components in osteoarthritis. In: Kuettner KE, Goldberg B, Eds. Osteoarthritic Disorders. Rosemont: AAOS 1995:247–60.
[126] Mukaida T, Urabe K, Naruse K, Aikawa J, Katano M, Hyon SH, et al. Influence of three-dimensional culture in a type II collagen sponge on primary cultured and dedifferentiated chondrocytes. J Orthop Sci 2005;10(5):521-28.
[127] Iwamoto M, Sato K, Nakashima K, Shimazu A, Kato Y. Hypertrophy and calcification of rabbit permanent chondrocytes in pelleted cultures: synthesis of alkaline phosphatase and 1, 25-dihydroxycholecalciferol receptor. Dev Biol 1989;136:500–7.
[128] Visnapuu V, Peltomäki T, Rönning O, Syrjänen S. Distribution of insulin-like growth factor-I mRNA in the mandibular condyle and rib cartilage of the rat during growth. Arch Oral Biol 2002;47:791–8.
[129] Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH. Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cell Mater 2005;9:58-67.
[130] Zhang L, Song H, Zhao X. Optimum combination of insulin-transferrin-selenium and fetal bovine serum for culture of rabbit articular chondrocytes in three-dimensional alginate scaffolds. Int J Cell Biol 2009;747016.
[131] Freyria AM, Ronzière MC, Cortial D, Galois L, Hartmann D, Herbage D, et al. Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng Part A 2009;15(6):1233-45.
[132] Tsai WB, Chen CH, Chen JF, Chang KY. The effects of types of degradable polymers were investigated on porcine chondrocyte adhesion, proliferation and gene expression. J Mater Sci Mater Med 2006;17(4):337-43.
[133] Grigolo B, Lisignoli G, Piacentini A, Fiorini M, Gobbi P, Mazzotti G, et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials 2002;23(4):1187–95.
[134] Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 1997;38:95–104.
[135] Schuman L, Buma P, Versleyen D, de Man B, van der Kraan PM, van den Berg WB, et al. Chondrocyte behaviour within different types of collagen gel in vitro. Biomaterials 1995;16:809–14.
[136] Dehne T, Schenk R, Perka C, Morawietz L, Pruss A, Sittinger M, et al. Gene expression profiling of primary human articular chondrocytes in high-density micromasses reveals patterns of recovery, maintenance, re- and dedifferentiation. Gene 2010;462(1-2):8-17.
[137] Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 1998;42:172–81.
[138] Kaps C, Frauenschuh S, Endres M, Ringe J, Haisch A, Lauber J, et al. Gene expression profiling of human articular cartilage grafts generated by tissue engineering. Biomaterials 2006;27(19):3617-30.
[139] Bryant SJ, Arthur JA, Anseth KS. Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomater 2005;1(2):243-52.
[140] Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethyleneglycol) hydrogels. J Biomed Mater Res 2002;59(1):63–72.
[141] Zuscik MJ, Hilton MJ, Zhang X, Chen D, O'Keefe RJ. Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 2008;118(2):429-38.
[142] Griffin TM, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev 2005;33:195-200.
[143] Arokoski JP, Jervelin JS, Vaatainen U, Helminen HJ. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 2000;10:186-98.
[144] Guilak F, Sah RL, Setton LA. 1997. Physical regulation of cartilage metabolism. In basic orthopaedic biomechanics. V.C. Mow and W.C. Hayes, editors. Lippincott-Raven. Philadelphia, Pennsylvania, USA. 197-207.
[145] Galois L, Hutasse S, Cortial D, Rousseau CF, Grossin L, Ronziere MC, et al. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials 2006;27(1):79-90.
[146] Freyria AM, Ronzière MC, Cortial D, Galois L, Hartmann D, Herbage D, Mallein-Gerin F. Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng Part A 2009; 15:1233-45
[147] Girotto D, Urbani S, Brun P, Renier D, Barbucci R, Abatangelo G. Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials 2003;24(19):3265-75.
[148] Peretti GM, Randolph MA, Zaporojan V, Bonassar LJ, Xu JW, Fellers JC, et al. A biomechanical analysis of an engineered cell-scaffold implant for cartilage repair. Ann Plast Surg 2001 May;46(5):533-7.
[149] Peretti GM, Bonassar LJ, Caruso EM, Randolph MA, Trahan CA, Zaleske DJ. Biomechanical analysis of a chondrocyte-based repair model of articular cartilage. Tissue Eng 1999;5:317-26.
[150] Park SS, Jin HR, Chi DH, Taylor RS. Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials 2004;25(12):2363-9.
[151] Funakoshi T, Majima T, Iwasaki N, Yamane S, Masuko T, Minami A, et al. Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J Biomed Mater Res A 2005;74(3):338-46.
[152] Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007;28(25):3587-93.
[153] Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia 2009;5:1-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66672-
dc.description.abstract【研究設計】首先以新的微滴技術研發出一細胞支架,此支架為具有三維高規則排列孔洞結構的支架,再於此支架上培養豬的軟骨細胞,並藉由細胞活性測試,硫化葡萄胺聚醣 (sGAG) 定量分析及即時定量反轉錄酶-聚合酶鏈反應 (real-time PCR) 來檢驗軟骨細胞在此新型支架上的增生與分泌細胞外基質的能力。第二階段則是將豬的軟骨細胞種入此新型支架後,再植入免疫缺陷鼠的背部內,數週後取出以觀察軟骨組織再生的情形。
【研究目的】評估以新微滴技術研發的細胞支架作為軟骨組織工程再生的可行性與適切性。
【背景簡介】老化所造成的關節退化是一普遍的疾病,以美國為例,每年僅就治療退化性關節炎所支出的醫療給付金額高達一千多億美元之譜。過去治療軟骨缺損或退化包括軟骨鑽洞,軟骨摩擦整形,軟骨移植手術等,但其軟骨再生的成效仍不一致,效果存疑,故現在多以組織工程研究為主,組織工程是近來很熱門的一個學問,軟骨再生的研究即是其中一項。若能成功以組織工程達到軟骨再生的目的,對人類將是莫大的福祉。
【材料與方法】先以新的微滴技術來製作褐藻膠立體支架,測試其機械強度,量測支架孔隙度與膨脹率,並以共軛焦顯微鏡觀察支架的型態。再來將單層細胞培養的豬軟骨細胞種植到支架中,在體外環境下培養一、二、三週,進行一系列細胞接種後的分析,包括細胞存活測試,支架毒性測試,細胞外基質硫化葡萄胺聚醣 (sGAG) 分析,去氧核醣核酸 (DNA) 定量,即時定量反轉錄酶-聚合酶鏈反應(real-time PCR) 測試基因表現等研究。動物體內實驗部分則是將細胞接種於支架後,培養三天,再植入免疫缺陷小鼠背部皮下內,再分別於接種2週、4週、6週時,將此移植物取出作組織切片染色,免疫化學染色,即時定量反轉錄酶-聚合酶鏈反應 (real-time PCR) 測試基因表現等的分析。
【實驗結果】此支架的特色為孔洞大小與排列非常規則,其構造有如蜂巢,機械強度不輸冷凍乾燥法製造的支架,孔隙度與膨脹率則更佳。體外培養的結果顯示軟骨細胞在支架內存活良好,發現隨著時間增加,支架內的軟骨細胞量也增加,硫化葡萄胺聚醣 (sGAG) 淨增量持續增加,基因表現出強烈的第二型膠原蛋白和聚蛋白多糖 (aggrecan),符合軟骨應有的特性且能複製許多細胞,並維持軟骨細胞應有的表徵 (phenotype),以電子顯微鏡及共軛焦顯微鏡觀察可發現細胞可沿著支架壁生長良好,甚至一個月後仍有許多細胞存活於支架內,證明此新製程的支架確實可行。在免疫缺陷小鼠體內培養植入種植有豬軟骨細胞的支架實驗,取出時可見支架已從透明變成白色, 與軟骨極為類似, 發現隨著時間增加,支架內的軟骨細胞量也增加,且支架強度也變硬,免疫化學染色呈現出明顯S100蛋白與第二型膠原蛋白大量存在的組織,且基因表現出分泌大量的第二型膠原蛋白與聚蛋白多糖 (aggrecan),顯示出培養產生的是透明軟骨。
【研究結論】本研究顯示此一新的微滴技術製作的褐藻膠立體支架對於豬的軟骨細胞培養與細胞外基質製造皆有正向的影響,不管是體外或是體內培養都有維持透明軟骨該有的表徵。此支架的特色為孔洞大小一致與排列非常規則,非常類似軟骨細胞生活的軟骨凹穴 (lacuna),對軟骨組織工程研究相信是一深具潛力與值得進一步研究的材料。
【未來研究】目前此研究雖已進行至免疫缺陷小鼠體內培養軟骨的動物實驗,也獲致不錯的成果,但在應用至人類身上之前,仍應考慮做大型動物軟骨缺陷移植實驗,以了解實際上軟骨再生的能力。另外目前也已用此微滴技術製作其他材料的支架,也獲致初步的結果,再結合幹細胞研究以促進軟骨再生,相信是一值得研究的方向。
zh_TW
dc.description.abstract【Study Design】A novel highly organized alginate scaffold was developed by microfluidic technology. Porcine chondrocytes were cultured in this three-dimensional scaffold in vitro. The cell proliferation and extracellular matrix secretion were measured by cell viability test, 1,9-dimethylmethylene blue (DMMB) assay, and real-time reverse-transcriptase polymerase chain reaction (real-time PCR). The 2nd stage is transplanted porcine cells/scaffold constructs into the back of SCID mice. Mice were sacrificed later and analyzed the results of cartilage regeneration.
【Objective】 To evaluate the effectiveness and feasibility of the new highly organized alginate scaffold for cartilage tissue engineering.
【Background】Osteoarthritis is a degenerative disease and frequently involved knee and hip joint. The annual medical care expenditures in the U.S. are more than 150 billion. Current treatment includes multiple drilling and abrasion arthroplasty etc. for small cartilage defect. Mosaicplasty and autogenous chondrocyte transplantation are new options but gap existence and fibrocartilage formation are still problems. Combination of cells, scaffold and growth factor are considering a promising tissue engineering method for cartilage regeneration.
【Materials and Methods】Initially we developed a new method to produce a highly organized alginate scaffold by microfluidic device. The swelling ratio, porosity and mechanical strength of the new alginate scaffold were analyzed. The microstructure of the scaffold was examined by confocal laser scanning microscope. Porcine chondrocytes were seeded into the alginate scaffold and being cultured for 1, 2 and 3 weeks, respectively. The cells/scaffold constructs were analyzed with cell viability, cell toxicity, extracellular matrix, DNA quantification, gene expression (real- time PCR), SEM and confocal microscopy. In the in vivo study, cells/scaffold constructs were transplanted into the subcutaneous portion of the back of the SCID mice. The mice were sacrificed at 2, 4, and 6 weeks. The constructs were examined with histological studies, immunohistochemical staining and gene expression (real- time PCR).
【Results】The alginate scaffold revealed a highly organized porous structure with interconnection like a honeycomb. Comparing with the scaffold fabricated by freeze drying methods, the results revealed similar mechanical strength, higher porosity and swelling ratio. In vitro study, the chondrocytes can keep phenotype, highly expressed of aggrecan and collagen type II and secret much extracellular matrix (sGAG). SEM and confocal laser scanning microscope showed the chondrocytes were attached firmly on the scaffold. The results demonstrated the new scaffold is effective in chondrocyte culture. In vivo study, the morphology of harvested cells/scaffolds from the mice became harder and turned to white color like cartilage. Cells produced glycosaminoglycans can be proved by alcian blue stain. Immunohistochemical staining revealed cells secreted type II collagen and expressed S-100 protein. PCR showed that the mRNA expressions of aggrecan and type II collagen were up-regulated. The results demonstrated the regenerated cartilage tissue kept the phenotype of hyaline cartilage.
【Conclusions】The new highly organized alginate scaffold fabricated by microfluidic technology has positive effects on cell proliferation and extracellular matrix production. The in vitro and in vivo studies both revealed that the alginate scaffold can maintain normal phenotypes of chondrocytes. The pores mimic the shape and environment of the lacuna so that the chondrocytes will stay and proliferate. We believe the alginate scaffold may provide new possibilities for cartilage tissue engineering in the near future.
【Future works】In spite of the fact that this in vivo animal experiment, in combination with the previous in vitro study, revealed this alginate scaffold is a good candidate for cartilage tissue engineering, the chondrogenesis of this scaffold requires more large animal study to demonstrate for chondral defect in articular cartilage before application to human body. Currently, we also try other biomaterials to fabricate microbubble scaffolds and have the positive results. We suggest addressing mesenchymal stem cell or other source stem cell cultured in this scaffold to increase the chondrogenic properties and is a theoretically valuable research aim.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:50:20Z (GMT). No. of bitstreams: 1
ntu-100-D94548001-1.pdf: 4665225 bytes, checksum: 056915edf98aa073051913c4a963b000 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
Chapter 1 Introduction 1
1.1 Articular cartilage: structure and composition 1
1.2 Aging and degeneration of the cartilage 5
1.3 Current treatment modalities for articular cartilage injury 7
1.3.1 Bone marrow stimulating techniques 7
1.3.2 Autologous and allogenous osteochondral grafting 10
1.3.3 Autogenous chondrocytes implantation 14
1.4 Objective of this study 17
Chapter 2 Theoretical Basis 19
2.1 Biomedical engineering methods for cartilage tissue 19
2.2 Design and rational for the 3D highly organized scaffold by microfludic technology 22
Chapter 3 Materials and Methods 23
3.1 In vitro study 23
3.1.1 Fabrication of highly organized alginate scaffold by microfluidic technology 23
3.1.2 Basic assessments for highly organized alginate scaffold 26
3.1.3 Chondrocyte harvest, culture and seeding 30
3.1.4 Assessments on Chondrocytes/scaffold constructs 32
3.2 In vivo study 43
3.2.1 Chondrocyte harvest, culture and seeding 43
3.2.2 Surgical implantation 45
3.2.3 Histological studies 47
3.2.4 Immunohistochemistry 48
3.2.5 Real-time PCR analysis of gene expression 49
Chapter 4 Results 51
4.1 Results of in vitro study 51
4.1.1 Basic analysis of bubble generation 51
4.1.2 Characterization and observation of the alginate scaffold 60
4.1.3 Swelling ratio, porosity and compressive strength of the scaffold 63
4.1.4 Cell seeding, viability, and cytotoxicity test 65
4.1.5 Live/dead staining 68
4.1.6 Scanning electron microscope observation for chondrocytes/scaffold construct 72
4.1.7 Cell proliferation and glycosaminoglycan (GAG) content 70
4.1.8 Gene expression 75
4.2 Results of in vivo study 77
4.2.1 Macroscopic observation of the engrafted chondrocyte/scaffold construct 77
4.2.2 Histologic examinations 79
4.2.3 Immunohistochemical analysis 83
4.2.4 Gene expression in chondrocytes transplanted into SCID mice 85
Chapter 5 Discussion 87
5.1 In vitro study 87
5.1.1 Reasons of developing a highly organized 3D alginate scaffold for cartilage tissue engineering 87
5.1.2 Advantage of scaffold fabricated by microfluidic technology 90
5.1.3 Enhanced cell viability with less cytotoxicity 91
5.1.4 Gene expression maintaining 92
5.2 In vivo study 94
5.2.1 Characteristics of the engrafted chondrocyte/scaffold construct 94
5.2.2 Gene expression for phenotype maintenance 97
5.2.3 Mechanical strength of the retrieved engrafted construct 100
Chapter 6 Conclusions 101
Chapter 7 Future Works 102
References ……….…....………………………………………………………...………… 105
dc.language.isoen
dc.title以新微滴技術製作三維高規則排列細胞支架進行軟骨組織工程之研究zh_TW
dc.titleNovel Highly Organized Three-Dimensional Scaffold for Cartilage Tissue Engineering Prepared by Microfluidic Technologyen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.coadvisor劉華昌(Hwa-Chang Liu)
dc.contributor.oralexamcommittee李宣書,陳英和,郭宗甫,吳信志,張至宏
dc.subject.keyword褐藻膠,軟骨細胞,微滴技術,軟骨再生,組織工程,zh_TW
dc.subject.keywordalginate,chondrocyte,microfluidic,cartilage regeneration,tissue engineering,en
dc.relation.page125
dc.rights.note有償授權
dc.date.accepted2011-11-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved