Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周中哲
dc.contributor.authorYing-Chuan Chenen
dc.contributor.author陳映全zh_TW
dc.date.accessioned2021-06-17T00:49:41Z-
dc.date.available2015-01-17
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-11-30
dc.identifier.citation1. ABAQUS. Standard user’s manual version 6.3. Pawtucket, RI: Hibbitt, Karlsson & Sorensen, Inc.; 2003.
2. AISC (American Institute of Steel Construction), Seismic provisions for structural steel buildings, Chicago, IL, 2005.
3. AISC (American Institute of Steel Construction). Manual of steel construction load and resistance factor design. Chicago, IL; 2005.
4. C. C. Chou, J. H. Chen (2010). Tests and analyses of a full-scale post-tensioned RCS frame subassembly.” Journal of Constructional Steel Research 66: 1354-1365
5. Chou C-C, Liu, J-H, Pham D-H. 2011. Steel buckling-restrained braced frames with single and dual corner gusset connections: seismic tests and analyses. Earthquake Engineering and Structural Dynamics (DOI: 10.1002/eqe.1176, available on line 2011/10).
6. Chou C-C, Liu J-H. 2011. Frame and brace action forces on steel corner gusset plate connections in buckling-restrained braced frames. Earthquake Spectra (2011/5 accepted for publication).
7. Chou C-C, Chen J-H. 2011. Seismic design and shake table tests of a steel post-tensioned self-centering moment frame with a slab accommodating frame expansion. Earthquake Engineering and Structural Dynamics, 40 (11), 1241-1261.
8. Chou C-C, Chen S-Y. 2010a. Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces. Engineering Structures, 32, 2108-2121.
9. Christopoulos, C., H.-J. Kim, et al. (2006). “An innovative bracing member with flag-shape hysteretic response for enhanced structural seismic performance.” STESSA 2006: 197-203.
10. Christopoulos, C., R. Tremblay, H.-J. Kim, et al. (2008). “Self-Centering Energy Dissipative Bracing System for the Seismic Resistance of Structures: Development and Validation.” Journal of Structural Engineering 134(1): 96-107.
11. Grigorian, C. E., T. S. Yang, et al. (1993). “Slotted bolted connection energy dissipaters.” Earthquake Spectra 9(3): 491.
12. Lin C. C. (2007). “Seismic Performance of Re-Centering Brace.” MS thesis. Thesis Advisor: K. C. Tsai. National Taiwan University, Taipei, Taiwan.
13. Lin C. L. (2006). “Seismic Behavior of Post-tensioned Steel Beam to Column Connection with Friction Devices.” MS thesis. Thesis Advisor: K. C. Tsai. National Taiwan University, Taipei, Taiwan.
14. Petty, G. D. (1999). “Evaluation of a friction component for a posttensioned steel connection.” MS thesis, Lehigh Univ., Bethlelem, Pa.
15. Priestley, M. J. N., S. Sritharan, et al. (1999). “Preliminary results and conclusions from the PRESSS five-story precast concrete test building.” PCI Journal 44(6): 42-67.
16. Ricles, J. M., R. Sause, et al. (2001). “Posttensioned seismic-resistant connections for steel frames.” Journal of Structural Engineering 127(2): 113-121
17. Ricles, J. M., R. Sause, et al. (2002). “Experimental evaluation of earthquake resistant posttensioned steel connections.” Journal of Structural Engineering 128(7): 850-859.
18. Rojas, P., J. M. Ricles, et al. (2005). “Seismic performance of post-tensioned steel moment resisting frames with friction devices.” Journal of Structural Engineering 131(4): 529-540.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66662-
dc.description.abstract預力自復位斜撐是利用斜撐中之拉力構件束制斜撐中之受壓構件,並在斜撐受拉與受壓下提供自行復位之能力(在大變形下有回到零殘餘變形的能力)。而傳統自復位斜撐之變形能力受制於拉力構件之線彈性範圍之應變量,使目前自復位斜撐之極限應變量僅1.3%,對應之層間位移角為2%,而拉力構件之應變量達1.9%。線彈性應變範圍超過2%之材料鮮少,且不易取得,大部分以複合材料為主。本研究提出一新型預力自復位斜撐,增加一核心受壓構件與一組拉力構件,使斜撐之變形量在拉力構件相同應變下可達傳統自復位斜撐變形量之兩倍(或是在相同斜撐變形量下,新型斜撐之拉力構件應變量減少一半約1.0%)。本研究設計四組新型雙核心自復位斜撐與驗證其力學行為,其中四組斜撐所使用之拉力構件分別為D16鋼角線、D22玻璃纖維棒、D29玻璃纖維棒與D13碳纖維棒。實驗結果顯示雙核心自復位斜撐之力學傳力機制與理論預測相符,而對應1.2%斜撐應變與2%層間位移角之拉力構件應變量分別為0.8%、1.05%、0.9%與1.09%,皆與預測之應變量接近,並大量降低拉力構件之線彈性應變需求量。試驗中除了使用鋼角線之試體有預力損失現象,其餘三支試體皆有良好的自復位行為。本研究使用ABAQUS有限元素軟體分析四支試驗試體之行為,分析結果與預測及試驗結果符合,並對於大小預力、大小摩擦力及不同材質之拉力構件作參數研究,了解在預力大於摩擦力時才有完整之自復位行為,而摩擦力之大小決定其消逝能量之大小,但大預力會導致變形能力受限。而拉力構件之材質只影響迴圈之後勁度,並且該線彈性應變範圍影響斜撐之變形能力。zh_TW
dc.description.abstractSelf-Centering Energy Dissipative Brace is a kind of brace which uses tendons to constrain compression elements of the brace and provide self-centering properties under tension and compression force (restore to zero residual deformation). Traditional self-centering energy dissipative brace’s deformation capacity relies on the elastic deformation capacity of the tendons used inside the brace, and results in limitation of the braces’ deformability. Traditional SCED brace has a maximum strain of 1.3% when the tendons reach 1.9% strain and the frame reaches 2% inter-story drift. Tendons required to have large elastic strain mainly uses composite material. However, tendons having over 2% elastic strain material properties are rare and seldom used or researched.
This research develops a new kind of SCED brace by adding a second core element and another group of tension elements which doubles the deformation capacity compared to traditional SCED brace while using tension elements comprised of the same material properties (or largely reduce the elastic strain demand of the tendon elements to 1% under the same brace deformation when compared to traditional SCED brace). This research designed four specimens to validate the double core SCED brace which uses different materials for its tendons. Four specimens’ tendon uses D16 steel strand, D22 glass fiber, D29 glass fiber and D13 carbon fiber respectively. The results show that the mechanism of double core SCED brace is consistent with prediction. The test results and prediction of tendon strain is close which is 0.8%, 1.05%, 0.9% and 1.09% for specimen 1 to 4 respectively while the brace has a 1.2% strain corresponding to 2% inter-story drift. The result shows that double core SCED brace can significantly reduce the demand for tendon elastic strain. Except specimen 1 due to loss of pre-tension force has poor behavior in self-centering, specimen 2 to 4 have good behavior in self-centering with no pre-tension loss.
This research also uses the finite element software ABAQUS to analyze double core SCED brace behavior and compare with the testing results which is proved similar. The parametric study of double core SCED brace we choose different pre-tension force, different friction force, and different tendons to observe the difference in brace behavior. Results indicate that the lager the friction force is the larger the energy dissipation there will be, yet in order to have full self-centering behavior, the pre-tension force should be larger than friction force. However the larger the pre-tension force is the smaller the deformation capacity there is left. Unlike pre-tension force and friction force, the difference of tendons only effect the post-stiffness of the response and limits the deformation capacity due to its limitation in elastic strain.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:49:41Z (GMT). No. of bitstreams: 1
ntu-100-R98521239-1.pdf: 19584209 bytes, checksum: 3f6181c2969d85abdd36136e59fd98e8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
表目錄 xi
圖目錄 xiii
照片目錄 xix
第一章 緒論 1
第二章 雙核心自復位消能斜撐力學行為與試體設計 5
2.1 前言 5
2.2 整體力學行為 5
2.2.1 單核心自復位消能斜撐 5
2.2.2 雙核心自復位消能斜撐 7
2.2.3 行為預估方法 10
2.3 試驗試體設計 14
2.3.1 水平側向位移與消能支撐軸向位移之關係 15
2.3.2 拉力構件設計 15
2.3.3 受壓構件斷面設計 18
2.3.4 端板與摩擦板設計 21
2.3.5 各試體設計 23
2.4 材料性質 27
2.5 實驗試體構架裝置與載重歷時 27
2.5.1 油壓制動器 28
2.5.2 資料擷取系統 28
2.5.3 試驗載重歷時 28
2.5.4 試體韌性容量 29
2.5.5 試驗量測規畫 29
第三章 試體試驗與結果分析 31
3.1 前言 31
3.2 拉力構件試片測試 31
3.2.1 材料性質 31
3.2.2 測試配置、量測系統與實驗歷時 32
3.2.3 試驗結果 33
3.2.3.1 鋼鉸線試驗結果 33
3.2.3.2 纖維棒試驗結果 34
3.3 雙核心自復位消能斜撐試體製作、組裝、預力施拉與試 驗方式 36
3.3.1 試體製作 36
3.3.2 試體組裝 37
3.3.3 預力施拉 37
3.3.4 施加摩擦螺栓預張力 39
3.3.5 自復位斜撐試驗方式 39
3.4 試體一試驗現象與結果分析 39
3.4.1 第一階段(無摩擦) 39
3.4.1.1 第一階段試驗現象 39
3.4.1.2 第一階段試驗結果分析 40
3.4.2 第二階段(標準試驗) 40
3.4.2.1 第二階段試驗現象 40
3.4.2.2 第二階段試驗結果分析 42
3.4.3 第三階段(無摩擦) 44
3.4.3.1 第三階段試驗現象 44
3.4.3.2 第三階段試驗結果分析 44
3.5 試體二試驗現象與結果分析 45
3.5.1 第一階段(無摩擦) 45
3.5.1.1 第一階段試驗現象 45
3.5.1.2 第一階段試驗結果分析 45
3.5.2 第二階段(標準試驗) 45
3.5.2.1 第二階段試驗現象 45
3.5.2.2 第二階段試驗結果分析 47
3.5.3 第三階段(疲勞試驗)與第四階段(極限試驗) 49
3.5.3.1 第三階段與第四階段試驗現象 49
3.5.3.2 第三階段試驗結果分析 49
3.5.3.3 第四階段試驗結果分析 49
3.6 試體三試驗現象與結果分析 50
3.6.1 第一階段(無摩擦) 50
3.6.1.1 第一階段試驗現象 50
3.6.1.2 第一階段試驗結果分析 50
3.6.2 第二階段(標準試驗) 51
3.6.2.1 第二階段試驗現象 51
3.6.2.2 第二階段試驗結果分析 52
3.6.3 第三階段(疲勞試驗)與第四階段(極限試驗) 54
3.6.3.1 第三階段與第四階段試驗現象 54
3.6.3.2 第三階段試驗結果分析 54
3.6.3.3 第四階段試驗結果分析 55
3.7 試體四試驗現象與結果分析 55
3.7.1 第一階段(無摩擦) 55
3.7.1.1 第一階段試驗現象 55
3.7.1.2 第一階段試驗結果分析 55
3.7.2 第二階段(標準試驗) 56
3.7.2.1 第二階段試驗現象 56
3.7.2.2 第二階段試驗結果分析 58
3.7.3 第三階段(疲勞試驗)與第四階段(極限試驗) 60
3.7.3.1 第三階段與第四階段試驗現象 60
3.7.3.2 第三階段試驗結果分析 60
3.7.3.3 第四階段試驗結果分析 61
3.7.4 第五階段(摩擦試驗) 61
3.7.4.1 第五階段試驗現象 61
3.7.4.2 第五階段試驗結果分析 61
3.8 試驗結果比較 62
第四章 有限元素分析 64
4.1 前言 64
4.2 試體有限元素模型建立 64
4.2.1 結構模型 64
4.2.2 材料性質 65
4.2.3 接觸性質 66
4.3 有限元素分析結果 67
4.3.1 試體1分析結果 67
4.3.2 試體2分析結果 68
4.3.3 試體3分析結果 69
4.3.4 試體4分析結果 71
4.3.5 誤差分析 72
4.4 參數研究 72
4.4.1 模型5、6、7、8 73
4.4.2 模型9、10、11、12 73
4.4.3 模型13、14、15、16 73
4.4.4 模型17、18、19、20 73
4.4.5 參數研究分析結果 74
第五章 結論 76
5.1 結論 76
參考文獻 79
dc.language.isozh-TW
dc.subject消能zh_TW
dc.subject碳纖維zh_TW
dc.subject雙核心zh_TW
dc.subject玻璃纖維zh_TW
dc.subject自復位zh_TW
dc.subject複合材料zh_TW
dc.subject斜撐zh_TW
dc.subjectCarbon Fiberen
dc.subjectGlass Fiberen
dc.subjectSelf-Centeringen
dc.subjectDouble-Coreen
dc.subjectComposite Materialen
dc.subjectEnergy Dissipativeen
dc.subjectBraceen
dc.title雙核心自復位消能斜撐之發展與驗證zh_TW
dc.titleDevelopment and Validation for Double-Core Self-Centering Energy Dissipative Bracesen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張國鎮,蔡克銓,李中生,蘇晴茂
dc.subject.keyword雙核心,自復位,消能,斜撐,複合材料,玻璃纖維,碳纖維,zh_TW
dc.subject.keywordDouble-Core,Self-Centering,Energy Dissipative,Brace,Composite Material,Glass Fiber,Carbon Fiber,en
dc.relation.page198
dc.rights.note有償授權
dc.date.accepted2011-12-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
19.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved