請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6649完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張時中(Shi-Chung Chang) | |
| dc.contributor.author | Yi-Hsuan Shih | en |
| dc.contributor.author | 施懿瑄 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:15:45Z | - |
| dc.date.available | 2015-01-16 | |
| dc.date.available | 2021-05-17T09:15:45Z | - |
| dc.date.copyright | 2013-01-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-12-07 | |
| dc.identifier.citation | [3GP04] 3GPP TSG Terminals, “Common test environments for user equipment conformance testing,” 3GPP TS 34.108 version 3.16.0, Jun. 2004.
[ABI04] A. Alexiou, C. Bouras, and V. Igglesis, “Performance evaluation of TCP over UMTS transport channels,” International Symposium on Communications Interworking, 2004. [AKY11] M. Y. Arslan, S. V. Krishnamurthy, J. Yoon, S. Banerjee, and K. Sundaresan, “FERMI: A femtocell resource management system for interference mitigation in OFDMA networks,” in Proc. Annual International Conference on Mobile Computing and Networking, 2011. [ATT09] AT&T femtocell 網址如下: http://www.wireless.att.com/learn/why/3gmicrocell/. [BHK01] J. Beckers, I. Hendrawan, R. E. Kooij, and R. van der Mei, “Generalized processor sharing performance models for internet access lines,” in 9th IFIP Conference on Performance Modeling and Evaluation of ATM and IP Networks, 2001. [CCM10] 新通訊元件雜誌,增加電信業者營收/提升用戶品質 Femtocell基地台風靡全球 網址如下: http://www.2cm.com.tw/markettrend_content.asp?sn=1005040009. [ChA08] V. Chandrasekhar and J. G. Andrews, “Femtocell networks: a survey,” IEEE Communications Magazine, 2008. [CHA08] J. D. Chimeh, P. Azmi, and M. Hakkak, “Internet traffic modeling and capacity evaluation in UMTS,” International Journal of Hybrid Information Technology, vol. 1, no. 2, pp. 109-120, 2008. [Chi02] J. B. Chia, “Video services over 4G wireless networks: not necessarily streaming,” Wireless Communications and Networking Conference, WCNC2002, vol. 1, pp. 18-22, Mar. 2002. [ChL05] S. P. Chung and J. C. Lee, “Performance Analysis and overflowed traffic characterization in multiservice hierarchical wireless networks,” IEEE Trans. on Wireless Communications, vol. 4, no. 3, pp. 904-918, May 2005. [ChZ00] J. Q. -J. Chak and W. Zhuang, “Capacity analysis for connection admission control in indoor multimedia CDMA wireless communications,” Wireless Personal Communications, vol. 12, pp. 269-282, 2000. [CMK08] D. Choi, P. Monajemi, S. Kang, and J. Villasenor, “Dealing with loud neighbors: the benefits and tradeoffs of adaptive femtocell access,” in Proc. IEEE Global Telecomm. Conference, pp. 1-5, Dec. 2008. [CMT70] E. G. Coffman, R. R. Muntz, and H. Trotter, “Waiting time distribution for processor-sharing systems,” Journal of ACM, vol. 17, no. 1, pp. 123-130, Mar. 1970. [Coh79] J. W. Cohen, “The multiple phase service network with generalized processor sharing,” Acta Informatica 12, pp. 245-284, 1979. [DBL10] D. C. Dimitrova, H. Berg van den, R. Litjens, and G. Heijenk, “Scheduling strategies for LTE uplink with flow behaviour analysis,” Fourth ERCIM Workshop on eMobility, 2010. [Den96] S. Deng, “Empirical model of WWW document arrivals at access link,” in Proc. 1996 IEEE Int. Conf. Commun., vol. 3, pp. 1797-1802, Jun. 1996. [Fan05] Y. Fang, “Performance evaluation of wireless cellular networks under more realistic assumptions,” Wireless Communications Mobile Computing, vol. 5, no. 8, pp. 867-885, Dec. 2005. [Fem10] FemtoForum, “Femtocells-natural solution for offload,” FemtoFroum white paper, Jun. 2010. [FOS06] R. Ferrus, J. Olmos, O. Sallent, J. Perez-Romero, and F. Casadevall, “An admission control framework integrating radio and IP-transport in 3GPP-based networks,” Mobile and Wireless Communications Summit, 2007. 16th IST, pp. 1-6, 2007. [GST08] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals of queueing theory, 4th ed. Hoboken N.J.: Wiley, cop., 2008. [HKI08] Q. Huang, K. T. Ko, and V. B. Iversen, “Approximation of loss calculation for hierarchical networks with multiservice overflows,” IEEE Transactions on Communications, vol. 56, no. 3, pp. 466-473, Mar. 2008. [HoT04] H. Holma and A. Toskala, WCDMA for UMTS, 3rd ed. New York: J. Wiley & Sons, Ltd., 2004. [Hua04] J. S. Huang, “Adaptive modulation schemes for 3G WCDMA in multipath channels,” Master Thesis, Dept. Electron. Eng., Nat. Yunlin Univ. of Science & Technology, Jun. 2004. [JaG03] S. A. Jafar and A. Goldsmith, “Adaptive multirate CDMA for uplink throughput maximization,” IEEE Trans. Wireless Commun., vol. 2, no. 2, pp. 218-228, Mar. 2003. [Jai94] R. Jain, “ATM adaptation layer,” Master Thesis, Dept. Computer and Information Science, The Ohio State Univ., 1994. [KAK06] I. Koukoutsidis, E. Altman, and J. M. Kelif, “Fair rate sharing models in a CDMA link with multiple classes of elastic traffic,” Rapport de Recherche 5596, INRIA, Jun. 2005. [KOC11] T. Kolding, P. Ochał, P. Czerepiński, and K. Pedersen, “Impact of carrier configuration and allocation scheme on 3G femtocell offload effect,” Vehicular Technology Conference, 2011 IEEE 73rd, pp. 1-5, 2011. [Kuc73] A. Kuczura, “The interrupted poisson process as an overflow process,” Bell Syst. Tech. J., vol. 52, pp. 437-448, Mar. 1973. [LHB01] A. Lom, G. Heijenk, and C. Bruma, “Performance of TCP over UMTS common and dedicated channels,” IST Mobile & Wireless Communications Summit 2003, pp. 128-142, Jun. 2003. [Li11] X. Li, Radio access network dimensioning for UMTS, Wiesbaden: Vieweg+Teubner Verlag, 2011. [Mad08] A. Mader, “Performance Models for UMTS 3.5G Mobile Wireless Systems,” Doctor Thesis, Institut für Informatik Lehrstuhl für Verteilte Systeme, 2008. [MaR99] L. Massoulie and J. Roberts, “Arguments in favour of admission control for TCP flows,” in Proc. of the ITC 16, pp. 1-12, 1999. [MHH11] M. H. Ho, “Optimal Frequency Allocation Scheme Design in Macrocell and Femtocell Coexistence Networks,” Master Thesis,Dept.Electron. Eng., Nat. Taiwan Univ. Jun. 2011. [RSA05] J. Pérez-Romero, O. Sallent, R. Agusti, and M. A. Diaz-Guerra, Radio resource management strategies in UMTS, Chichester, West Sussex, England: Hoboken, N.J.: J. Wiley & Sons, 2005. [RVP10] G. de la Roche, A. Valcarce, D. Lopez-Perez, and J. Zhang, “Access control mechanisms for femtocells,” IEEE Communications Magazine, vol. 48, no. 1, pp. 33-39, 2010. [Saf05] S. R. Safavian, “How to dimension wireless networks for packet data services with guaranteed QoS (Part 1-Theoretical Issues),” Bechtel Telecommunications Technical Journal, vol. 3, no. 1, Aug. 2005. [Sol10] D. Soldani, “Bridging QoE and QoS for mobile broadband networks,” ETSI workshop on QoS, QoE and user experience focusing on speech, multimedia conference tools., 13th Capacity Sharing Workshop, Sep. 2010. [TZT11] D. C. Tsilimantos, D. A. Zarbouti, G. V. Tsoulos, G. E. Athanasiadou, and D. I. Kaklamani, “Fairness and throughput trade-off analysis for UMTS WCDMA network planning,” Wireless personal communications, vol. 56, no. 4, pp. 693-714, 2011. [WMC03] T. C. Wong, J. W. Mark, and K. C. Chua, “Joint connection level, packet level and link layer resource allocation for variable bit rate multiclass services in cellular DS-CDMA networks with QoS constraints,” IEEE J. Sel. Areas Commun., vol. 21, no. 10, pp. 1536-1545, Dec. 2003. [YMN09] M. Yavuz, F. Meshkati, S. Nanda, A. Pokhariyal, N. Johnson, B. Raghothaman, et al., “Interference management and performance analysis of UMTS/HSPA+ femtocells,” IEEE Communications Magazine, vol. 47, pp. 102-109, 2009. [ZCJ07] S. G. Zhao, H. G. Chou, S. L. Jen, and Y. Y. Chen, HSDPA技術及其演進-HSUPA與HSPA+, Bei jing: 人民郵電出版社, 2007. [Zha10] Y. Zhang, “Resource Sharing of Completely Closed Access in Femtocell Networks,” IEEE Wireless Communications and Networking Conference, pp. 1-5, 2010. [ZhR10] Z. Zhang, and G. de la Roche, Femtocell: Technologies and deployment, Chichester, West Susssex, U.K., Hoboken, N.J.: Wiley, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6649 | - |
| dc.description.abstract | 毫微微細胞基地台(Femtocell)與巨細胞基地台(macrocell)共存系統是將來行動通訊的趨勢之一,本研究探討在無線端之連結流量需求、資源限制與數據服務效能間的關係,利用連結允入控制機制設計以作為頻寬配置決策的基礎。
具體的研究情境為一個有頻譜執照的電信業者,擁有macrocell及femtocell共存系統,用戶接取兩子系統進行數據服務,macrocell訊務流量匯集至後端固網Iu-ps介面處,femtocell訊務流量則匯集至Iuh介面以連結網際網路。Connection Admission Control(CAC)分別由macrocell子系統的Radio Network Controller (RNC)與femtocell子系統的Femtocell GateWay (F-GW)執行,中心管理系統Admission Control for Coexistence Coordinator (ACCC)統計並管制macrocell和femtocell用戶的訊務流量。無線資源會限制住來自macrocell用戶之流量,新進之用戶連結需求會被RNC阻隔,在femtocell亦同樣會被F-GW阻隔,而影響用戶的連網成功率。 針對用戶需求特性,假設用戶使用數據服務的行為與進行語音服務的產生雷同,以Poisson隨機變數描述。連結流量分析模型採用何孟翰, 2011所提出的以語音服務為基礎;數據服務流量成分包括macrocell與femtocell子系統用戶的原始產生數據需求,以及因移動而由原子系統切換到另一子系統的數據需求流量,唯依據數據服務不同統計特性加以修改。數據連結流量具有不同的新進連結到達率,且總連結數據流量到達率(包含新進連結與切換連結)依何孟翰, 2011模型可以Poisson過程建模。在單一連結的特性方面,考慮用戶瀏覽網頁及觀看視訊服務,依據T. C. Wang et al., 2003,我們使用指數分佈模型來描述連結的使用時間。系統(基站)服務特性,WCDMA技術以單一頻帶利用多個碼同時傳輸多個連結訊務流量,核心網路採用分封交換,多工分享連網頻寬。連網瓶頸在無線接口的Uu介面WCDMA頻寬限制,使得各數據連結傳輸速率會因同時連結的數目而改變,此特性以Processor Sharing, PS模型描述。實務上在macrocell CAC對接入網路的數據連結個數有一上限,WCDMA技術可提供之最大傳輸速率2Mbps與macrocell單一連結基本頻寬需求之比值r,連結傳輸速率因連結數目而變,並有一上限值,我們以有界(bounded)的狀態相依服務速率(State Dependent Service Rate, SDSR)模型描述。同樣地,對femtocell子系統亦有一連結數目上限。依據上述用戶連結需求的產生與流量、WCDMA規約和頻寬共享之特性,採用M/ /1//r-PS模型。 本論文結合J. Beckers, et al., 2001及W. Cohen, 1979所分別提出的M/G/1/∞-PS穩態機率分析以及有限人數下(finite source population)M/Er/1//r-PS的穩態機率分析方法,加入bounded-SDSR模型,其中有界(bounded)用以描述UMTS傳輸速率有一上限為2Mbps,以分別求解macrocell與femtocell阻隔機率解析解。得到解析解。相較於M/Er/1//r-PS的解,因有界傳輸速率限制,每一連結狀態下穩態機率將上升,因而阻隔機率較SDSR將上升。 為使用所建模型及所得阻隔機率,依據實際上使用者行為設計當使用者長時間利用無線資源進行數據服務或使用者長時間在室內環境下使用數據服務等情境對於連結阻隔機率的影響。利用MATLAB軟體針對這些例子進行數值實驗,結果如下: (1) 增設femtocell可有效降低macrocell系統的阻隔機率,因為femtocell提供部分用戶流量需求的接取而能減少用戶對macrocell接取流量。Femtocell設置數目由5個增加至20個,macrocell阻隔機率下降23.5%。 (2) Macrocell的阻隔機率戶隨著總流量需求的上升而逐漸升高。當總流量的增加幅度由0.4至1連結/秒,阻隔機率上升幅度為21%。 (3) 用戶在室內之停留時間越久,佔用femtocell資源機率越高,可降低macrocell阻隔機率,例如用戶在室內停留時間平均值由1700s增加至2400秒,下降幅度為1.5%。 總結本論文的本研究之貢獻如下: 1. 探討共存系統數據需求特性以及服務端連結傳輸特性,用戶利用一段持續時間使用數據服務,研究顯示可以依連結持續時間描述; 2. 因分封交換特性,傳輸速率與連結數目成反比,我們以PS模型描述此特性; 3. 並經由本研究分析UMTS傳輸速率的限制,與一般SDSR模型不同,我們另加進有界(bounded)的SDSR模型進行分析,以實際針對UMTS系統下共存系統的阻隔機率進行解析解。 | zh_TW |
| dc.description.abstract | The femtocell and macrocell coexisting system is a trend for future mobile communications. In the thesis, we discuss the relationships among user data demand, the wireless band resource limitation and the quality of service of data service. Under the connection admission control (CAC) design, we shall model and analyze connection blocking probability of the coexistence system.
The problem setting is that a wireless service provider (WSP) owns the band license for accessing the 3G mobile networks and operates macrocell and femtocell systems. Connection demand and traffic from macrocell users are multiplexed into the core network, in which traffic was aggregated into the Iu-ps. As for femtocell users, traffic was aggregated into Iuh interface. The Admission Control for Coexistence Coordinator (ACCC) is the central coordinator for CAC of the co-existence networks. CAC is implemented in the Radio Network Controller (RNC) in macrocell and the Femtocell GateWay (F-GW) in femtocell, which put limit on data service connection traffic and affects the connection access probability. From literature survey of the characteristics of data connection demands and traffic, user mobility and data connection demand for mobile services are similar to voice usage patterns. We thus follow the traffic modeling of by Ho, 2011. The traffic model consists of three parts, the original connection generation in macrocells and femtocells respectively and the handoff traffic from other cells. We further extend the modeling methods to capture data service characteristics. Data service types considered are web browsing and video streaming. We assume that original data connection demand generation in each cell is a Poisson process. The total connection demand generation with handoff traffic stays Poisson under Ho, 2011 model. The connection holding times are exponentially distributed according to Wang et al., 2003. User data traffic is multiplexed by using the Wide Code Division Multiple Access (WCDMA) technique and transmitted to the core network. So the service is packet-switched and access resources are shared among multiple connections, for which a Processer Sharing (PS) model is proposed. In practice, the number of access connections, r, has a limitation in macrocells and femtocells according to CAC mechanism. CAC limitation on number of connections is due to ratio of the WCDMA wireless bands limitation of Uu interface and connection bandwidth demand. As the connection data rate is dependent of the number of connections simultaneously accessing a Macro- or a Femto- cell. It is therefore modeled as State Dependent Service Rate (SDSR) of the cells. Furthermore, WCDMA data rate in UMTS has a maximum value, 2Mbps. We add an upper bound to the per-connection data access rate provided by a cell. In light of WCDMA protocol and the data traffic characteristics, we model the user aspects and the base station as an M/ /1//r-PS queueing model. We combine and extend the analysis methods for M/G/1//∞-PS by Beckers, et al., 2001, and the finite population model of Cohen, 1979, to analyze the M/ /1//r-PS queueing model with a bounded-State Dependent Service Rate (b-SDSR) and derive macrocell and femtocell blocking probability. Comparing to analysis results of the M/Er/1//r-PS model, the blocking probabilities may increase because of the bounds on maximum service rate per connection and maximum number of connections. Scenarios are designed to study how user usage factors of connection holding times and indoor times impact on blocking probabilities. Numerical results were obtained by using the mathematical software MATLAB as follows: i. Deployment of femtocells can effectively reduce connection blocking probability of a macrocell, because some of the users can access femtocells, and hence the traffic in macrocell can be relieved. When total system arrival rate equals to 1 connection/sec and the number of femtocells increases from 5 to 20, the blocking probability of the macrocell decreases by 23.5%. ii. When total arrival rate to the system increases, the macrocell blocking probability increases. It can be seen that when the system traffic increases from 0.4 to 1 connection per second, the blocking probability increases by 21%. iii. Under the condition of fixed mean connection times of a user, if users stay indoor environments for longer time, the macrocell blocking probability decreases. For example, when mean indoor times changes from 1700 to 2400 seconds, the blocking probability decreases by 1.5%. In this thesis, we discuss and analyze the characteristics of data service, and the adoption of a queueing model for analytical results, the contributions are as follows: i. Discuss the limitation of WCDMA wireless band. We can grasp the relationship of the user demand traffic end, the data service holds for some times, which we denote it as a connection holding time; ii. Analyze the packet-switched characteristics, the data rate is inversely proportional to number of connections, which we adopt a PS model; iii. UMTS data rate limitation makes the SDSR different from our design. We add the bounded-SDSR for blocking probability calculation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:15:45Z (GMT). No. of bitstreams: 1 ntu-101-R99921001-1.pdf: 2171146 bytes, checksum: 6f1c8cda6dc2717dcbaf000927f1be15 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 i
Abstract v 目錄 ix 圖目錄 xiii 表目錄 xv 第一章 毫微微細胞基地台(Femtocell)緒論 1 1.1 Femtocell推出與發展 1 1.2 文獻摘要 3 1.3 研究範疇 6 1.4 論文章節架構 9 第二章 Macrocell與Femtocell共存系統連結阻隔機率建模議題 11 2.1 Macrocell及Femtocell共存系統架構 12 2.1.1 共存系統架構 13 2.1.2 協定堆疊 14 2.1.2.1 Macrocell協定堆疊 15 2.1.2.2 Femtocell協定堆疊 16 2.1.3 WCDMA技術 18 2.2 資源容量瓶頸 19 2.2.1 Iu-ps介面協定 20 2.2.2 固網接口容量 22 2.2.3 連結允入控制 23 2.3 UMTS服務類型 25 2.3.1 無線接取乘載 27 2.4 Macrocell與Femtocell共存系統阻隔機率建模問題與挑戰 28 2.4.1 共存固網容量的阻隔機率計算之問題描述 29 2.4.2 阻隔機率分析的挑戰 30 第三章 Macrocell與Femtocell共存系統阻隔機率模型 33 3.1 數據流量模型建立需求 33 3.1.1 模型情境設定 34 3.1.2 共存系統CAC 機制 34 3.2 連結阻隔機率模型符號定義 37 3.3 基站數據服務流量建模 40 3.3.1 Macrocell連結需求 43 3.3.1.1 Macrocell資源佔用時間 45 3.3.2 單一Femtocell系統連結需求 46 3.3.2.1 Femtocell資源佔用時間 47 3.4 切換流量之機率推導 48 3.5 基站及後端固網數據服務子模型 49 3.5.1 Processor Sharing原理 49 3.6 基站連結阻隔機率計算 50 3.6.1 服務速率特性 52 3.6.2 Macrocell連結阻隔機率 54 3.7 整體模型架構 57 第四章 共存系統阻隔機率數值實驗結果與討論 59 4.1 數值實驗基本參數設定 59 4.2 數值實驗驗證 61 4.3 連結阻隔機率數值實驗與情境應用 65 4.3.1 連結持續時間與阻隔機率之關係 65 4.3.2 用戶室內停留時間對阻隔機率的影響 66 4.3.3 頻寬需求與阻隔機率之關係 68 4.4 Femtocell分流效應 69 4.5 數值實驗結果綜合討論 69 第五章 結論與未來研究方向 71 5.1 結論 71 5.2 未來研究方向 73 參考文獻 75 附錄A:指數分佈機率求解 81 附錄B:M/ /1//r1-PS阻隔機率公式推導 83 | |
| dc.language.iso | zh-TW | |
| dc.title | Macrocell與Femtocell共存系統數據流量建模與阻隔機率計算 | zh_TW |
| dc.title | Modeling and Blocking Probability Calculation of Data Traffic in Macrocell and Femtocell Coexistence Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林宗男(Tsungnan Lin),黃天立(Tenlee Hwang),蔡志宏(Zsehong Tsai),魏宏宇(Hung-Yu Wei),魏學文(Shyue-Win Wei) | |
| dc.subject.keyword | femtocell與macrocell共存系統,數據服務,連結允入控制,連結阻隔機率,有界的狀態相依速率模型,處理器分享模型, | zh_TW |
| dc.subject.keyword | Femtocell and macrocell coexistence networks,data service,connection admission control,connection blocking probability,bounded-State Dependent Service Rate model,processor sharing model, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-12-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 2.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
