Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor崔茂培(Mao-Pei Tsui)
dc.contributor.authorSing-Yuan Yehen
dc.contributor.author葉行遠zh_TW
dc.date.accessioned2021-06-17T00:45:10Z-
dc.date.available2020-02-10
dc.date.copyright2020-02-10
dc.date.issued2020
dc.date.submitted2020-02-05
dc.identifier.citation[1] M. ALCUBIERRE, B. BRUEGMANN, T. DRAMLITSCH, J. A. FONT, P. PAPADOPOULOS, E. SEIDEL, N. STERGIOULAS AND R. TAKAHASHI, Towards a Stable Numerical Evolution of Strongly Gravitating Systems in General Relativity: The Conformal Treatments
[2] R. ARNOWITT, S. DESER AND C. W. MISNER, The Dynamics of General Relativity. Gravitation, (1962).
[3] J. M. BARDEEN AND T. PIRAN, General Relativistic Axisymmetric Rotating Systems: Coordinates and Equations, Phys. Rep. 96 (1983).
[4] G. CALABRESE, J. PULLIN, O. REULA, O. SARBACHV ANS M. TIGLIO, Well posed constraintpreserving boundary conditions for the linearized Einstein equations, Commun. Math. Phys. (2002).
[5] J. M. CENTRELLA, Dynamical Spacetimes and Numerical Relativity, Cambridge University Press (1986).
[6] M. W. CHOPTUIK, Consistency of finitedifference solutions of Einstein s equations, Phys. Rev. Lett., 17 (1991) pp.912.
[7] M. W. CHOPTUIK, Universality and Scaling in Gravitational Collapse of a Massless Scalar Field, Phys. Rev. Lett., 10 (1993).
[8] M. W. CHOPTUIK, A Study of Numerical Techniques for Radiative Problem in General Relativity.
[9] D. CHRISTODOULOU, The Formation of Black Holes and Singularities in Spherically Symmetric Gravitational Collapse, Comm. Math. Phys., 44 (1991), pp. 339-373.
[10] D. CHRISTODOULOU, The Problem of a SelfGravitating Scalar Field, Comm. Math. Phys., 10 (1986), pp. 337361.
[11] D. CHRISTODOULOU, A Mathematical Theory of Gravitational Collapse, Commun. Math. Phys. (1987).
[12] M.W. CHOPTUIK, The (Unstable) Threshold of Black Hole Formation, General Relativity and Quantum Cosmology (1998).
[13] C. R. EVANS, A Method for Numerical Relativity, (1984).
[14] H. FRIEDRICH AND G. NAGY, The Initial Boundary Value Problem for Einstein's Vacuum Field Equations, Commun. Math. Phys., (1999).
[15] C. GUNDLACH AND J. M. MARTINGARCIA, Symmetric Hyperbolicity and Consistent Boundary Conditions for Second-Order Einstein Equations, Phys.Rev. (2004).
[16] C. GUNDLACH AND J.M. MARTÍNGARCÍA, Critical Phenomena in Gravitational Collapse, Living Rev. Relativ. 10, 5 (2007).
[17] S. G. HAHN AND R. W. LINDQUIST, The two-body problem in geometrodynamics, Ann. Phys. 29 (2) pp 304–331 (1964).
[18] S. HAWKING AND G. ELLIS HAWKING, The Large Scale Structure of SpaceTime, Cambridge: Cambridge University Press, 1973.
[19] W. JAMES AND JR. YORK, The Kinematics and dynamics of general relativity, (1979).
[20] L. E. KIDDER, M. A. SCHEEL AND S. A. TEUKOLSKY, Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations Phys. Rev. (2001).
[21] P. D. LAX AND R. S. PHILLIPS, Local boundary conditions for dissipative symmetric linear differential operators, Commun. Pure Appl. Math, (1960).
[22] A. LIGHTMAN AND R. H. PRICE, Problem Book in Relativity and Gravitation, Princeton University Press (1975).
[23] M. M. MAY AND R. H. WHITE, Hydrodynamic Calculations of GeneralRelativistic Collapse, Phys. Rev. 141, 1232 (1966).
[24] O. C. SCHNURER, geometric evolution equations, Universität Konstanz Lecture note (2007).
[25] L. SMARR, Spacetimes generated by computers: Black Holes with Gavitational Radiation,N. Y. Acad. Sci. 302 (1977).
[26] S. L. SHAPIRO AND S. A. TEUKOLSKY, Relativistic Stellar Dynamics on the Computer, Astrophysical Journal, 298 (1985).
[27] S. TEUKOLSKY, On the Stability of the Iterated CrankNicholson Method in Numerical relativity, Phys. Rev. D, (2000).
[28] R. M. WALD AND V. IYER, Trapped Surfaces in the Schwartzchild Geometry and Cosmic Censorship, Phys. Rev. (1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66593-
dc.description.abstract在文獻[7]中,Choptuik 提出了球對稱時空中愛因斯坦純量場方程塌縮的數值模擬,他發現存在一個臨界值p*,可以把愛因斯坦方程的解 S[p] 被分成兩組,一組會產生黑洞,另一組則否。他另外發現所產生的黑洞質量會滿足此關係 M_{BH}∝|p-p*|^γ,其中 γ≈0.37。這篇論文將會整理出研究上述問題的數值方法,而我們將用這些方法來實現愛因斯坦純量場的演化模擬,其中我們會使用3+1的方法將四維時空拆成時間和空間,再使用iterative Crank-Nicolson方法實現模擬。除此之外,還有一些模擬的細節也會呈現在此論文中。這篇論文將不僅確認了Choptuik的數值結果,也整理了一些有用的數值方法。zh_TW
dc.description.abstractIn [7], Choptuik presented a numerical study of spherically symmetric collapse of Einstein scalar field equations. He discovered that a family of solutions S[p] with the property that a critical parameter value, p*, separates solutions containing black holes from those which do not. He also conjectured that the masses of black holes satisfy a power law M_{BH}∝|p-p*|^γ, where γ≈0.37 is a universal exponent. This thesis is a summary of numerical techniques which could be useful for the study of such problems. We use them to simulate the evolution of Einstein scalar field equations with spherical symmetry. The 3+1 formalism for numerical simulation is used and treatment of dynamical system is iterative Crank­-Nicolson method. Moreover, the details of several numerical algorithm are presented in this thesis. This thesis not only confirms the simulative results of Choptuik but also summarize useful numerical techniques.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:45:10Z (GMT). No. of bitstreams: 1
ntu-109-R06246002-1.pdf: 5588589 bytes, checksum: c8726d8dde9e6368a65230fcf5d72898 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 . . . . . . . . . . . . . . . . . i
誌謝 . . . . . . . . . . . . . . . . . ii
摘要 . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . viii
1 Introduction . . . . . . . . . . . . . . . . . 1
2 Review of the 3+1 Decomposition of Einstein’s Equations . . . . . . . . . . . . 4
2.1 Preliminary . . . . . . . . . . . . . . . . . 4
2.2 Projection the Einstein’s equations . . . . . . . . . . . . . . . . . 6
2.3 Choosing coordinate conditions . . . . . . . . . . . . . . . . . 7
2.4 Description of the evolution system . . . . . . . . . . . . . . . . . 9
3 Locating Black holes Horizons . . . . . . . . . . . . . . . . . 12
3.1 Apparent horizons . . . . . . . . . . . . . . . . . 13
3.2 The mass aspect function . . . . . . . . . . . . . . . . . 15
4 Boundary Treatments . . . . . . . . . . . . . . . . . 18
4.1 Basic energy estimation . . . . . . . . . . . . . . . . . 18
4.2 Maximally dissipative boundary conditions . . . . . . . . . . . . . . . . . 22
4.3 Constraintpreserving boundary conditions . . . . . . . . . . . . . . . . . 23
4.4 Restriction to spherically symmetric spacetime . . . . . . . . . . . . . . . . . 24
5 Numerical Theoretical Analysis . . . . . . . . . . . . . . . . . 30
5.1 Characteristic analysis of the scalar field . . . . . . . . . . . . . . . . . 30
5.2 Numerical radiation boundary conditions at r = R . . . . . . . . . . . . . . . . . 31
5.3 Numerical problems at r = 0 . . . . . . . . . . . . . . . . . 33
6 Numerical Methods . . . . . . . . . . . . . . . . . 35
6.1 Iterative CrankNicolson method . . . . . . . . . . . . . . . . . 35
6.2 Artificial dissipative term . . . . . . . . . . . . . . . . . 37
6.3 Numerical test for weak scalar field . . . . . . . . . . . . . . . . . 40
7 Critical phenomenon . . . . . . . . . . . . . . . . . 45
8 Reference . . . . . . . . . . . . . . . . . 51
Appendix A Stability Analysis of the Iterative Crank-Nicolson Scheme . . . . . . 54
Appendix B Evolution Equations . . . . . . . . . . . . . . . . . 57
dc.language.isoen
dc.subject數值廣義相對論zh_TW
dc.subject黑洞zh_TW
dc.subject臨界現象zh_TW
dc.subjectblack holesen
dc.subjectnumerical relativityen
dc.subjectcritical phenomenaen
dc.title球對稱時空中愛因斯坦純量場方程數值模擬之研究zh_TW
dc.titleA Numerical Study of Einstein Scalar Field Equations in Spherically Symmetric Spacetimeen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡忠潤(Chung-Jun Tsai),李瑩英(Yng-Ing Lee)
dc.subject.keyword數值廣義相對論,臨界現象,黑洞,zh_TW
dc.subject.keywordnumerical relativity,critical phenomena,black holes,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202000311
dc.rights.note有償授權
dc.date.accepted2020-02-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
5.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved