Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66598
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor徐振哲
dc.contributor.authorShih-Min Changen
dc.contributor.author張詩敏zh_TW
dc.date.accessioned2021-06-17T00:45:27Z-
dc.date.available2013-02-08
dc.date.copyright2012-02-08
dc.date.issued2012
dc.date.submitted2012-01-06
dc.identifier.citation1. D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech and J. A. Ayllon, ' New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation ', J. Photochem. Photobiol. A-Chem., 175 (2-3), 165-171 (2005).
2. A. E. Suliman, Y. W. Tang and L. Xu, ' Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells ', Solar Energy Materials and Solar Cells, 91, 1658-1662 (2007).
3. S. Sato, R. Nakamura and S. Abe, ' Visible-light sensitization of TiO2 photocatalysts by wet-method N doping ', Applied Catalysis a-General, 284 (1-2), 131-137 (2005).
4. M. Mrowetz, W. Balcerski, A. J. Colussi and M. R. Hoffmann, ' Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination ', J. Phys. Chem. B, 108 (45), 17269-17273 (2004).
5. S. Klosek and D. Raftery, ' Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol ', J. Phys. Chem. B, 105 (14), 2815-2819 (2001).
6. T. Yuan, R. Cai, R. Ran, Y. K. Zhou and Z. P. Shao, ' A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase ', Journal of Alloys and Compounds, 505 (1), 367-373 (2010).
7. S. H. Ju and Y. C. Kang, ' Characteristics of spherical-shaped Li4Ti5O12 anode powders prepared by spray pyrolysis ', Journal of Physics and Chemistry of Solids, 70 (1), 40-44 (2009).
8. C. H. Jiang, Y. Zhou, I. Honma, T. Kudo and H. S. Zhou, ' Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material ', J. Power Sources, 166 (2), 514-518 (2007).
9. J. G. Yu, M. H. Zhou, B. Cheng and X. J. Zhao, ' Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders ', Journal of Molecular Catalysis a-Chemical, 246 (1-2), 176-184 (2006).
10. D. Li, H. Haneda, S. Hishita and N. Ohashi, ' Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization ', Chemistry of Materials, 17 (10), 2588-2595 (2005).
11. D. L. Liao, C. A. Badour and B. Q. Liao, ' Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange ', J. Photochem. Photobiol. A-Chem., 194 (1), 11-19 (2008).
12. M. Agrawal, S. Gupta, A. Pich, N. E. Zafeiropoulos and M. Stamm, ' A Facile Approach to Fabrication of ZnO-TiO2 Hollow Spheres ', Chemistry of Materials, 21 (21), 5343-5348 (2009).
13. A. Lopez-Noriega, E. Ruiz-Hernandez, S. M. Stevens, D. Arcos, M. W. Anderson, O. Terasaki and M. Vallet-Regi, ' Mesoporous Microspheres with Doubly Ordered Core-Shell Structure ', Chemistry of Materials, 21 (1), 18-20 (2009).
14. B. Guo, H. Yim, A. Khasanov and J. Stevens, ' Formation of Magnetic FexOy/Silica Core-Shell Particles in a One-Step Flame Aerosol Process ', Aerosol Science and Technology, 44 (4), 281-291 (2010).
15. C. Li, Z. S. Yu, S. M. Fang, H. X. Wang, Y. H. Gui, J. Q. Xu and R. F. Chen, ' Preparation and performance of ZnO nanoparticle aggregation with porous morphology ', Journal of Alloys and Compounds, 475 (1-2), 718-722 (2009).
16. A. K. Peterson, D. G. Morgan and S. E. Skrabalak, ' Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template ', Langmuir, 26 (11), 8804-8809 (2010).
17. W. N. Wang, I. W. Lenggoro, Y. Terashi, T. O. Kim and K. Okuyama, ' One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors ', Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 123 (3), 194-202 (2005).
18. H. W. Zhang and M. T. Swihart, ' Synthesis of tellurium dioxide nanoparticles by spray pyrolysis ', Chemistry of Materials, 19 (6), 1290-1301 (2007).
19. M. R. Yang, T. H. Teng and S. H. Wu, ' LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis ', J. Power Sources, 159 (1), 307-311 (2006).
20. S. H. Ju and Y. C. Kang, ' Effects of preparation conditions on the electrochemical and morphological characteristics of Li4Ti5O12 powders prepared by spray pyrolysis ', J. Power Sources, 189 (1), 185-190 (2009).
21. M. Eslamian, M. Ahmed and N. Ashgriz, ' Modelling of nanoparticle formation during spray pyrolysis ', Nanotechnology, 17 (6), 1674-1685 (2006).
22. K. H. Kim, J. K. Park, C. H. Kim, H. D. Park, H. Chang and S. Y. Choi, ' Synthesis of SrTiO3 : Pr,Al by ultrasonic spray pyrolysis ', Ceramics International, 28 (1), 29-36 (2002).
23. H. K. Kammler, L. Madler and S. E. Pratsinis, ' Flame synthesis of nanoparticles ', Chem. Eng. Technol., 24 (6), 583-596 (2001).
24. H. K. Ma and H. A. Yang, ' Combustion synthesis of titania nanoparticles in a premixed methane flame ', Journal of Alloys and Compounds, 504 (1), 115-122 (2010).
25. P. Sunsap, D. J. Kim and K. S. Kim, ' Characterization of TiO2 particles synthesized in diffusion flame reactor ', Industrial & Engineering Chemistry Research, 47 (7), 2308-2313 (2008).
26. F. O. Ernst, H. K. Kammler, A. Roessler, S. E. Pratsinis, W. J. Stark, J. Ufheil and P. Novak, ' Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8 ', Materials Chemistry and Physics, 101 (2-3), 372-378 (2007).
27. A. Steplewska and E. Borowiak-Palen, ' Study on the effect of the metal-support (Fe-MgO and Pt-MgO) interaction in alcohol-CVD synthesis of carbon nanotubes ', J. Nanopart. Res., 13 (5), 1987-1994 (2011).
28. Z. Ding, X. J. Hu, P. L. Yue, G. Q. Lu and P. F. Greenfield, ' Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition ', Catalysis Today, 68 (1-3), 173-182 (2001).
29. P. V. Ananthapadmanabhan, M. Vijay, T. K. Thiyagarajan, K. P. Sreekumar, V. Selvarajan, J. G. Yu and S. W. Liu, ' In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization ', Plasma Science & Technology, 12 (4), 426-432 (2010).
30. C. Jiang, M. Ichihara, I. Honma and H. S. Zhou, ' Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode ', Electrochimica Acta, 52 (23), 6470-6475 (2007).
31. K. Tomita, M. Kobayashi, V. Petrykin, S. Yin, T. Sato, M. Yoshimura and M. Kakihana, ' Hydrothermal synthesis of TiO2 nano-particles using novel water-soluble titanium complexes ', J. Mater. Sci., 43 (7), 2217-2221 (2008).
32. M. Hirano, ' Hydrothermal synthesis and characterization of ZnGa2O4 spinel fine particles ', Journal of Materials Chemistry, 10 (2), 469-472 (2000).
33. S. Z. Hu, A. J. Wang, X. Li and H. Lowe, ' Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light ', Journal of Physics and Chemistry of Solids, 71 (3), 156-162 (2010).
34. A. Laumann, K. T. Fehr, M. Wachsmann, M. Holzapfel and B. B. Iversen, ' Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions - Its stability and structural properties ', Solid State Ionics, 181 (33-34), 1525-1529 (2010).
35. M. Ganesan, M. V. T. Dhananjeyan, K. B. Sarangapani and N. G. Renganathan, ' Solid state rapid quenching method to synthesize micron size Li4Ti5O12 ', Journal of Electroceramics, 18 (3-4), 329-337 (2007).
36. T. Kostlanova, J. Dedecek and P. Krtil, ' The effect of the inner particle structure on the electronic structure of the nano-crystalline Li-Ti-O spinels ', Electrochimica Acta, 52 (5), 1847-1856 (2007).
37. H. Y. Lu, S. Y. Chu and S. S. Tan, ' The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles ', J. Cryst. Growth, 269 (2-4), 385-391 (2004).
38. Y. Lin, Y. J. Yang and C. C. Hsu, ' Synthesis of niobium oxide nanowires using an atmospheric pressure plasma jet ', Thin Solid Films, 519 (10), 3043-3049 (2011).
39. Y. W. Hsu, H. C. Li, Y. J. Yang and C. C. Hsu, ' Deposition of zinc oxide thin films by an atmospheric pressure plasma jet ', Thin Solid Films, 519 (10), 3095-3099 (2011).
40. S. Z. Li, Y. C. Hong, H. S. Uhm and Z. K. Li, ' Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure ', Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 43 (11A), 7714-7717 (2004).
41. C. C. Hsu and C. Y. Wu, ' Electrical characterization of the glow-to-arc transition of an atmospheric pressure pulsed arc jet ', J. Phys. D-Appl. Phys., 42 (21)(2009).
42. C. C. Hsu, C. Y. Wu, C. W. Chen and W. C. Cheng, ' Mode Transition of an Atmospheric Pressure Arc Plasma Jet Sustained by Pulsed DC Power ', Jpn. J. Appl. Phys., 48 (7), 5 (2009).
43. C. C. Hsu and C. Y. Wu, ' Electrical characterization of the glow-to-arc transition of an atmospheric pressure pulsed arc jet ', J. Phys. D-Appl. Phys., 42 (21), 8 (2009).
44. F. E. Kruis, H. Fissan and A. Peled, ' Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - A review ', Journal of Aerosol Science, 29 (5-6), 511-535 (1998).
45. T. T. Kodas, E. M. Engler and V. Y. Lee, ' gereration of thick Ba2YCu3O7 films by aerosol deposition ', Applied Physics Letters, 54 (19), 1923-1925 (1989).
46. H. Masuda, K. Higashitani and H. Yoshida, 'Powder technology handbook ', Taylor & Francis, Boca Raton :, (2006).
47. M. T. Swihart, ' Vapor-phase synthesis of nanoparticles ', Curr. Opin. Colloid Interface Sci., 8 (1), 127-133 (2003).
48. A. Gurav, T. Kodas, T. Pluym and Y. Xiong, ' aerosol processing of materials ', Aerosol Science and Technology, 19 (4), 411-452 (1993).
49. N. H. Hai, R. Lemoine, S. Remboldt, M. Strand, J. E. Shield, D. Schmitter, R. H. Kraus, M. Espy and D. L. Leslie-Pelecky, ' Iron and cobalt-based magnetic fluids produced by inert gas condensation ', Journal of Magnetism and Magnetic Materials, 293 (1), 75-79 (2005).
50. K. Wegner, B. Walker, S. Tsantilis and S. E. Pratsinis, ' Design of metal nanoparticle synthesis by vapor flow condensation ', Chemical Engineering Science, 57 (10), 1753-1762 (2002).
51. R. C. Flagan and M. M. Lunden, ' Particle structure control in nanoparticle synthesis from the vapor phase ', Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 204 (1-2), 113-124 (1995).
52. E. Gyorgy, A. P. del Pino, P. Serra and J. L. Morenza, ' Microcolumn development on titanium by multipulse laser irradiation in nitrogen ', Journal of Materials Research, 18 (9), 2228-2234 (2003).
53. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev and F. Bozon-Verduraz, ' Nanoparticles produced by laser ablation of solids in liquid environment ', Appl. Surf. Sci., 186 (1-4), 546-551 (2002).
54. P. Ayyub, R. Chandra, P. Taneja, A. K. Sharma and R. Pinto, ' Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures ', Applied Physics a-Materials Science & Processing, 73 (1), 67-73 (2001).
55. S. C. Zhang, G. L. Messing and M. Borden, ' synthesis of solid, spherical zirconia particles by spray pyrolysis ', Journal of the American Ceramic Society, 73 (1), 61-67 (1990).
56. G. L. Messing, S. C. Zhang and G. V. Jayanthi, ' ceramic powder synthesis by spray-pyrolysis ', Journal of the American Ceramic Society, 76 (11), 2707-2726 (1993).
57. K. Okuyama and I. W. Lenggoro, ' Preparation of nanoparticles via spray route ', Chemical Engineering Science, 58 (3-6), 537-547 (2003).
58. G. V. Jayanthi, S. C. Zhang and G. L. Messing, ' modeling of solid particle formation during solution aerosol thermolysis - the evaporation stage ', Aerosol Science and Technology, 19 (4), 478-490 (1993).
59. D. Li, W. Y. Teoh, C. Selomulya, R. C. Woodward, R. Amal and B. Rosche, ' Flame-sprayed superparamagnetic bare and silica-coated maghemite nanoparticles: Synthesis, characterization, and protein adsorption-desorption ', Chemistry of Materials, 18 (26), 6403-6413 (2006).
60. S. E. Pratsinis, ' Flame aerosol synthesis of ceramic powders ', Progress in Energy and Combustion Science, 24 (3), 197-219 (1998).
61. W. J. Stark and S. E. Pratsinis, ' Aerosol flame reactors for manufacture of nanoparticles ', Powder Technology, 126 (2), 103-108 (2002).
62. I. Taniguchi, C. K. Lim, D. Song and M. Wakihara, ' Particle morphology and electrochemical performances of spinel LiMn2O4 powders synthesized using ultrasonic spray pyrolysis method ', Solid State Ionics, 146 (3-4), 239-247 (2002).
63. S. H. Ju and Y. C. Kang, ' Effects of drying control chemical additive on properties of Li4Ti5O12 negative powders prepared by spray pyrolysis ', J. Power Sources, 195 (13), 4327-4331 (2010).
64. S. H. Ju and Y. C. Kang, ' Effects of types of drying control chemical additives on the morphologies and electrochemical properties of Li4Ti5O12 anode powders prepared by spray pyrolysis ', Journal of Alloys and Compounds, 506 (2), 913-916 (2010).
65. J. Rodriguez-Baez, A. Maldonado, L. Castaneda, G. D. Delgado, R. Castanedo-Perez and M. D. Olvera, ' On the effect of acetic acid on physical properties of chemically sprayed fluorine-doped ZnO thin films ', Thin Solid Films, 515 (24), 8689-8694 (2007).
66. B. Xia, I. W. Lenggoro and K. Okuyama, ' Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition ', Adv. Mater., 13 (20), 1579-1582 (2001).
67. S. Turner, S. M. F. Tavernier, G. Huyberechts, E. Biermans, S. Bals, K. J. Batenburg and G. Van Tendeloo, ' Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution ', J. Nanopart. Res., 12 (2), 615-622 (2010).
68. B. Xia, I. W. Lenggoro and K. Okuyama, ' Nanoparticle separation in salted droplet microreactors ', Chemistry of Materials, 14 (6), 2623-2627 (2002).
69. C. Panatarani, I. W. Lenggoro and K. Okuyama, ' Synthesis of single crystalline ZnO nanoparticles by salt-assisted spray pyrolysis ', J. Nanopart. Res., 5 (1-2), 47-53 (2003).
70. Y. Itoh, I. W. Lenggoro, K. Okuyama, L. Madler and S. E. Pratsinis, ' Size tunable synthesis of highly crystalline BaTiO3 nanoparticles using salt-assisted spray pyrolysis ', J. Nanopart. Res., 5 (3-4), 191-198 (2003).
71. I. W. Lenggoro, T. Hata, F. Iskandar, M. M. Lunden and K. Okuyama, ' An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor ', Journal of Materials Research, 15 (3), 733-743 (2000).
72. R. J. Lang, ' Ultrasonic atomization of liquids ', J. Acoust. Soc. Am., 34 (1), 6-& (1962).
73. W. N. Wang, A. Purwanto, I. W. Lenggoro, K. Okuyama, H. Chang and H. D. Jang, ' Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis ', Industrial & Engineering Chemistry Research, 47 (5), 1650-1659 (2008).
74. Y. Tokunaga, Y. Suyama and A. Kato, ' preparation of sub-micro TiO2-Al2O3 powders by the vapor-phase reaction of TiCl4-AlBr3-O2 system ', Nippon Kagaku Kaishi, (11), 1758-1762 (1982).
75. W. H. Suh and K. S. Suslick, ' Magnetic and porous nanospheres from ultrasonic spray pyrolysis ', Journal of the American Chemical Society, 127 (34), 12007-12010 (2005).
76. X. D. Zhou, S. C. Zhang, W. Huebner, P. D. Ownby and H. C. Gu, ' Effect of the solvent on the particle morphology of spray dried PMMA ', J. Mater. Sci., 36 (15), 3759-3768 (2001).
77. S. H. Kim, B. Y. H. Liu and M. R. Zachariah, ' Synthesis of nanoporous metal oxide particles by a new inorganic matrix spray pyrolysis method ', Chemistry of Materials, 14 (7), 2889-2899 (2002).
78. S. J. Shih, K. B. Borisenko, L. J. Liu and C. Y. Chen, ' Multiporous ceria nanoparticles prepared by spray pyrolysis ', J. Nanopart. Res., 12 (5), 1553-1559 (2010).
79. S. C. Zhang, G. L. Messing and W. Huebner, ' YBa2Cu3O7-X superconductor powder synthesis by spray pyrolysis of organic-acid solutions ', Journal of Aerosol Science, 22 (5), 585-599 (1991).
80. D. W. Sproson, G. L. Messing and T. J. Gardner, ' powder synthesis for electronic ceramics by evaporative decomposition of solutions ', Ceramics International, 12 (1), 3-7 (1986).
81. W. H. Suh, A. R. Jang, Y. H. Suh and K. S. Suslick, ' Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity ', Adv. Mater., 18 (14), 1832-+ (2006).
82. C. J. Geankoplis, 'Transport processes and separation process principles : (includes unit operations) ', Prentice Hall Professional Technical Reference, Upper Saddle River, NJ, (2003).
83. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, ' The atmospheric-pressure plasma jet: A review and comparison to other plasma sources ', Ieee Transactions on Plasma Science, 26 (6), 1685-1694 (1998).
84. Y. W. Hsu, Y. J. Yang, C. Y. Wu and C. C. Hsu, ' Downstream Characterization of an Atmospheric Pressure Pulsed Arc Jet ', Plasma Chemistry and Plasma Processing, 30 (3), 363-372 (2010).
85. Z. L. Wang, ' Zinc oxide nanostructures: growth, properties and applications ', Journal of Physics-Condensed Matter, 16 (25), R829-R858 (2004).
86. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo and H. Siegbahn, ' Nanostructured ZnO electrodes for dye-sensitized solar cell applications ', J. Photochem. Photobiol. A-Chem., 148 (1-3), 57-64 (2002).
87. J. Q. Xu, Q. Y. Pan, Y. A. Shun and Z. Z. Tian, ' Grain size control and gas sensing properties of ZnO gas sensor ', Sensors and Actuators B-Chemical, 66 (1-3), 277-279 (2000).
88. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, ' Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2 ', Solar Energy Materials and Solar Cells, 77 (1), 65-82 (2003).
89. H. F. Lin, S. C. Liao and S. W. Hung, ' The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst ', J. Photochem. Photobiol. A-Chem., 174 (1), 82-87 (2005).
90. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, ' A comprehensive review of ZnO materials and devices ', Journal of Applied Physics, 98 (4), 103 (2005).
91. X. M. Fan, J. S. Lian, Z. X. Guo and H. J. Lu, ' Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates ', Appl. Surf. Sci., 239 (2), 176-181 (2005).
92. T. Sato, T. Tanigaki, H. Suzuki, Y. Saito, O. Kido, Y. Kimura, C. Kaito, A. Takeda and S. Kaneko, ' Structure and optical spectrum of ZnO nanoparticles produced in RF plasma ', J. Cryst. Growth, 255 (3-4), 313-316 (2003).
93. P. Singh, A. Kumar, Deepak and D. Kaur, ' ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapour deposition ', Optical Materials, 30 (8), 1316-1322 (2008).
94. K. T. Roro, J. K. Dangbegnon, S. Sivaraya, A. W. R. Leitch and J. R. Botha, ' Influence of metal organic chemical vapor deposition growth parameters on the luminescent properties of ZnO thin films deposited on glass substrates ', J. Appl. Phys., 103 (5)(2008).
95. M. Gratzel, ' Solar energy conversion by dye-sensitized photovoltaic cells ', Inorganic Chemistry, 44 (20), 6841-6851 (2005).
96. A. L. Linsebigler, G. Q. Lu and J. T. Yates, ' photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results ', Chemical Reviews, 95 (3), 735-758 (1995).
97. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, ' environmental applications of semiconductor photocatalysis ', Chemical Reviews, 95 (1), 69-96 (1995).
98. K. Hashimoto, H. Irie and A. Fujishima, ' TiO2 photocatalysis: A historical overview and future prospects ', Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 44 (12), 8269-8285 (2005).
99. A. Wold, ' photocatalytic properties of TiO2 ', Chemistry of Materials, 5 (3), 280-283 (1993).
100. C. Chen, H. Bai and C. Chang, ' Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2 ', Journal of Physical Chemistry C, 111 (42), 15228-15235 (2007).
101. A. Fujishima and K. Honda, ' electrochemical photolysis of water at a semiconductor electrode ', Nature, 238 (5358), 37-+ (1972).
102. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, ' Visible-light photocatalysis in nitrogen-doped titanium oxides ', Science, 293 (5528), 269-271 (2001).
103. A. Di Paola, G. Cufalo, M. Addamo, M. B. Ellardita, R. Campostrini, M. Ischia, R. Ceccato and L. Palmisano, ' Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions ', Colloids and Surfaces a-Physicochemical and Engineering Aspects, 317 (1-3), 366-376 (2008).
104. U. Diebold, ' The surface science of titanium dioxide ', Surface Science Reports, 48, 53-229 (2003).
105. C. R. R. a. H. F. M. Ernest M. Levin, 'Phase diagrams for ceramists ', (1975).
106. P. D. Cozzoli, A. Kornowski and H. Weller, ' Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods ', Journal of the American Chemical Society, 125 (47), 14539-14548 (2003).
107. J. Joo, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon and T. Hyeon, ' Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli ', J. Phys. Chem. B, 109 (32), 15297-15302 (2005).
108. R. L. Penn and J. F. Banfield, ' Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2 ', American Mineralogist, 83 (9-10), 1077-1082 (1998).
109. M. H. Zhou and J. G. Yu, ' Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders ', Journal of Hazardous Materials, 152 (3), 1229-1236 (2008).
110. J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang and L. Z. Zhang, ' Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders ', Chemistry of Materials, 14 (9), 3808-3816 (2002).
111. K. Yamada, H. Nakamura, S. Matsushima, H. Yamane, T. Haishi, K. Ohira and K. Kumada, ' Preparation of N-doped TiO2 particles by plasma surface modification ', Comptes Rendus Chimie, 9 (5-6), 788-793 (2006).
112. J. H. Park, S. Kim and A. J. Bard, ' Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting ', Nano Lett., 6 (1), 24-28 (2006).
113. T. Ohno, T. Mitsui and M. Matsumura, ' Photocatalytic activity of S-doped TiO2 photocatalyst under visible light ', Chemistry Letters, 32 (4), 364-365 (2003).
114. Y. Cong, J. L. Zhang, F. Chen and M. Anpo, ' Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity ', Journal of Physical Chemistry C, 111 (19), 6976-6982 (2007).
115. F. X. Zhang, N. J. Guan, Y. Z. Li, X. Zhang, J. X. Chen and H. S. Zeng, ' Control of morphology of silver clusters coated on titanium dioxide during photocatalysis ', Langmuir, 19 (20), 8230-8234 (2003).
116. S. C. Kim, M. C. Heo, S. H. Hahn and E. J. Kim, ' Photocatalytic activity of Pd-doped TiO2 thin films by using a RF magnetron co-sputtering method ', Journal of the Korean Physical Society, 47 (4), 700-704 (2005).
117. H. Einaga, A. Ogata, S. Futamura and T. Ibusuki, ' The stabilization of active oxygen species by Pt supported on TiO2 ', Chemical Physics Letters, 338 (4-6), 303-307 (2001).
118. X. T. Hong, Z. P. Wang, W. M. Cai, F. Lu, J. Zhang, Y. Z. Yang, N. Ma and Y. J. Liu, ' Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide ', Chemistry of Materials, 17 (6), 1548-1552 (2005).
119. Y. Nosaka, M. Matsushita, J. Nishino and A. Y. Nosaka, ' Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds ', Science and Technology of Advanced Materials, 6 (2), 143-148 (2005).
120. C. M. Huang, L. C. Chen, K. W. Cheng and G. T. Pan, ' Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation ', Journal of Molecular Catalysis a-Chemical, 261 (2), 218-224 (2007).
121. M. Vijay, V. Selvarajan, K. P. Sreekumar, J. G. Yu, S. W. Liu and P. V. Ananthapadmanabhan, ' Characterization and visible light photocatalytic properties of nanocrystalline TiO2 synthesized by reactive plasma processing ', Solar Energy Materials and Solar Cells, 93 (9), 1540-1549 (2009).
122. M. Vijay, P. V. Ananthapadmanabhan and K. P. Sreekumar, ' Evolution of photo-catalytic properties of reactive plasma processed nano-crystalline titanium dioxide powder ', Appl. Surf. Sci., 255 (23), 9316-9322 (2009).
123. C. C. Chen, H. L. Bai, H. M. Chein and T. M. Chen, ' Continuous generation of TiO2 nanoparticles by an atmospheric pressure plasma-enhanced process ', Aerosol Science and Technology, 41, 1018-1028 (2007).
124. H. L. Bai, C. C. Chen, C. S. Lin, W. Den and C. L. Chang, ' Monodisperse nanoparticle synthesis by an atmospheric pressure plasma process: An example of a visible light photocatalyst ', Industrial & Engineering Chemistry Research, 43 (22), 7200-7203 (2004).
125. K. A. Michalow, D. Logvinovich, A. Weidenkaff, M. Amberg, G. Fortunato, A. Heel, T. Graule and M. Rekas, ' Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder ', Catalysis Today, 144 (1-2), 7-12 (2009).
126. P. Piszczek, M. Richert, A. Radtke, T. Muziol and A. Wojtczak, ' Synthesis of titanium dioxide nanocrystalline layers using hexaprismatic shaped mu-oxo Ti(IV) alkoxo carboxylates as precursors ', Polyhedron, 28 (17), 3872-3880 (2009).
127. C. K. Jung, I. S. Bae, Y. H. Song and J. H. Boo, ' Plasma surface modification of TiO2 photocatalysts for improvement of catalytic efficiency ', Surface & Coatings Technology, 200 (5-6), 1320-1324 (2005).
128. J. Y. Park, S. W. Choi, J. W. Lee, C. Lee and S. S. Kim, ' Synthesis and Gas Sensing Properties of TiO2-ZnO Core-Shell Nanofibers ', Journal of the American Ceramic Society, 92 (11), 2551-2554 (2009).
129. J. Shu, ' Li-Ti-O compounds and carbon-coated Li-Ti-O compounds as anode materials for lithium ion batteries ', Electrochimica Acta, 54 (10), 2869-2876 (2009).
130. A. Deptula, T. Olczak, W. Lada, B. Sartowska, A. G. Chmielewski, C. Alvani, P. L. Carconi, A. Di Bartolomeo, F. Pierdominici and S. Casadio, ' Fabrication of Li2TiO3 spherical microparticles from TiCl4 by a classical, inorganic sol-gel route; characteristics and tritium release properties ', J. Mater. Sci., 37 (12), 2549-2556 (2002).
131. M. R. Mohammadi and D. J. Fray, ' Low temperature nanostructured lithium titanates: controlling the phase composition, crystal structure and surface area ', Journal of Sol-Gel Science and Technology, 55 (1), 19-35 (2010).
132. M. W. Raja, S. Mahanty, M. Kundu and R. N. Basu, ' Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique ', Journal of Alloys and Compounds, 468 (1-2), 258-262 (2009).
133. D. Yoshikawa, Y. Kadoma, J. M. Kim, K. Ui, N. Kumagai, N. Kitamura and Y. Idemoto, ' Spray-drying synthesized lithium-excess Li4+xTi5-xO12-delta and its electrochemical property as negative electrode material for Li-ion batteries ', Electrochimica Acta, 55 (6), 1872-1879 (2010).
134. E. Matsui, Y. Abe, M. Senna, A. Guerfi and K. Zaghib, ' Solid-state synthesis of 70 nm Li4Ti5O12 particles by mechanically activating intermediates with amino acids ', Journal of the American Ceramic Society, 91 (5), 1522-1527 (2008).
135. T. Yuan, R. Cai, P. Gu and Z. P. Shao, ' Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation ', J. Power Sources, 195 (9), 2883-2887 (2010).
136. K. M. Colbow, J. R. Dahn and R. R. Haering, ' structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4 ', J. Power Sources, 26 (3-4), 397-402 (1989).
137. T. Ohzuku, A. Ueda and N. Yamamoto, ' zero-strain insertion meterial of Li Li1/3Ti5/3O4 for rechargeable lithium cells ', J. Electrochem. Soc., 142 (5), 1431-1435 (1995).
138. K. Zaghib, M. Simoneau, M. Armand and M. Gauthier, ' Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries ', J. Power Sources, 81, 300-305 (1999).
139. Y. J. Hao, Q. Y. Lai, Z. H. Xu, X. Q. Liu and X. Y. Ji, ' Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery ', Solid State Ionics, 176 (13-14), 1201-1206 (2005).
140. C. M. Shen, X. G. Zhang, Y. K. Zhou and H. L. Li, ' Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method ', Materials Chemistry and Physics, 78 (2), 437-441 (2002).
141. K. Kanamura, T. Chiba and K. Dokko, ' Preparation of Li4Ti5O12 spherical particles for rechargeable lithium batteries ', Journal of the European Ceramic Society, 26 (4-5), 577-581 (2006).
142. J. R. Li, Z. L. Tang and Z. T. Zhang, ' Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 ', Electrochem. Commun., 7 (9), 894-899 (2005).
143. K. S. Mayya, D. I. Gittins and F. Caruso, ' Gold-titania core-shell nanoparticles by polyelectrolyte complexation with a titania precursor ', Chemistry of Materials, 13 (11), 3833-+ (2001).
144. J. H. Kim, S. Fujita and S. Shiratori, ' Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method ', Thin Solid Films, 499 (1-2), 83-89 (2006).
145. H. Ichinose, M. Terasaki and H. Katsuki, ' Synthesis of peroxo-modified anatase sol from peroxo titanic acid solution ', Journal of the Ceramic Society of Japan, 104 (8), 715-718 (1996).
146. H. Ichinose, M. Terasaki and H. Katsuki, ' Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate ', Journal of Sol-Gel Science and Technology, 22 (1-2), 33-40 (2001).
147. Muhlebac.J, K. Muller and Schwarze.G, ' peroxo complexes of titanium ', Inorganic Chemistry, 9 (11), 2381-& (1970).
148. M. V. Shankar, T. Kako, D. Wang and J. H. Ye, ' One-pot synthesis of peroxo-titania nanopowder and dual photochemical oxidation in aqueous methanol solution ', Journal of Colloid and Interface Science, 331 (1), 132-137 (2009).
149. F. X. Wu, X. H. Li, Z. X. Wang, L. Wu, H. J. Guo, X. H. Xiong, X. P. Zhang and X. J. Wang, ' Hydrogen peroxide leaching of hydrolyzed titania residue prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid ', International Journal of Mineral Processing, 98 (1-2), 106-112 (2011).
150. T. Yuan, K. Wang, R. Cai, R. Ran and Z. P. Shao, ' Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance ', Journal of Alloys and Compounds, 477 (1-2), 665-672 (2009).
151. A. F. Mills, ' Basic heat and mass transfer ', (1995).
152. F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade and M. Miki-Yoshida, ' Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis ', Thin Solid Films, 350 (1-2), 192-202 (1999).
153. J. Demerchant and M. Cocivera, ' Preparation and doping of zinc-oxide using spray-pyrolysis ', Chem. Mat., 7 (9), 1742-1749 (1995).
154. S. A. Studenikin, N. Golego and M. Cocivera, ' Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution ', J. Appl. Phys., 83 (4), 2104-2111 (1998).
155. T. Terasako and S. Shirakata, ' ZnO nanowires grown by atmospheric pressure chemical vapor deposition using ZnCl2 and H2O as source materials and their growth mechanisms ', Jpn. J. Appl. Phys. Part 2 - Lett. Express Lett., 44 (46-49), L1410-L1413 (2005).
156. Y. W. Hsu, Y. J. Yang, C. Y. Wu and C. C. Hsu, ' Downstream Characterization of an Atmospheric Pressure Pulsed Arc Jet ', Plasma Chemistry and Plasma Processing, in press (2010).
157. A. L. Patterson, ' The Scherrer formula for x-ray particle size determination ', Phys. Rev., 56 (10), 978-982 (1939).
158. T. S. Ko, S. Yang, H. C. Hsu, C. P. Chu, H. F. Lin, S. C. Liao, T. C. Lu, H
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66598-
dc.description.abstract此實驗設備為在常壓下運用直流脈衝式電源產生的噴射式電漿(atmospheric pressure plasma jet,以下簡稱為APPJ),此系統可維持長時間的穩定電漿噴流,利用電漿產生具高反應性的自由基,將反應先驅物(precursor)於極短時間內(ms)分解反應並生成產物。
本實驗製程為電漿法與噴霧熱解法(spray pyrolysis, SP)之結合,實驗中將反應先驅物溶液經1.7 MHz超音波霧化器(nebulizer)霧化為液滴狀態,再由載流氣體將液滴載入電漿噴流下游進行反應,最後於反應管之下游置放一盛有去離子水之燒杯以收集產物,並且依照各種粉體應用之需求改善製程並進行探討。
本實驗共分三部分:第一部分以水溶性金屬鹽類當作反應先驅物製備氧化物粉體。此部分我們以含鋅的鹽類製備氧化鋅(zinc oxide, ZnO)粉體,並經由加設前加熱器(pre-heater)與使用鹽類輔助式噴霧熱解法(salt-assisted spray pyrolysis, SASP)改良製程。當使用SASP製程時,所合成之氧化鋅奈米粒子粒徑約為50 nm,且由X射線光電子能譜(XPS)分析中可知其為氮摻雜之氧化鋅(N-doped ZnO),氮含量約為0.4 %。我們亦證明由系統參數可控制粉體形貌與特性。
第二部分為以有機金屬四異丙烷氧化鈦(titanium(IV) isopropoxide, TTIP)蒸氣當作反應先驅物合成氮摻雜之二氧化鈦(N-doped titanium dioxide, N-doped TiO2)奈米粒子。先驅物之蒸氣經由載流氣體送入電漿中反應。此為氣相轉變為顆粒之機制(gas–to–particles conversion mechanism),因此所生成之粒徑小且均勻,粒徑約為5 nm,但稍有聚集現象。此粉體經x射線光電子能譜分析後確認其為氮摻雜之二氧化鈦,且由紫外光/可見光光譜中顯示,其具有吸收可見光之能力,可吸收波長480 nm以下的光。
本實驗第三部分為製備多成分金屬氧化物(multiple-component metal oxide)尖晶石鋰鈦氧化合物(spinel lithium titanium oxide, Li4Ti5O12)。與第一部分裝置方法皆相同,經由控制系統參數(電漿工作氣體種類與流量、有無前加熱器、載流氣體流率、先驅物濃度)可得到不同形貌之純相尖晶石鋰鈦氧化合物:無前加熱器時,粒子皆為殼狀粒子,且不受載流氣體之流率所影響;具前加熱器且於低載流氣體流率(0.7 slm)時為實心球,當先驅物LiOH濃度為0.05 ~ 0.4M時可由質量均衡求出其粒徑為118 ~ 2350 nm;具前加熱器於高載流氣體流率(3 slm)時為殼狀粒子,如無前加熱器時所觀察到之形貌;具前加熱器而載流氣體流率適中(1.5 slm)且高濃度(0.4 M)時為中空孔洞球;而具前加熱器而載流氣體流率適中(1.5 slm)且低濃度(0.05, 0.2 M)時為,可同時觀察到中空孔洞球與殼狀之粒子。以無前加熱器情況下所得到之殼狀Li4Ti5O12粉體進行鋰離子電池循環測詴,於50 C下電容量仍可達100 mAhg-1。
最後綜合探討實驗參數對形貌之影響:當僅以電漿系統當作反應器時,液滴中溶劑蒸發速率(solvent evaporation)遠大於溶質擴散速率(solute diffusion),因此僅表面析出一層固體球殼,而當已析出之鹽類滲透率(permeability)不高時,液滴內部壓力過大而破裂,形成破裂或是有孔洞之殼狀形貌;但於前加熱器中,因液滴中之溶劑蒸發速率約等於溶質擴散速率,因此易形成實心球。更多的機制將於本論文中介紹。
zh_TW
dc.description.abstractNanocrystalline N-doped ZnO, N-doped TiO2, and Li4Ti5O12 particles are synthesized by an atmospheric pressure plasma jet (APPJ). This APPJ is sustained using a repetitive pulse source with nitrogen or oxygen as the plasma gas. This system can sustain a stable plasma jet, allowing for a long treatment time. Nebulizer-generated precursor droplets are sprayed into the plasma jet, resulting in the fabrication of metal oxide particles within a very short time (ms).
This process is divided into three parts. First, Zn(NO3)2 solutions with NaNO3 are -sized droplets and fed into the downstream region of the APPJ. Salt solution droplets undergo vaporization and react to form solid particles in the downstream region of the jet. This process is a salt-assisted spray pyrolysis(SASP)-like process. During this SASP process, when the droplet temperature exceeds the melting point of the salt, the salts melt and act as high-temperature solvents and the particle size is about 50 nm from SEM images. The particles are collected using de-ionized water. The doping level is changed by controlling plasma flow rate.
Second, using the same system, N-TiO2 particles are synthesized by injecting the TTIP vapor into the plasma jet with a bubbler. The particle size, size distribution, and morphology are characterized by TEM, and particle composition is analyzed by XPS spectra.
Third, Li/Ti solution droplets undergo O2 and N2 plasma treatment and Li4Ti5O12 particles are synthesized using the same system. The as-prepared powder is crystallized Li4Ti5O12, as observed. The morphologies and particle size are controlled by simple system parameter (with/without pre-heater, carrier gas flow rate, concentration of precursor). We also propose a possible mechanism for the formation of particles with different morphologies.
As discussed in this thesis, the evolution of the particle upon entering the pre-heater followed by plasma treatment is sensitive to the carrier gas flow rate (resident time in pre-heater), the presence of the pre-heater, and the precursor concentration. In the plasma, the high temperature resulting solvent evaporation rate much higher than the solute diffusion rate resulting in hollow particles. In pre-heater(Tpre-heater < Tplasma),the solvent evaporate rate is nearly to the solute diffusion rate resulting in dense particles. The experiment of the morphology are summarized in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:45:27Z (GMT). No. of bitstreams: 1
ntu-101-R98524089-1.pdf: 14800327 bytes, checksum: 41efe6ad121d392d2578ceba0dd28cc1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
英文摘要 vi
圖目錄 xi
表目錄 xviii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第二章 文獻回顧 5
2.1 氣相粉體製程 5
2.1.1 氣相粉體製程機制 5
2.1.2 氣相粉體製程分類 9
2.2 噴霧熱解法 12
2.2.1 噴霧熱解法 12
2.2.2 鹽類輔助式噴霧熱解法 14
2.2.3 以噴霧熱解法製備之粒子形貌 18
2.2.4 液滴載流與蒸發行為 27
2.3 常壓電漿 30
2.3.1 常壓電漿分類及簡介 30
2.4 製備氧化鋅、二氧化鈦及鋰鈦氧化合物 34
2.4.1 製備氧化鋅奈米粒子 34
2.4.2 製備氮摻雜二氧化鈦 38
2.4.3 製備尖晶石鋰鈦氧化合物 47
第三章 實驗架構與設備 55
3.1 硬體設備 58
3.1.1 APPJ系統 58
3.1.2 先驅物系統 60
3.1.3 前加熱器 63
3.1.4 載流氣體系統 63
3.2 實驗流程 64
3.2.1 反應先驅物 64
3.2.2 流程與參數 67
3.3 熱退火處理 69
3.4 鋰離子電池組裝與測試 70
3.5 粉體檢測儀器 71
第四章 結果與討論 75
4.1 電漿輔助噴霧熱解法製程分析 75
4.1.1 霧化機制 75
4.1.2 液滴行為之特徵時間 77
4.1.3 液滴之滯留時間 81
4.2 氧化鋅奈米粉體製程 82
4.2.1 製程分析 82
4.2.2 鹽類輔助噴霧熱解法 86
4.2.3 光學應用 97
4.2.4 溶劑之影響 98
4.2.5 熔融鹽類之影響 100
4.2.6 整體形貌討論 101
4.3 二氧化鈦粉體製程 102
4.3.1 先驅物之選擇 102
4.3.2 電漿參數對粉體之影響 107
4.4 尖晶石鋰鈦氧化合物粉體製程 116
4.4.1 不同種類先驅物之比較 116
4.4.2 電漿參數對尖晶石鋰鈦氧化合物之影響 124
4.4.3 系統參數對尖晶石鋰鈦氧化合物形貌之影響 126
4.4.4 尖晶石鋰鈦氧化合物形貌機制 132
4.4.5 鋰鈦氧化合物應用–高速充放電的鋰離子電池負極材料 134
第五章 結論與未來展望 137
第六章 參考文獻 139
dc.language.isozh-TW
dc.subject常壓噴射式電漿zh_TW
dc.subject氧化鋅zh_TW
dc.subject氮摻雜二氧化鈦zh_TW
dc.subject吸收可見光之二氧化鈦zh_TW
dc.subject尖晶石鋰鈦氧化合物zh_TW
dc.subject奈米粉體zh_TW
dc.subject噴霧熱解法zh_TW
dc.subjectspray pyrolysisen
dc.subjectatmospheric plasma jeten
dc.subjectAPPJen
dc.subjectspinel Li4Ti5O12en
dc.subjectvisible-light photocatalyst TiO2en
dc.subjectZnOen
dc.subjectN-doped TiO2en
dc.title以常壓噴射式電漿製備金屬氧化物奈米粉體之製程研究zh_TW
dc.titleSynthesis of Nanoparticles Using an Atmospheric Pressure Plasma Jeten
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳乃立,魏大欽,吳嘉文
dc.subject.keyword常壓噴射式電漿,氧化鋅,氮摻雜二氧化鈦,吸收可見光之二氧化鈦,尖晶石鋰鈦氧化合物,奈米粉體,噴霧熱解法,zh_TW
dc.subject.keywordatmospheric plasma jet,APPJ,ZnO,N-doped TiO2,visible-light photocatalyst TiO2,spinel Li4Ti5O12,spray pyrolysis,en
dc.relation.page159
dc.rights.note有償授權
dc.date.accepted2012-01-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
14.45 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved