請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳丕燊(Pisin Chen) | |
| dc.contributor.author | Hsin-Yi Tu | en |
| dc.contributor.author | 杜欣怡 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:41:27Z | - |
| dc.date.available | 2012-02-16 | |
| dc.date.copyright | 2012-02-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-01-17 | |
| dc.identifier.citation | [1] K.Greisen Phys. Rev. Lett. 16, 748 (1966).
[2] G. T. Zatsepin and V. A. Kuzmin, JETP. 4, 114 (1966). [3] V. S. Berezinsky and G. T. Zatsepin, Yad. Fiz. 11, 200 (1970). [4] F. W. Stecker, Astrophys. Space Sci. 20, 47 (1973). [5] D. Seckel and T. Stanev, Phys. Rev. Lett. 95, 141101 (2005), arXiv:astro-ph/0502244. [6] V. Berezinsky, A. Z. Gazizov, and S. I. Grigorieva, Phys. Lett. B 612, 147 (2005), arXiv:astro-ph/0502550. [7] A. V. Glushkov et al., Astropart. Phys. 4, 15 (1995). [8] M. A. Lawrence, R. J. O. Reid, and A. A. Watson, J. Phys. G 17, 733 (1991). [9] D. J. Bird et al., Astrophys. J. 441, 144 (1995); J. W. Elbert and P. Sommers, Astrophys. J. 441, 151 (1995); R. M. Baltrusaitas et al., Phys. Rev. D 31, 2192 (1985). [10] S. Yoshida et al., Astropart. Phys. 3, 105 (1995); S Yoshida and H. Dai, J. Phys. G 24, 905 (1998). [11] R. U. Abbasi et al., Phys. Rev. Lett. 100, 101101 (2008). [12] M. Roth et al., Proc. of 30th ICRC, M rida, arXiv:0706.2096 (2007). [13] R. J. Protheroe and P. A. Johnson, Astropart. Phys. 4, 253 (1996). [14] O. E. Kalashev, V. A. Kuzmin, D. V. Semikoz and G. Sigl, Phys. Rev. D 66, 063004 (2002). [15] D. Sinclair et al, Los Alamos 1982, Proceedings, Science Underground, 138-142. (1982). [16] J. C. Vander Velde’s IMB page, http://www-personal.umich.edu/ jcv/imb/imb.html [17] The official Super-kamiokande homepage, http://www-sk.icrr.u-tokyo.ac.jp/index-e.html [18] Super-K homepage, http://neutrino.phys.washington.edu/ superk/ [19] Fukuda, Y., et al, Phys Rev. Lett. 81, 11581162 (1998), arXiv:hep-ex/9805021. [20] SNO homepage, http://www.sno.phy.queensu.ca/ [21] Ahmad. QR. et al., Phys. Rev. Lett. 87, 071301 (2001), arXiv:nucl-ex/0106015. [22] P. Bosetti et al. [The DUMAND Collaboration], Tech. Rep. HDC-2-88, Hawaii (1988). [23] E. Babson et al. [The DUMAND Collaboration], Phys. Rev. D 42, 3613 (1990). [24] Baikal homepage, http://baikalweb.jinr.ru/ [25] V. A. Balkanov et al. [The Baikal Collaboration], Astropart. Phys. 7, 263 (1997). [26] P. B. Price, K. Woschnagg and D. Chirkin, Geophys. Res. Lett. 27, 2129 (2000). [27] AMANDA homepage, http://amanda.uci.edu/ [28] L. Mgrdichian, AMANDA’s First Six Years, Physorg.com. (2008). [29] E. Andrs et al., Nature 410, 6827 (2001). [30] IceCube homepage, http://www.icecube.wisc.edu/. [31] J. Ahrens et al. [The IceCube Collaboration], Astropart. Phys. 20, 507 (2004), arXiv:0305196. [32] R. Abbasi et al. [The IceCube Collaboration], Nucl. Inst. Meth. A 601, 294 (2009), arXiv:0810.4930. [33] R. Abbasi et al. [The IceCube Collaboration], arXiv:1111.5188v1 (2011). [34] ANTARES homepage, http://antares.in2p3.fr. [35] J. A. Aguilar et al. [The ANTARES Collaboration], Astropart. Phys. 23, 131 (2005). [36] J. A. Aguilar et al. [The ANTARES Collaboration], Nucl. Inst. Meth. A 626627, 128 (2011). [37] NEMO homepage, http://nemoweb.lns.infn.it. [38] M. Taiuti et al. [The NEMO Collaboration], Nucl. Inst. Meth. A 626627, S25 (2011). [39] G. Riccobene et al. [The NEMO Collaboration], Nucl. Inst. Meth. A 604, S149 (2009). [40] NESTOR homepage, http://www.nestor.noa.gr/ [41] L. K. Resvanis et al. [The NESTOR Collaboration], Nucl. Phys. Proc. Suppl. 35, 294 (1994). [42] KM3NeT homepage, http://www.km3net.org/ [43] P. Bagley et al. [The KM3NeT Collaboration], ISBN 978-90-6488-031-5 (2008). [44] J. Abraham et al.[The Pierre Auger Collaboration], Nucl. Inst. and Meth. A 620, 227 (2010). [45] J. Abraham et al.[The Pierre Auger Collaboration], Nucl. Inst. and Meth. A 613, 29 (2010). [46] G. A. Askaryan, JETP 14, 441 (1962). [47] G. A. Askaryan, JETP 21, 658 (1965). [48] D. Saltzberg, P. Gorham, D. Walz, et al., Phys. Rev. Lett. 86, 2802 (2001). [49] P. W. Gorham, D. Saltzberg, R. C. Field, et al., Phys. Rev. D 72, 023002 (2005). [50] P. Miocinovic, et al., Phys. Rev. D 74, 043002 (2006). [51] P. W. Gorham, et al., [The ANITA Collaboration], Phys. Rev. Lett. 99, 171101 (2007). [52] S. Barwick, D. Besson, P. W. Gorham, and D. Saltzberg, J. Glaciol., 51, 231-238 (2005). [53] T. H. Hankins et al., Mon. Not. R. Astron. Soc. 283, 1027 (1996). [54] P. Gorham et al., Phys. Rev. Lett. 93, 041101 (2001). [55] O. Scholten et al., Astropart. Phys. 26, 219 (2006). [56] O. Scholten et al., Phys. Rev. Lett. 103, 191301 (2009). [57] S. ter Veen, et al., Phys. Rev. D 82, 103014 (2010). [58] J.R. H randel, et al., Nucl. Phys. B 196, 289 (2009). [59] K. Singh et al., arXiv:1108.5745 (2011). [60] S. Buitink, et al., A & A 521, A47 (2010). [61] P. W. Gorham et al. [The ANITA Collaboration], Phys. Rev. D 82, 022004 (2010). [62] N. G. Lehtinen et al., Phys. Rev. D 69, 013008 (2004). [63] E. Waxman and J. N. Bahcall, Phys. Rev. D 59, 023002 (1999). [64] R. Protheroe and T. Stanev, Phys. Rev. Lett. 77, 3708 (1996). [65] C. W. James et al., Phys. Rev. D 81, 042003 (2010). [66] P. Chen and K. Hoffman, arXiv:0902.3288 (2009). [67] P. Allison et al. [The ARA Collaboration], ARA Proposal, submitted to US NSF (2009). [68] P. Allison et al. [The ARA Collaboration], arXiv:1105.2854v1 (2011). [69] R. Engel, D. Seckel, T. Stanev, Phys. Rev. D 64, 093010 (2001). [70] R. J. Protheroe, P. A. Johnson, Astropart. Phys. 4, 253 (1996). [71] O. E. Kalashev et al., Phys. Rev. D 66, 063004 (2002). [72] O. E. Kalashev et al., Phys. Rev. D 65, 103003 (2002). [73] M. Ave et al., Astropart. Phys. 23, 19 (2005). [74] E. Waxman, J. Bahcall, Phys. Rev. D 59, 023002 (1999). [75] C. Aramo, et al., Astropart. Phys. 23, 65 (2005). [76] I. Kravchenko et al., Astropart. Phys. 19, 15 (2001). [77] I. Kravchenko et al., Phys. Rev. D 73, 082002 (2006). [78] P. W. Gorham et al. [The ANITA Collaboration], Phys. Lett. 103, 051103 (2009). [79] P. W. Gorham et al. [The ANITA Collaboration], Astropart. Phys. 32, 10 (2009). [80] R. Y. Shang, Master thesis, http://www.airitilibrary.com/searchdetail.aspx?DocIDs=U0001-2707201122005900 [81] J. A. Dowdeswell and S. Evans, Rep. Prog. Phys. 67, 1821 (2004). [82] L. Gerhardt et al., arXiv:astro-ph/1005.5193 (2010). [83] P. Brennan, http://sciencedude.ocregister.com/2011/12/09/on-ice-shelf-a-hunt-for-ghostly-particles (2011). [84] P. W. Gorham et al., arXiv:astro-ph/0102435 (2001). [85] F. Halzen and S. R. Klein, Physics Today, May 2008, 29-35. [86] D. Saltzberg, Phys.Scripta T121, 119-125 (2005), arXiv:astro-ph/0501364. [87] K. D. Hoffman, arXiv:astro-ph/0812.3809v1 (2008). [88] S. R. Klein, arXiv:astro-ph/1012.1407 (2010). [89] U. F. Katz and C. Spiering, arXiv:astro-ph/1111.0507 (2011). [90] F. Halzen and S. R. Klein, Rev. Sci. Instrum. 81, 081101 (2010), arXiv:1007.1247. [91] R. Gandhi, C. Quigg, M. H. Reno and I. Sarcevic, Phys. Rev. D 58, 093009 (1998). [92] R. Gandhi, C. Quigg, M. H. Reno and I. Sarcevic, Astropart. Phys. 5, 81 (1996). [93] L. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SSSR 92, 535 (1953); 92, 735 (1935). [94] A. B. Migdal, Phys. Rev. 103,1811 (1956); Zh. Eksp. Teor. Fiz. 32, 633 (1957). [95] E. Konishi, A. Adachi, N. Takahashi and A. Misaki, J. Phys. G: Nucl. Part. 17, 719 (1991). [96] T. Stanev, Ch Vankov, R. E. Streitmatter, R. W. Ellsworth and T. Bowen, Phys. Rev. D 25, 1291 (1982). [97] A. Misaki, Phys. Rev. D 40, 3086 (1989), Nucl. Phys. B (Proc. Suppl.) 33, 192 (1993). [98] J. Nishimura, Springer, Berlin, Handbuch der Physik Bd. XLVI/2 (1967). [99] A. Misaki, Phys. Rev. D 40, 3086 (1989), Nucl. Phys. B (Proc. Suppl.) 33, 192-199 (1993). [100] S. R. Klein, Rev. Mod. Phys. 71, 1501-1538 (1999); S. R. Klein, arXiv:astro-ph/9712198 (1997). [101] E. Zas, F. Halzen, T.Stanev, Phys. Rev. D 45, 362 (1992). [102] F. Halzen, E. Zas, T. Stanev, Phys. Lett. B 257, 432 (1991). [103] J. Alvarez-Muniz and E. Zas, Phys. Lett. B 411, 218 (1997). [104] J. Alvarez-Muniz and E. Zas, Phys. Lett. B 434, 396 (1998). [105] J. Alvarez-Muniz, R. A. Vazquez and E. Zas, Phys. Rev. D 61, 023001 (1999). [106] J. Alvarez-Muniz, R. A. Vazquez and E. Zas, Phys. Rev. D 62, 063001 (2000). [107] C. Y. Hu, C. C. Chen and P. Chen, arXiv:1012.5155v1 (2010). [108] S. Y. Sun, P. Chen and M. Huang, arXiv:1002.0023v1 (2010). [109] K. Woschnagg and P. B. Price, Appl. Opt. 40, 2496-2500 (2001). [110] P. B. Price et al., Proc. Natl. Acad. Sci. 99, 7844 (2002). [111] G. S. Varner, P. W. Gorham, A. Jongeling and L. A. White, ANITA Note 04-002 (2004). [112] A. Connolly, S. Hoover and D. Saltzberg, ”Thermal Noise Studies: Toward A Time- Domain Model of the ANITA Trigger” (2006). [113] N. I. Yannopoulou and P. E. Zimourtopoulos, http://demonstrations.wolfram.com/DipoleAntennaRadiationPattern . [114] J. D. Kraus, Antennas, 2nd edition (McGraw-Hill: Boston)(1998). [115] P. W. Gorham, Askaryan Radio Array-Monte Carlo (ARA-MC) code. [116] D. Seckel et al., Simulation of Askaryan Detection and Events (SADE) code. [117] M. H. A. Huang et al., Simulation of High Energy Neutrinos Interacting with the Earth (SHINIE) code. [118] Bogorodsky, V. V, C. R. Bentley and P. E. Gudmandsen, Radioglaciology, Riedel, Dordrecht, Holland (1985). [119] Dowdeswell, J. A. and S. Evans, Rep. Progr. Phys., 67, 1821-1861 (2004). [120] H. T. Friis, Proc. IRE, vol. 34, 254 (1946). [121] Matsuoka, T., S. Fujita, and S. Mae, J. Appl. Phys. 80, 5884 (1996). [122] D. Saltzberg, arXiv:astro-ph/0501364, Phys. Scripta T 121, 119-125 (2005). [123] P. W. Gorham, http : //www.phys.hawaii.edu : 8080/anitan otes/497 (2011). [124] R. Aaron Falk and Gordon H. Dunn, Phys. Rev. A 27, 754 (1983). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66539 | - |
| dc.description.abstract | 南極天壇陣列微中子觀測站是觀測宇宙極高能微中子與冰層反應後產生的契倫可夫輻射的實驗裝置,該裝置設在南極冰層以下兩百公尺處。模擬能量約1017eV到1020eV的宇宙極高能微中子射入地球時,經過冰層與粒子反應發射出的契倫可夫輻射路徑,藉由冰層下的天線偵測到的訊號波形以及契倫可夫輻射的特性,再考量進真實情況的背景雜訊,重建出產生契倫可夫輻射的位置以及微中子入射進地球的方向,進而推斷宇宙極高能微中子的發射來源。在模擬過程中,測試各種可能的天壇陣列排列方式,改變測站間和天線間的距離,找出可偵測到最多微中子訊號的最佳排列方式。而最佳陣列是由49個測站組成的六角柱結構,每個測站裝設3串天線,每串有4個天線且依此偏振類型順序排列: 垂直-垂直-水平-垂直,最近的測站間距為3 km而天線間距為30 m,此為可得到最高效率和最大準確度的最佳排列方式。 | zh_TW |
| dc.description.abstract | Askaryan Radio Array (ARA) is an observatory designed to detect the radio frequency (RF) Cherenkov radiation generated by the shower induced by ultra high energy (UHE) cosmic neutrino whose energy lies between 10^17eV and 10^21eV. Tracing the UHE neutrinos is the best way to know the origin and the evolution of the cosmic accelerators, because neutrinos are undeflected by magnetic fields and unhindered by interactions with cosmic microwave background (CMB) when it traverses the universe from the source. ARA Observatory, to be located at the South Pole in Antarctica, takes abundant ice as the target. When UHE neutrinos propagate through the ice, they interact with the nucleons in the ice and generate the Cherenkov radiation via the Askaryan effect. In order to reconstruct more precisely the incident directions of the UHE neutrinos so as to identify their sources, it is desirable to explore different design geometries of the ARA array. We find the optimized configuration of ARA Observatory consists of 49 stations located on a hexagonal lattice with 12 antennas per station. The station spacing is 3 km, string spacing and antenna spacing is 30 m. It means the adjacent antenna spacing is 10 m which is the shortest distance in our simulation. There are three Vpol antennas and one Hpol antenna in a string with the sequence is Vpol-Vpol-Hpol-Vpol. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:41:27Z (GMT). No. of bitstreams: 1 ntu-101-R98222011-1.pdf: 6931858 bytes, checksum: e4c65424df20170b61d3d89c5cba969e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1 INTRODUCTION 1
1.1 Ultra-High Energy (UHE) Neutrinos 1 1.2 Gresien-Zatsepin-Kuzmin (GZK) Process 1 1.3 Production of UHE Neutrinos 4 1.4 Detection of Optical Cherenkov Radiation for Searching UHE Neutrinos 5 1.4.1 Optical Cherenkov Radiation Detection 5 1.4.2 Optical Cherenkov Radiation Detectors 6 1.5 Detection of Radio Cherenkov Radiation for Searching UHE Neutrinos 9 1.5.1 Radio Cherenkov Radiation Detection 9 1.5.2 Radio Cherenkov Radiation Detectors 11 2 Neutrino Shower and Askaryan Effect 17 2.1 Neutrino Interactions 17 2.1.1 Cross Section 19 2.2 Showers 21 2.2.1 Electromagnetic Showers 21 2.2.2 Hadronic Showers 21 2.2.3 Landau-Pomeranchuk-Migdal (LPM) Effect 22 2.3 Askaryan Effect 24 2.3.1 Excess Charge 24 2.3.2 Geometry of Cherenkov Radiation 25 2.3.3 Electric Field Spectrum 26 2.3.4 Angular Distribution 27 3 Askaryan Radio Array Observatory Design Concept 30 3.1 Optimization of the Configuration of ARA Observatory 30 3.1.1 Number of Strings per Station 32 3.1.2 Station Spacing and Antenna Spacing 35 3.1.3 Number of Vpol Antennas and Hpol Antennas per String 36 3.1.4 Sequence of Antenna Polarization per String 36 3.2 Thermal Noise 38 3.3 Trigger Threshold 39 3.4 Antenna Response 45 3.4.1 Antenna Gain 45 3.4.2 Effective Height 50 3.5 Event Generation 51 3.6 Ray Trace 53 3.6.1 Method to Trace Radiation 53 3.6.2 Temperature in the Antarctica Ice 54 3.6.3 Refractive Index in the Antarctica Ice55 3.7 Attenuation Length 56 3.8 Electric Field Spectrum 60 3.9 Trigger Condition 61 3.10 Volumetric Acceptance 61 3.11 Expected Neutrino Number 63 4 Results and Comparison with other Simulations 66 4.1 Comparison with Testbed Paper 66 4.2 Difference of the Results caused by the Neutrino Distributions 69 4.3 Difference of the Structure between ARA-MC and Our Simulation 72 4.4 Determination of Trigger Condition 76 4.5 Comparison of Different Configurations of ARA Observatory 79 4.6 Comparison of Different Sequences of Antenna Polarization 81 4.7 The Best Configuration of ARA Observatory 83 5 Conclusions 86 5.1 All Comparisons with Testbed Paper 86 5.2 Comparison of Current Design and Optimized Configuration of ARA Observatory 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最佳排列 | zh_TW |
| dc.subject | 契倫可夫輻射 | zh_TW |
| dc.subject | 天壇陣列 | zh_TW |
| dc.subject | 微中子 | zh_TW |
| dc.subject | 天線 | zh_TW |
| dc.subject | 南極 | zh_TW |
| dc.subject | UHE cosmic neutrino | en |
| dc.subject | ARA configuration | en |
| dc.subject | South Pole | en |
| dc.subject | Askaryan effect | en |
| dc.subject | Cherenkov radiation | en |
| dc.subject | radio frequency | en |
| dc.title | 南極天壇陣列微中子觀測站的最佳排列方式 | zh_TW |
| dc.title | Optimization of the Configuration of Askaryan Radio Array Observatory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林貴林,黃美玲,南智祐(Jiwoo Nam),劉宗哲 | |
| dc.subject.keyword | 天壇陣列,微中子,契倫可夫輻射,最佳排列,南極,天線, | zh_TW |
| dc.subject.keyword | ARA configuration,UHE cosmic neutrino,radio frequency,Cherenkov radiation,Askaryan effect,South Pole, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-01-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
