請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6653完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李建國(Chen-kuo Lee) | |
| dc.contributor.author | Tzu-Pei Cheng | en |
| dc.contributor.author | 鄭子珮 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:15:48Z | - |
| dc.date.available | 2017-09-18 | |
| dc.date.available | 2021-05-17T09:15:48Z | - |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-08 | |
| dc.identifier.citation | Akira, S., Nishio, Y., Inoue, M., Wang, X.J., Wei, S., Matsusaka, T., Yoshida, K., Sudo, T., Naruto, M., and Kishimoto, T. (1994). Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77, 63-71.
Antunes, F., Marg, A., and Vinkemeier, U. (2011). STAT1 signaling is not regulated by a phosphorylation-acetylation switch. Mol. Cell. Biol. 31, 3029-3037. Bach, E.A., Aguet, M., and Schreiber, R.D. (1997). The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563-591. Baechler, E.C., Batliwalla, F.M., Karypis, G., Gaffney, P.M., Ortmann, W.A., Espe, K.J., Shark, K.B., Grande, W.J., Hughes, K.M., Kapur, V., et al. (2003). Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. U. S. A. 100, 2610-2615. Biron, C.A. (2001). Interferons alpha and beta as immune regulators--a new look. Immunity 14, 661-664. Bowie, A.G., and Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911-922. Chang, H.M., Paulson, M., Holko, M., Rice, C.M., Williams, B.R., Marie, I., and Levy, D.E. (2004). Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl. Acad. Sci. U. S. A. 101, 9578-9583. Chin, K.C., and Cresswell, P. (2001). Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc. Natl. Acad. Sci. U. S. A. 98, 15125-15130. Chung, C.D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., and Shuai, K. (1997). Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803-1805. Costa-Pereira, A.P., Tininini, S., Strobl, B., Alonzi, T., Schlaak, J.F., Is'harc, H., Gesualdo, I., Newman, S.J., Kerr, I.M., and Poli, V. (2002). Mutational switch of an IL-6 response to an interferon-gamma-like response. Proc. Natl. Acad. Sci. U. S. A. 99, 8043-8047. de Weerd, N.A., Samarajiwa, S.A., and Hertzog, P.J. (2007). Type I interferon receptors: biochemistry and biological functions. J. Biol. Chem. 282, 20053-20057. Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443-450. Grander, D., Sangfelt, O., and Erickson, S. (1997). How does interferon exert its cell growth inhibitory effect? Eur. J. Haematol. 59, 129-135. Ho, H.H., and Ivashkiv, L.B. (2006). Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem. 281, 14111-14118. Horvai, A.E., Xu, L., Korzus, E., Brard, G., Kalafus, D., Mullen, T.M., Rose, D.W., Rosenfeld, M.G., and Glass, C.K. (1997). Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci. U. S. A. 94, 1074-1079. Hou, T., Ray, S., Lee, C., and Brasier, A.R. (2008). The STAT3 NH2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain. J. Biol. Chem. 283, 30725-30734. Hutchins, A.P., Poulain, S., and Miranda-Saavedra, D. (2012). Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 119, e110-119. Isaacs, A., and Lindenmann, J. (1957). Virus interference. I. The interferon. Proc. R. Soc. Lond. B. Biol. Sci. 147, 258-267. Isaacs, A., Lindenmann, J., and Valentine, R.C. (1957). Virus interference. II. Some properties of interferon. Proc. R. Soc. Lond. B. Biol. Sci. 147, 268-273. Kim, T.K., and Maniatis, T. (1996). Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science 273, 1717-1719. Komyod, W., Bauer, U.M., Heinrich, P.C., Haan, S., and Behrmann, I. (2005). Are STATS arginine-methylated? J. Biol. Chem. 280, 21700-21705. Kramer, O.H., Knauer, S.K., Greiner, G., Jandt, E., Reichardt, S., Guhrs, K.H., Stauber, R.H., Bohmer, F.D., and Heinzel, T. (2009). A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev. 23, 223-235. Lee, H., Zhang, P., Herrmann, A., Yang, C., Xin, H., Wang, Z., Hoon, D.S., Forman, S.J., Jove, R., Riggs, A.D., and Yu, H. (2012). Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc. Natl. Acad. Sci. U. S. A. 109, 7765-7769. Levy, D.E., and Darnell, J.E., Jr. (2002). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3, 651-662. Liao, J., Fu, Y., and Shuai, K. (2000). Distinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction. Proc. Natl. Acad. Sci. U. S. A. 97, 5267-5272. Lim, C.P., and Cao, X. (2006). Structure, function, and regulation of STAT proteins. Mol Biosyst 2, 536-550. Liu, S.Y., Sanchez, D.J., and Cheng, G. (2011). New developments in the induction and antiviral effectors of type I interferon. Curr. Opin. Immunol. 23, 57-64. Makarova, O., Kamberov, E., and Margolis, B. (2000). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972. Malakhova, O.A., Yan, M., Malakhov, M.P., Yuan, Y., Ritchie, K.J., Kim, K.I., Peterson, L.F., Shuai, K., and Zhang, D.E. (2003). Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17, 455-460. Meissner, T., Krause, E., Lodige, I., and Vinkemeier, U. (2004). Arginine methylation of STAT1: a reassessment. Cell 119, 587-589; discussion 589-590. Meraz, M.A., White, J.M., Sheehan, K.C., Bach, E.A., Rodig, S.J., Dighe, A.S., Kaplan, D.H., Riley, J.K., Greenlund, A.C., Campbell, D., et al. (1996). Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431-442. Mui, A.L. (1999). The role of STATs in proliferation, differentiation, and apoptosis. Cell. Mol. Life Sci. 55, 1547-1558. Nelson, J.D., Denisenko, O., and Bomsztyk, K. (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1, 179-185. Nusinzon, I., and Horvath, C.M. (2003). Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl. Acad. Sci. U. S. A. 100, 14742-14747. Ohbayashi, N., Kawakami, S., Muromoto, R., Togi, S., Ikeda, O., Kamitani, S., Sekine, Y., Honjoh, T., and Matsuda, T. (2008). The IL-6 family of cytokines modulates STAT3 activation by desumoylation of PML through SENP1 induction. Biochem. Biophys. Res. Commun. 371, 823-828. Pestka, S., Krause, C.D., and Walter, M.R. (2004). Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202, 8-32. Ray, S., Boldogh, I., and Brasier, A.R. (2005). STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology 129, 1616-1632. Ray, S., Lee, C., Hou, T., Boldogh, I., and Brasier, A.R. (2008). Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res 36, 4510-4520. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., et al. (2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4, 651-657. Rogers, R.S., Horvath, C.M., and Matunis, M.J. (2003). SUMO modification of STAT1 and its role in PIAS-mediated inhibition of gene activation. J. Biol. Chem. 278, 30091-30097. Sadler, A.J., and Williams, B.R. (2008). Interferon-inducible antiviral effectors. Nature reviews. Immunology 8, 559-568. Schaefer, T.S., Sanders, L.K., and Nathans, D. (1995). Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc. Natl. Acad. Sci. U. S. A. 92, 9097-9101. Schindler, C., Levy, D.E., and Decker, T. (2007). JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282, 20059-20063. Schindler, C., and Plumlee, C. (2008). Inteferons pen the JAK-STAT pathway. Semin. Cell Dev. Biol. 19, 311-318. Shuai, K., and Liu, B. (2003). Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900-911. Shuai, K., Stark, G.R., Kerr, I.M., and Darnell, J.E., Jr. (1993). A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261, 1744-1746. Stark, G.R. (2007). How cells respond to interferons revisited: from early history to current complexity. Cytokine Growth Factor Rev. 18, 419-423. Takaoka, A., and Yanai, H. (2006). Interferon signalling network in innate defence. Cell Microbiol 8, 907-922. Takeda, K., Noguchi, K., Shi, W., Tanaka, T., Matsumoto, M., Yoshida, N., Kishimoto, T., and Akira, S. (1997). Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. U. S. A. 94, 3801-3804. Uze, G., Schreiber, G., Piehler, J., and Pellegrini, S. (2007). The receptor of the type I interferon family. Curr. Top. Microbiol. Immunol. 316, 71-95. Varinou, L., Ramsauer, K., Karaghiosoff, M., Kolbe, T., Pfeffer, K., Muller, M., and Decker, T. (2003). Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity. Immunity 19, 793-802. Vilcek, J. (2003). Novel interferons. Nat Immunol 4, 8-9. Wang, R., Cherukuri, P., and Luo, J. (2005). Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J. Biol. Chem. 280, 11528-11534. Wang, W.B., Levy, D.E., and Lee, C.K. (2011). STAT3 negatively regulates type I IFN-mediated antiviral response. J. Immunol. 187, 2578-2585. Wen, Z., Zhong, Z., and Darnell, J.E., Jr. (1995). Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241-250. Yang, J., Huang, J., Dasgupta, M., Sears, N., Miyagi, M., Wang, B., Chance, M.R., Chen, X., Du, Y., Wang, Y., et al. (2010). Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc. Natl. Acad. Sci. U. S. A. 107, 21499-21504. Yang, J., and Stark, G.R. (2008). Roles of unphosphorylated STATs in signaling. Cell Res. 18, 443-451. Yuan, Z.L., Guan, Y.J., Chatterjee, D., and Chin, Y.E. (2005). Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307, 269-273. Zhang, Q., Wang, H.Y., Marzec, M., Raghunath, P.N., Nagasawa, T., and Wasik, M.A. (2005a). STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 102, 6948-6953. Zhang, Y., Takami, K., Lo, M.S., Huang, G., Yu, Q., Roswit, W.T., and Holtzman, M.J. (2005b). Modification of the Stat1 SH2 domain broadly improves interferon efficacy in proportion to p300/CREB-binding protein coactivator recruitment. J. Biol. Chem. 280, 34306-34315. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6653 | - |
| dc.description.abstract | 第一型干擾素 (type I IFN) 對於抗病毒扮演非常重要的角色,它可以活化訊號傳導與轉錄子 (STAT) 1, STAT2 和 STAT3。第一型干擾素會藉由 STAT1 及 STAT2 來正向調控抗病毒蛋白產生。而 STAT3 在第一型干擾素訊號傳遞中所扮演的角色還不是很清楚,直到最近發現缺乏 STAT3 的細胞在第一型干擾素刺激下會增加促進干擾素誘導基因 (ISG) 的表現以及增強抗病毒的能力,這顯示 STAT3 會負調控第一型干擾素所引起的抗病毒能力。然而其詳細的機制還需進一步研究。我們利用放回 STAT1, STAT3, 以及 STAT1 和 STAT3 同時放回的 STAT1/STAT3 雙基因剔除鼠胚胎纖維母細胞株 (MEFs) 來研究 STAT3 負調控的機制。我們發現放回的 STAT1 及 STAT3 蛋白的表現量與正常小鼠胚胎纖維母細胞株相似,此外利用反轉錄及時聚合酶鏈式反應 (RT-QPCR) 和基因表現微陣列分析 (microarray) 發現同時放回 STAT1 和 STAT3 與只放回 STAT1的小鼠胚胎纖維母細胞株相比,STAT3 確實可以抑制第一型干擾素誘導STAT1下游基因的產生及抗病毒反應。我們更進一步利用染色質免疫沉澱法 (ChIP assay) 證明在給予第一型干擾素下,STAT3 會阻礙干擾素促進因子3複合物 (IFN-stimulated gene factor 3 complex, ISGF3) 被引導到位於 MDA5 及 IFIT1的干擾素反應片段 (ISRE) 上。由於 STAT3 的 N 端 (胺基酸 1 到 134) 足以造成抑制作用,因此我們進一步釐清 STAT3 中兩個可能被乙醯化位於 49 和 87 的離胺酸 (lysine) 是否參與抑制作用。將 STAT3 上這兩個位置單獨或同時由離胺酸突變為精胺酸 (Arginine) 會阻礙 STAT3 的促進轉錄的能力。然而只將位於 49 的胺基酸由離胺酸換成精胺酸或兩個都換成精胺酸則會抑制 STAT3 負調控第一型干擾素的能力。有趣的是突變為精胺酸的 STAT3 無法被第一型干擾素誘導乙醯化。綜合以上結果顯示 STAT3 會藉由阻斷促進干擾素因子 3 複合物被引導到促進干擾素因子的啟動子 (promoter) 而影響第一型干擾素的反應。而其詳細之機制則可能與 STAT3 N- 端第 49 及 87 兩個精胺酸的乙醯化有關係。 | zh_TW |
| dc.description.abstract | Type I IFNs, activating STAT1, STAT2, and STAT3, are crucial for antiviral response. Stimulation of type I IFN induces the production of antiviral proteins in a STAT1- and STAT2-dependent manner. However, the function of STAT3 in type I IFN response was not completely understood. Recently, STAT3 was reported to negatively regulate type I IFN-mediated antiviral response. Cells lacking STAT3 displayed enhanced ISGs expression and antiviral activity upon IFN stimulation. However, the detailed mechanism remains elusive. To investigate the underlying mechanism, we used STAT1 and STAT3 double knockout (DKO) MEFs that had been restored with STAT1, STAT3, or both molecules. STAT1 or STAT3 was expressed in the DKO MEFs at a level comparable to WT MEFs. Using expression microarray and RT-QPCR, we also found that in STAT1/STAT3-restored MEFs, STAT3 could negatively regulate STAT1-dependent type I IFN-mediated gene induction and antiviral response as compared with STAT1-restored MEFs. Furthermore, using ChIP assay we showed that STAT3 impeded the recruitment of ISGF3 complex to ISRE of MDA5 and IFIT1, two IFN-stimulated genes (ISGs), following type I IFN stimulation. Since NH2-terminal domain (amino acids 1 to 134) of STAT3 was able to confer suppressive effect, we further dissect the involvement of two potential acetylation sites 49K and 87K in suppressive activating ofSTAT3. Single or double K to R mutations of these two sites in STAT3 blocked its transactivation ability. However, only K49R or RR mutants inhibited the suppressive effect of STAT3 on type I IFN response. Interestingly, IFNα-dependent acetylation of STAT3 was abolished in RR mutant STAT3. Together, these results indicate that STAT3 may affect type I IFN response by blocking the recruitment of ISGF3 complex to the promoter of ISGs. Acetylation of K49 and K87 in NTD of STAT3 may be involved in the negative regulator of the IFN response. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:15:48Z (GMT). No. of bitstreams: 1 ntu-101-R99449002-1.pdf: 4641123 bytes, checksum: b837482f46bd6fc8a584fc232db658e4 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 i
Abbreviations ii 中文摘要 iv Abstract vi Contents viii Chapter I Introduction 1 1.1 Interferons and their receptors 1 1.2 Type I IFN signaling pathway 2 1.3 Effects of type I IFNs 3 1.4 STATs 3 1.4.1 STAT1 4 1.4.1.1 Post-translational modification of STAT1 5 1.4.2 STAT3 6 1.4.2.1 Post-translational modification of STAT3 7 1.5 Negative regulators of STAT signaling pathway 8 1.6 Rationales 10 Chapter II Materials and methods 11 2.1 Cells 11 2.2 Plasmids 11 2.2 Calcium phosphate precipitation transfection 12 2.3 Retroviral transduction 12 2.4 RT-QPCR 13 2.5 Western blot 14 2.6 Cytosolic and nuclear extracts 15 2.7 Co-immunopreciptation (CoIP) 15 2.8 Chromatin immunoprecipitation (ChIP) 15 2.9 In vitro antiviral state assay 16 2.10 Single primer based site-directed mutagenesis 17 2.11 Statistics 17 Chapter III Results 18 3.1 STAT3 negatively regulates type I IFN-mediated response 18 3.2 Suppression of type I IFN response by STAT3 is independent of phosphorylation and nuclear translocation of STAT1 or STAT2 20 3.3 STAT3 suppresses type I IFN-mediated response through blocking the recruitment of ISGF3 complex to ISRE in the ISGs promoters 21 3.4 STAT3 negatively regulates type I IFN-induced gene expression through acetylation-dependent mechanism by HDAC inhibitor 21 3.5 Lysine 49 and lysine 87 of STAT3 are important for inhibition of type I IFN-mediated gene induction 22 3.6 Acetylation of STAT3 at Lys 685 also plays a critical role for suppression of type I IFN-induced gene production 23 Chapter IV Discussion 24 4.1 Restored DKO MEFs could reduce the epigenetic difference between different cell lines 24 4.3 Acetylated site of STAT3 is critical for the negative regulation 25 4.4 STAT3 directly suppressed type I IFN-induced gene expression 26 References 27 Figures 36 | |
| dc.language.iso | en | |
| dc.title | STAT3 抑制第一型干擾素反應機轉的研究 | zh_TW |
| dc.title | The suppressive effect of STAT3 on type I interferon-mediated response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳青周(Ching-Chow Chen),黃麗華(Lih-Hwa Hwang) | |
| dc.subject.keyword | 訊號傳導與轉錄子3,干擾素,微陣列分析, | zh_TW |
| dc.subject.keyword | STAT3,IFN,microarray, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 4.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
