請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66568完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽明(Ming Ouhyoung) | |
| dc.contributor.author | Hsing-Han Ho | en |
| dc.contributor.author | 何星翰 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:43:42Z | - |
| dc.date.available | 2012-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-01-11 | |
| dc.identifier.citation | [1] C. Darwin, The Expression of the Emotions in Man and Animals, J. Murray, London, 1872.
[2] P. Ekman, W.V. Friesen, Constants across cultures in the face and emotion, J. Personality Social Psychol. 17 (2) (1971), 124–129. [3] P. Ekman, Emotions in the Human Face, Cambridge, University Press, Cambridge, 1982. [4] P. Ekman, W.V. Friesen, Facial Action Coding System:A Technique for the Measurement of Facial Movement, Consulting Psychologists Press,Palo Alto, 1978. [5] M. Suwa, N. Sugie, K. Fujimora, A preliminary note on pattern recognition of human emotional expression, in: International Joint Conference on Pattern Recognition, 1978, pp. 408–410. [6] B. Fasel, J. Luettin, Automatic facial expression analysis: survey, Pattern Recognition 36 (2003) 259–275. [7] A. Lanitis, C.J. Taylor, T.F. Cootes, Automatic interpretation and coding of face images using flexible models, IEEE Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 743–756. [8] I. Essa, A. Pentland, Coding, analysis, interpretation and recognition of facial expressions, IEEE Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 757–763. [9] W. Fellenz, J. Taylor, N. Tsapatsoulis, S. Kollias, Comparing template-based, feature-based and supervised classi0cation of facial expressions from static images, Proceedings of Circuits, Systems, Communications and Computers (CSCC’99), Nugata, Japan, 1999, pp. 5331–5336. [10] C. Padgett, G. Cottrell, Representing face images for emotion classification, in: Advances in Neural Information Processing Systems (NIPS), 1997. [11] Z. Zhang, M.J. Lyons, M. Schuster, S. Akamatsu, Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron, in: IEEE International Conference on Automatic Face & Gesture Recognition (FG), 1998. [12] Y. Tian, Evaluation of face resolution for expression analysis, in: CVPR Workshop on Face Processing in Video, 2004. [13] M.S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, J. Movellan, Recognizing facial expression: machine learning and application to spontaneous behavior, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. [14] I. Cohen, N. Sebe, A. Garg, L. Chen, T.S. Huang, Facial expression recognition from video sequences: temporal and static modeling, Computer Vision and Image Understanding 91 (2003) 160–187. [15] C. Shan, S. Gong, P.W. McOwan, Robust facial expression recognition using local binary patterns, in: IEEE International [16] C. Shan, S. Gong, P.W. Facial expression recognition based on Local Binary Patterns: A comprehensive study : Image and Vision Computing 27 (2009) 803–816 [17] X. Feng, M. Pietikainen, T. Hadid, Facial expression recognition with local binary patterns and linear programming, Pattern Recognition and Image Analysis 15 (2) (2005) 546–548. [18] R.S. Smith, T.Windeatt, Facial Expression Detection using Filtered Local Binary Pattern Features with ECOC Classifiers and Platt Scaling, JMLR: Workshop and Conference Proceedings 11 (2010) [19] Y. Yacoob, L.S. Davis, Recognizing human facial expression from long image sequences using optical flow, IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (6) (1996) 636–642. [20] I. Essa, A. Pentland, Coding, analysis, interpretation, and recognition of facial expressions, IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (7) (1997) 757–763. [21] Y. Tian, T. Kanade, J. Cohn, Recognizing action units for facial expression analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2) (2001) 97–115. [22] M. Pantic, L.J.M. Rothkrantz, Facial action recognition for facial expression analysis from static face images, IEEE Transactions on Systems, Man, and Cybernetics 34 (3) (2004) 1449–1461. [23] F. Dornaika, F. Davoine, Simultaneous facial action tracking and expression recognition using a particle filter, in: IEEE International Conference on Computer Vision (ICCV), 2005. [24] R.E. Kaliouby, P. Robinson, Real-time inference of complex mental states from facial expressions and head gestures, in: IEEE CVPR Workshop on Real-time Vision for Human–Computer Interaction, 2004. [25] J. Hoey, J.J. Little, Value directed learning of gestures and facial displays, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004. [26] Y. Zhang, Q. Ji, Active and dynamic information fusion for facial expression understanding from image sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (5) (2005) 1–16. [27] L.Gu, Bayesian Tangent Shape Model For Face Alignment, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2003. [28] The MUG Facial Expression Database,” in Proc. 11th Int. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Desenzano, Italy, April 12-14 2010. [29] Kanade, T., Cohn, J. F., & Tian, Y. (2000). Comprehensive database for facial expression analysis. Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition (FG'00), Grenoble, France, 46-53. [30] M. Suwa, N. Sugie, K. Fujimora, A preliminary note on pattern recognition of human emotional expression, Proceedings of the Fourth International Joint Conference on Pattern Recognition, Kyoto, Japan, 1978, pp. 408–410. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66568 | - |
| dc.description.abstract | 自動化的人臉表情辨識迄今一直是電腦視覺領域的一個大難題,這項技術與許多領域息息相關,例如人機互動或以資料驅動的動畫製作。在這篇論文中,我將使用人臉辨識中常用的「區域二元圖樣」方法來辨識表情,並進一步提出一個新的方法來改善結果。這個方法是「階層式的表情辨識」。在傳統的表情辨識中,研究員使用訓練資料來做出一個表情分類器,並將測試資料直接歸類為可能的幾種表情之一。而階層式表情辨識則將辨識的過程分成很多個階段,在每個階段使用特定的方法來處理特定的表情,一步一步地辨識出目標照片為何種表情。使用基本的區域二元圖樣方法在我採用的兩個表情資料庫上分別可以達到約80%及86%的辨識率,若加上階層式方法可提升至約87%及89%的辨識率。這個結果顯示區域二元圖樣方法用在表情辨識上有不錯的結果,而階層式表情辨識的方法可以更進一步改善辨識率。 | zh_TW |
| dc.description.abstract | So far, automatic human facial expression recognition has been a challenging problem in computer vision area, and brings strong impacts in important applications in many areas such as human-computer interaction and data-driven animation. In this thesis, I use the Local Binary Patterns method, which was used commonly in face recognition, to recognize the facial expressions. Furthermore, I propose a novel idea to improve the result. This new method is called “Hierarchical Facial Expression Recognition”. In traditional facial expression recognition, the researchers use training data to make a classifier, and classify the test expression data into one of the several basic expressions directly. Hierarchical method separates the recognition process into few stages, each stage using specific methods to deal with the specific expression to step by step recognize the target image. The overall recognition rates of my system on two expression databases are about 80% and 86% with pure Local Binary Patterns algorithm, and reach 87% and 89% after using the hierarchical method. This work shows that the Local Binary Patterns method is practical in facial expression recognition, and the idea of hierarchical facial expression recognition can further improve the result. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:43:42Z (GMT). No. of bitstreams: 1 ntu-101-R98922041-1.pdf: 2192703 bytes, checksum: f559c5c2c582f3c4eed275aa4b30236d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Content iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Facial expression analysis 5 2.2 Automatic facial expression 5 2.3 Facial expression recognition 8 Chapter 3 Local Binary Pattern 11 3.1 LBP introduction 11 3.2 LBP division and weighting 15 Chapter 4 Hierarchical Facial Expression Recognition 17 4.1 Basic idea 17 4.2 Facial expressions analysis 22 4.3 Hierarchical technique : changing LBP weighting 28 4.4 Hierarchical technique : BTSM Face Alignment 29 4.5 Hierarchical structure of system 31 Chapter 5 Result 35 5.1 Database Introduction 35 5.2 Result 38 Chapter 6 Conclusion and Future Work 40 Bibliography 42 Resume 46 | |
| dc.language.iso | en | |
| dc.subject | 人臉表情分析 | zh_TW |
| dc.subject | 區域二元圖樣 | zh_TW |
| dc.subject | 人臉表情辨識 | zh_TW |
| dc.subject | 人臉定位 | zh_TW |
| dc.subject | Facial expression recognition | en |
| dc.subject | Facial expression analysis | en |
| dc.subject | Local binary patterns | en |
| dc.subject | Face alignment | en |
| dc.title | 以區域二元圖樣為基礎之階層式人臉表情辨識 | zh_TW |
| dc.title | Local Binary Patterns based Hierarchical Method for Facial Expression Recognition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅楸善(Chiou-Shann Fuh),楊傳凱(Chuan-Kai Yang) | |
| dc.subject.keyword | 人臉表情辨識,人臉表情分析,區域二元圖樣,人臉定位, | zh_TW |
| dc.subject.keyword | Facial expression recognition,Facial expression analysis,Local binary patterns,Face alignment, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-01-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
