Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施文彬
dc.contributor.authorZi-Fang Linen
dc.contributor.author林子方zh_TW
dc.date.accessioned2021-06-17T00:46:58Z-
dc.date.available2014-01-17
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-12-27
dc.identifier.citation[1] S. Y. Lee, H. W. Tung, W. C. Chen, and W. Fang, “Thermal actuacted solid
tunable lens,” IEEE Photonics Technol. Lett., vol. 18, pp. 2191-2193, 2006.
[2] W. Wang and J. Fang, “Variable focusing microlens chip for potential sensing
application,” IEEE Sens. J., vol. 7, pp. 11-17, 2007.
[3] X. Huang, C. M. Cheng, L. Wang, B. Wang, C. C. Su, M. S. Ho, P. R. LeDuc, and
Q. Lin, “Thermally tunable polymer microlenses,” Appl. Phys. Lett., vol. 92, pp.
259104-1-259104-3, 2008.
[4] X. Huang, J. Ni, S. Yan, P. R. LeDuc, J. Yao, and Q. Lin, “Thermally tunable
polymer microlenses for biological imaging,” J. Microelectromech. Syst., vol. 19,
pp. 1444-1449, 2010.
[5] N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens
array integrated with mircofluidic network,” Opt. Express, vol. 11, pp. 2370-2378,
2003.
[6] M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based
variable focal length microlens system,” J. Micromech. Microeng., vol. 14, pp.
1665-1673, 2004.
[7] K. H. Jeong, L. Liu, N. Chronis, and L. P. Lee, “Tunable mircodoublet lens array,”
Opt. Express, vol. 12, pp. 2494-2500, 2004.
[8] A. Werber, and H. Zappe, “Tunable mircofludic microlenses,” Appl. Opt., vol. 44,
pp. 3238-3245, 2005.
[9] H. B. Yu, G. Y. Zhou, F. S. Chau, and S. H. Wang, “Lens with transformable-type
and tunable-focal-length characteristics,” IEEE J. Sel. Top. Quant., vol. 15, pp.
1317-1322, 2009.
[10] G. H. Femg, and Y. C. Chou, “Fabrication and characterization of optofludic
flexible meniscus-biconvex lens system,” Sens. Actuators, A, vol. 156, pp.
342-349, 2009.
[11] H. Ren, and S. T. Wu, “Variable-focus liquid lens by changing aperture,” Appl.
Phys. Lett., vol. 86, pp. 211107-1-211107-3, 2005.
[12] H. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens
controlled using a servo motor,” Opt. Express, vol. 14, pp. 8031-8036, 2006.
[13] F. Schneider, C. M‥uller, and U. Wallrabe, “A low cost adaptive silicone
membrane lens,” J. Opt. A: Pure Appl. Opt., vol. 10, pp. 044002-1-044002-5,
2008.
[14] B. K. Nguyen, K. Matsumoto, and I. Shimoyama, “Polymer thin film deposited on
liquid for varifocal encapusulated liquid lenses,” Appl. Phys. Lett., vol. 93, pp.
124101-1-124101-3, 2008.
[15] G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M.
Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Bear, “Tunable polymer
lens,” Opt. Express, vol.16, pp. 11847-11857, 2008.
[16] X. F. Zeng, C. H. Li, D. F. Zhu, H. J. Cho, and H. R. Jiang, “Tunable microlens
arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech.
Microeng., vol. 20, pp. 115035-1-115035-11, 2010.
[17] D. F. Zhu, X. F. Zeng, C. H. Li, and H. R. Jiang, “Focus-tunable microlens arrays
fabricated on spherical surfaces,” J. Microelectromech. S., vol. 20, pp. 389-395,
2011.
[18] B. A. Malouin Jr, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa,
“Electromagnetic liquid pistons for capillarity-based pumping,” Lab chip, vol. 11,
pp. 393-397, 2011.
[19] S. Kuiper, B. H. W. Hendriks, L. J. Huijbregts, A. Hirschberg, C. A. Renders, and
M. A. J. van AS, “Variable-focus liquid lens for portable applications,” Proc. of
SPIE, vol. 5523, pp. 100-109, 2004.
[20] P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I.
Rodriguez, “Fludic lenses with variable focal length,” Appl. Phys. Lett., vol. 88,
pp. 041120-1-041120-3, 2006.
[21] H. Ren, and S. T. Wu, “Tunable-focus liquid microlens array using
dielectrophoretic effect,” Opt. Express, vol. 16, pp. 2646-2652, 2008.
[22] S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and
M. Y. Sung, “Mircoelectromechanical-system-based variable-focus liquid lens for
capsule endoscopes,” Jpn. J. Appl. Phys., vol. 48, pp. 052404-1-052404-4, 2009.
[23] C. C. Yang, C. G. Tsai, and J. A. Yeh, “Miniaturization of dielectric liquid
microlens in package,” Biomicrofluidics, vol. 4, pp. 043006-1-043006-9, 2010.
[24] Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length
variable microlens array based on a nematic liquid crystal,” Opt. Mater., vol. 21,
pp. 643-646, 2002.
[25] B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of
liquid-crystal layers,” Opt. Commun., vol. 250, pp. 266-273, 2005.
[26] H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using
nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, pp.
101-106, 2005.
[27] H. Ren, and S. T. Wu, “Adaptive liquid crystal lens with large focal length
tunability,” Opt. Express, vol. 14, pp. 11292-11298, 2006.
[28] B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from
negative to positive values,” IEEE Photonic. Tech. L., vol. 18, pp. 79-81, 2006.
[29] Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN
liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express,
vol. 18, pp. 18506-18518, Auguest 2010.
[30] M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato,
“Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys., vol. 49, pp.
100204-1-100204-4, October 2010.
[31] H. C. Lin, and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with
a built-in planar polymeric lens,” Appl. Phys. Lett., vol. 98, pp.
083503-1-083503-3, 2011
[32] P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N.
Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett., vol.
35, pp. 336-338, February 2010.
[33] Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles:
Reality, Potential, and Challenges, 2nd ed., SPIE press, 2004.
[34] Z. Gao, “Modeling and simulation of the coupled mechanical-electrical response
of dielectric elastomers,” Ph.D. dissertation, New Brunswick Rutgers, The State
University of New Jersey, 2007.
[35] R. Pelrine, R, Kornbluh, and J. Joseph, “Electrostriction of polymer dielectrics
with compliant electrodes as a means of actuation,” Sensor Actuat. A-Phys., vol.
64, pp. 77-85, 1998.
[36] G. Kofod, “Dielectric elastomer actuators,” Ph.D. dissertation, The Technical
University of Denmark, 2001.
[37] C. L. Goldsmith, Z. Yao, S. Eshelman, and D. Denniston, “Performance of
low-loss RF MEMS capacitive switches,” IEEE Microw. Guided W., vol. 8,
pp.269-271, 1998.
[38] S. P. Pacheco, L. P. B. Katehi, and C. T.-C Nguyen, “Design of low actuation
voltage RF MEMES switch,” IEEE MTT-S, vol. 1, pp. 165-168, 2000.
[39] X. Rottenberg, S. Brebels, W. De Raedt, B. Nauwelaers, and H. A. C. Tilmans,
“RF-power: driver for electrostatic RF-MEMS devices,” J. Micromech. Microeng.,
vol. 14, pp. 43-48, 2004.
[40] D. M. Fang, X. H. Li, Q. Yuan, and H. X. Zhang, “Effect of etch holes on the
capacitance and pull-in voltage in MEMS tunable capacitors,” Int. J. Electron., vol.
97, pp. 1439-1448, 2010.
[41] D. Yamane, W. Sun, H. Seita, S. Kawasaki, H. Fujita, and H. Toshiyoshi, “A
Ku-band dual-SPDT RF-MEMS switch by double-side SOI bulk
micromachining,” J. Microelectromech. S., vol. 20, pp. 1211-1221, 2011.
[42] A. Alexeenko, S. Chigullapalli, J. Zeng, X. Guo, A. Kovacs, and D. Peroulis,
“Uncertainty in microscale gas damping: Implication on dynamics of capacitive
MEMS switches,” Reliab. Eng. Syst. Safe., vol. 96, pp. 1171-1183, 2011.
[43] E. Ogawa, T. Ikehashi, T. Saito, H. Yamazaki, K. Masunishi, Y. Tomizawa, T.
Ohguro, Y. Sugizaki, Y. Toyoshima, and H. Shibata, “A creep-immune
electrostatic actuator for RF-MEMS tunable capacitor,” Sensor Actuat. A-Phys.,
vol. 169, pp. 373-377, 2011.
[44] M. Liu, and Q. Chen, “Characterization study of bonded and unbonded
polydimethylsiloxane aimed for bio-micro-electromechancial systems-related
applications,” J. Micro/Nanolith. MEMS MOEMS, vol. 6, pp. 023001-1-023001-6,
2007.
[45] R. C. Hibbeler, Mechanics of materials, 7th ed., Pearson, 2007.
[46] S. Timoshenko, Theory of plates and shells, 2nd ed., McGraw-Hill book company,
1989.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66623-
dc.description.abstract隨著科技的蓬勃發展,各式元件都朝著低耗能及輕薄短小的趨勢發展。現今
市面上所販售的變焦機制,係利用多個透鏡所組成的透鏡組,並藉由線性馬達及
齒輪組來改變各個透鏡之間的間距,以達到變焦的效果。但是此機制所需求的裝
置空間較大,為了縮減佔有的空間,近年來,便有人發展出了可變焦的透鏡。本
論文運用了介電致動高分子材料來製作可變焦的透鏡,由於介電致動高分子材料
具有良好的力學性質、方便製作、低成本並且不受溫濕度變化的特性。介電致動
器係由兩片平整的電極和一層介電高分子材料所組成,結構就像三明治一樣。它
的驅動特性,會受驅動電壓大小及其幾何尺寸上的限制影響;隨著施加的電壓上
升,因其所受的靜電力增加而使得上下兩電極逐漸靠攏並擠壓中間的介電高分子
材料。然而,在邊界受限制的情況下,被擠壓的介電高分子材料會產生翹曲的情
形,本論文運用此結果作為可變焦透鏡的工作原理。在製程方面,本論文用懸浮
的方式來製作超薄且均勻的聚二甲基矽氧烷(PDMS)薄膜並以食鹽水溶液來作為透
明電極使用。本論文中使用了兩種常見的焦距量測方式來測量可變焦的焦距,實
驗結果顯示本論文中所製作的可變焦透鏡可達到3 mm 的變焦範圍在電壓從0 施加
到900 V 的範圍內。從電流的量測結果可以看出,此介電致動器的能量消耗主要
是用於每一次的變焦,並且只需要持續提供很微量的能量來維持變形量。在600 V
的情況下,電流很穩定,但是在600 V 以上的電流圖就有不規則的突波產生,經
觀察並推測,在大變形量下,金電極表面會有些微的裂紋產生。本論文最後將此
可變焦透鏡安裝於市售筆記型電腦的視訊鏡頭,並得到良好的影像輸出。
zh_TW
dc.description.abstractWith the rapid development of science and technology, all kinds of devices are in the trend of becoming thinner, lighter, smaller, and having lower power consumption.
Current mechanism of commercial tunable lenses utilizes multiple lenses of different focal lengths to form a sophisticated optical system. With the linear motor and gears, the focal length can be tuned by changing the spacing between lenses. However, this mechanism needs a larger System volume. In recent years, many efforts have been taken
to develop tunable lens to reduce the system volume. In this thesis, we present a tunable lens which is driven by dielectric elastomer actuator (DEA). DEA has good mechanical
properties, low cost, low power consumption, and is less affected by temperature and humidity. DEA is formed by a layer of dielectric elastomer sandwiched by two
complaint electrodes. The operating characteristics of DEA are dominated by the applied voltage and the geometric configuration. With increasing applied voltage, which
increases electrostatic force, the complaint electrodes of the actuator gradually become closer to each other and the dielectric elastomer is squeezed. Under boundary restrictions, extruded dielectric elastomer will be buckled. This thesis uses this result on tunable lens system. In the process, the release method is used to fabricate thin and
uniform polydimethylsiloxane (PDMS) membrane and NaCl solution is used as a transparent electrode. In the experiments, we used two common methods to measure the focal length of our tunable lens system. The experimental results show that the focal length can be tuned by 3 mm by applying voltage from 0 V to 900 V. From the current measurement results, the energy is mainly consumed at the moment of DEA deformation. It only needs little energy to maintain the deformation. When the applied voltage is below 600 V, the current is stable. However, the current has irregular impulses when the applied voltage is over 600 V. By observation and speculation, the gold electrode surface has some defects in large deformation. Finally, we setup our
tunable lens on the webcam of a commercial notebook computer to function and capture clear images.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:46:58Z (GMT). No. of bitstreams: 1
ntu-100-R98522525-1.pdf: 5038979 bytes, checksum: 134a87da0ab7b83392745896205d7a5d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsChapter 1 Introduction .......................................................................................... 1
1.1 Background ................................................................................................ 1
1.2 Literature review of tunable lens ................................................................. 2
1.2.1 Method of shape deformation ............................................................ 2
1.2.2 Electrowetting ................................................................................... 5
1.2.3 Liquid crystal tunable lens ................................................................. 6
1.2.4 Fresnel zone plate .............................................................................. 8
1.3 Overview of Dielectric electroactive polymers ............................................ 9
1.4 Motivation and purpose of research .......................................................... 12
Chapter 2 Working principle and modeling ....................................................... 13
2.1 Working principle ..................................................................................... 13
2.2 Electromechanical analysis of tunable lens system .................................... 16
2.3 Summary .................................................................................................. 22
Chapter 3 Design and fabrication ....................................................................... 23
3.1 Tunable gel lens with radial electrodes ...................................................... 23
3.1.1 Structure design of tunable lens with radial electrodes ..................... 23
3.1.2 Fabrication process .......................................................................... 25
3.2 Full-view tunable liquid lens ..................................................................... 28
3.2.1 Full-view tunable liquid lens design ................................................. 28
3.2.2 Fabrication process .......................................................................... 30
Chapter 4 Results and discussion ........................................................................ 32
4.1 Transmittance measurement ...................................................................... 32
4.1.1 Transmittance measurement setup .................................................... 32
4.1.2 Transmittance measurement results and discussion .......................... 33
4.2 Focal length measurement......................................................................... 35
4.2.1 Microscope measurement setup ....................................................... 35
4.2.2 Experimental results and discussion of microscope measurement..... 37
4.2.3 Measurement setup of radius of curvature ........................................ 41
4.2.4 Results and discussion of measuring the radius of curvature ............ 41
4.2.5 Current measurement ....................................................................... 44
4.2.6 Connection with camera .................................................................. 48
4.2.7 Transparent electrode: electrolyte..................................................... 50
4.3 Summary .................................................................................................. 52
Chapter 5 Conclusion and future work .............................................................. 55
5.1 Conclusion ................................................................................................ 55
5.2 Future work .............................................................................................. 57
REFERENCE ............................................................................................................. 58
dc.language.isoen
dc.subject變焦透鏡zh_TW
dc.subject介電致動高分子材料zh_TW
dc.subject靜電力zh_TW
dc.subject翹曲zh_TW
dc.subject透明電極zh_TW
dc.subjectelectrostatic forceen
dc.subjectdielectric elastomer actuatoren
dc.subjectTunable focal length systemen
dc.subjecttransparent electrodeen
dc.subjectbuckling modeen
dc.title介電彈性致動器應用於可變焦透鏡系統之研究zh_TW
dc.titleStudy of tunable lens based on dielectric elastomer actuatoren
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee胡毓忠,林沛群,施博仁
dc.subject.keyword變焦透鏡,介電致動高分子材料,靜電力,翹曲,透明電極,zh_TW
dc.subject.keywordTunable focal length system,dielectric elastomer actuator,electrostatic force,buckling mode,transparent electrode,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2011-12-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved