Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66560
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳定立(Ting-Li Chen)
dc.contributor.authorWen­-Shao Heen
dc.contributor.author何文劭zh_TW
dc.date.accessioned2021-06-17T00:43:13Z-
dc.date.available2021-02-10
dc.date.copyright2020-02-10
dc.date.issued2020
dc.date.submitted2020-02-05
dc.identifier.citation[CR92] CY Chork and Peter J Rousseeuw. Integrating a high-breakdown option into discriminant analysis in exploration geochemistry. Journal of
Geochemical Exploration, 43(3):191–203, 1992.
[DKK+19] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur
Moitra, and Alistair Stewart. Robust estimators in high-dimensions
without the computational intractability. SIAM Journal on Computing,
48(2):742–864, 2019.
[Don82] David L Donoho. Breakdown properties of multivariate location estimators. Technical report, Technical report, Harvard University, Boston.
URL http://www-stat. stanford …, 1982.
[FE08] Hironori Fujisawa and Shinto Eguchi. Robust parameter estimation
with a small bias against heavy contamination. J. Multivar. Anal.,
99(9):2053–2081, October 2008.
[FT74] Jerome H Friedman and John W Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on computers,
100(9):881–890, 1974.
[Ham68] Frank R Hampel. Contribution to the theory of robust estimation. Ph.
D. Thesis, University of California, Berkeley, 1968.
[Ham74] Frank R. Hampel. The influence curve and its role in robust estimation.
Journal of the American Statistical Association, 69(346):383–393, 1974.
HD04] Mia Hubert and Katrien Driessen. Fast and robust discriminant analysis.
Computational Statistics Data Analysis, 45:301–320, 03 2004.
[HF00] Xuming He and Wing Fung. High breakdown estimation for multiple
populations with applications to discriminant analysis. Journal of Multivariate Analysis, 72:151–162, 02 2000.
[HM97] Douglas M. Hawkins and Geoffrey J. McLachlan. High-breakdown linear
discriminant analysis. Journal of the American Statistical Association,
92(437):136–143, 3 1997.
[HR09] Peter J Huber and Elvezio M Ronchetti. Robust statistics; 2nd ed. Wiley
Series in Probability and Statistics. Wiley, Hoboken, NJ, 2009.
[HRRS11] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel. Robust
Statistics: The Approach Based on Influence Functions. Wiley Series in
Probability and Statistics. Wiley, 2011.
[Hub64] Peter J. Huber. Robust estimation of a location parameter. Ann. Math.
Statist., 35(1):73–101, 03 1964.
[Hub85] Peter J. Huber. Projection pursuit. Ann. Statist., 13(2):435–475, 06
1985.
[LRV16] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation
of mean and covariance. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 665–674. IEEE, 2016.
[Mar76] Ricardo Antonio Maronna. Robust m-estimators of multivariate location
and scatter. Ann. Statist., 4(1):51–67, 01 1976.
[MB98] A.M. Martinez and R. Benavente. The ar face database. Technical Report
24, Computer Vision Center, 06 1998.
[PB10] Ana M Pires and Jo˜ao A Branco. Projection-pursuit approach to robust linear discriminant analysis. Journal of Multivariate Analysis,
101(10):2464–2485, 2010.
[Rou81] Peter J Rousseeuw. A new infinitesimal approach to robust estimation. Zeitschrift f¨ur Wahrscheinlichkeitstheorie und verwandte Gebiete,
56(1):127–132, 1981.
[Rou85] Peter Rousseeuw. Multivariate estimation with high breakdown point.
Mathematical Statistics and Applications Vol. B, pages 283–297, 01 1985.
[Sta81] Fachgruppe Fuer Statistik. Breakdown of covariance estimators. Research Report, 1981.
[Ste79] G.W. Stewart. Pertubation bounds for the definite generalized eigenvalue
problem. Linear algebra and its applications, 23:69–85, 1979.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66560-
dc.description.abstract線性判別分析可最大程度地提高組間差異與組內差異的比率,它被廣泛用於監督維度縮減中。在傳統的線性判別分析中,判別空間會被標籤錯誤的數據嚴重影響。為了克服這個問題,我們提出了基於伽馬散度的穩健線性判別分析。本文將介紹伽馬線性判別分析算法,並透過影響函數分析其穩健性。我們也藉由模擬資料與人臉辨識資料來展現新方法的優越性。zh_TW
dc.description.abstractLinear discriminant analysis (LDA) which maximizes the ratio of the between-class variance to the within-class variance is widely used in supervised dimension reduction. In the traditional LDA, the discriminant space can be badly affected by the mislabeled data. To overcome this issue, we propose a robust linear discriminant analysis based on the γ-divergence which is a more robust measure than the Kullback-Leibler divergence. In this thesis, we will introduce the γ-LDA algorithm and analyze its robustness by the influence function. Furthermore, we will show the superior performance of γ-LDA on the simulated examples as well as face image data.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:43:13Z (GMT). No. of bitstreams: 1
ntu-109-R07246009-1.pdf: 3115195 bytes, checksum: 6153c7978f698b6983e48f1feee29fdd (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAcknowledgements i
Abstract ii
1 Introduction 1
1.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Robust Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 3
2 Robustness of Linear Discriminant Analysis 4
2.1 Robust Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Measurement of Robustness . . . . . . . . . . . . . . . . . . . 5
2.1.2 M-estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Robustness of Linear Discriminant Analysis . . . . . . . . . . . . . . 8
3 The Minimum γ-Divergence Estimation 12
4 γ-LDA Algorithm 16
4.1 Model Specification and Estimation . . . . . . . . . . . . . . . . . . . 17
4.2 Plug-in γ-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Projection Pursuit γ-LDA . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Projection Pursuit . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Simulation and Compression of γ-LDA . . . . . . . . . . . . . . . . . 23
5 Robustness of γ-LDA 29
6 Real Data 32
7 Discussion and Future Work 34
dc.language.isoen
dc.subject穩健統計學zh_TW
dc.subject線性判別分析zh_TW
dc.subject降維zh_TW
dc.subjectγ-散度zh_TW
dc.subject影響函數zh_TW
dc.subjectRobust statisticsen
dc.subjectLinear discriminant analysisen
dc.subjectDimension reductionen
dc.subjectγ-divergenceen
dc.subjectInfluence functionen
dc.title使用伽馬散度之穩健線性判別分析法zh_TW
dc.titleRobust linear discriminant analysis based on γ-­divergenceen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳素雲(Su-Yun Huang),杜憶萍(I-Ping Tu),王偉仲(Wei-Chung Wang)
dc.subject.keyword穩健統計學,線性判別分析,降維,γ-散度,影響函數,zh_TW
dc.subject.keywordRobust statistics,Linear discriminant analysis,Dimension reduction,γ-divergence,Influence function,en
dc.relation.page38
dc.identifier.doi10.6342/NTU201901737
dc.rights.note有償授權
dc.date.accepted2020-02-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved