Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66494
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華(Shing-Hwa Liu)
dc.contributor.authorKuo-How Huangen
dc.contributor.author黃國皓zh_TW
dc.date.accessioned2021-06-17T00:38:58Z-
dc.date.available2015-03-02
dc.date.copyright2012-03-02
dc.date.issued2012
dc.date.submitted2012-01-30
dc.identifier.citationAdams, J., Kauffman, M., 2004. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 22, 304-311.
Adhim, Z., Matsuoka, T., Bito, T., Shigemura, K., Lee, K.M., Kawabata, M., Fujisawa, M., Nibu, K., Shirakawa, T., 2011. In vitro and in vivo inhibitory effect of three Cox-2 inhibitors and epithelial-to-mesenchymal transition in human bladder cancer cell lines. Br J Cancer 105, 393-402.
Amaravadi, R.K., Thompson, C.B., 2007. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin.Cancer Res. 13, 7271-7279.
Amaravadi, R.K., Yu, D., Lum, J.J., Bui, T., Christophorou, M.A., Evan, G.I., Thomas-Tikhonenko, A., Thompson, C.B., 2007. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117, 326-336.
Arap, M.A., Lahdenranta, J., Mintz, P.J., Hajitou, A., Sarkis, A.S., Arap, W., Pasqualini, R., 2004. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6, 275-284.
Bajorin, D.F., Dodd, P.M., Mazumdar, M., Fazzari, M., McCaffrey, J.A., Scher, H.I., Herr, H., Higgins, G., Boyle, M.G., 1999. Long-term survival in metastatic transitional-cell carcinoma and prognostic factors predicting outcome of therapy. J Clin Oncol 17, 3173-3181.
Barada,J.H., Weingarten,J.L., Cromie,W.J., 1989. Testicular salvage and age-related delay in the presentation of testicular torsion. J.Urol. 142, 746-748.
Ben,M., I, fany-Fernandez,I., Martel,C., Zaouali,M.A., Bintanel-Morcillo,M., Rimola,A., Rodes,J., Brenner,C., Rosello-Catafau,J., Peralta,C., 2010. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death.Dis. 1, e52.
Benavides, A., Pastor, D., Santos, P., Tranque, P., Calvo, S., 2005. CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation. Glia 52, 261-275.
Bernales, S., McDonald, K.L., Walter, P., 2006a. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4, e423.
Bernales, S., Papa, F.R., Walter, P., 2006b. Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22, 487-508.
Boyce,M., Yuan,J., 2006. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death.Differ. 13, 363-373.
Bursch, W., 2001. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8, 569-581.
Carew, J.S., Nawrocki, S.T., Kahue, C.N., Zhang, H., Yang, C., Chung, L., Houghton, J.A., Huang, P., Giles, F.J., Cleveland, J.L., 2007. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110, 313-322.
Castedo, M., Ferri, K.F., Kroemer, G., 2002. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 9, 99-100.
Cattolica,E.V., Karol,J.B., Rankin,K.N., Klein,R.S., 1982. High testicular salvage rate in torsion of the spermatic cord. J.Urol. 128, 66-68.
Cay,A., Alver,A., Kucuk,M., Isik,O., Eminagaoglu,M.S., Karahan,S.C., Deger,O., 2006. The effects of N-acetylcysteine on antioxidant enzyme activities in experimental testicular torsion. J.Surg.Res. 131, 199-203.
Chauhan, D., Hideshima, T., Anderson, K.C., 2005. Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol 45, 465-476.
Chen, C.J., Chuang, Y.C., Lin, T.M., Wu, H.Y., 1985. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res 45, 5895-5899.
Chen, S.T., Thomas, S., Gaffney, K.J., Louie, S.G., Petasis, N.A., Schonthal, A.H., 2010. Cytotoxic effects of celecoxib on Raji lymphoma cells correlate with aggravated endoplasmic reticulum stress but not with inhibition of cyclooxygenase-2. Leuk.Res. 34, 250-253.
Chiang, H.S., Guo, H.R., Hong, C.L., Lin, S.M., Lee, E.F., 1993. The incidence of bladder cancer in the black foot disease endemic area in Taiwan. Br J Urol 71, 274-278.
Chiou, H.Y., Hsueh, Y.M., Liaw, K.F., Horng, S.F., Chiang, M.H., Pu, Y.S., Lin, J.S., Huang, C.H., Chen, C.J., 1995. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res 55, 1296-1300.
Chou, Y.H., Huang, C.H., 1999. Unusual clinical presentation of upper urothelial carcinoma in Taiwan. Cancer 85, 1342-1344.
Christian, B.J., Loretz, L.J., Oberley, T.D., Reznikoff, C.A., 1987. Characterization of human uroepithelial cells immortalized in vitro by simian virus 40. Cancer Res 47, 6066-6073.
Cohen, M.H., Rothmann, M., 2001. Gemcitabine and cisplatin for advanced, metastatic bladder cancer. J Clin Oncol 19, 1229-1231.
Cohen, M.H., Rothmann, M., 2001. Gemcitabine and cisplatin for advanced, metastatic bladder cancer. J.Clin.Oncol. 19, 1229-1231.
Cui, Q., Tashiro, S., Onodera, S., Ikejima, T., 2007. [Mechanism of downregulation of apoptosis by autophagy induced by oridonin in HeLa cells]. Yao Xue Xue Bao 42, 35-39.
Cusimano, A., Azzolina, A., Iovanna, J.L., Bachvarov, D., McCubrey, J.A., D'Alessandro, N., Montalto, G., Cervello, M., 2010. Novel combination of celecoxib and proteasome inhibitor MG132 provides synergistic antiproliferative and proapoptotic effects in human liver tumor cells. Cell Cycle 9, 1399-1410.
Dannenberg, A.J., Subbaramaiah, K., 2003. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4, 431-436.
Davies, N.M., McLachlan, A.J., Day, R.O., Williams, K.M., 2000. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet 38, 225-242.
Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D.A., Jin, S., White, E., 2006. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64.
DeGracia,D.J., Montie,H.L., 2004. Cerebral ischemia and the unfolded protein response. J.Neurochem. 91, 1-8.
Denmeade, S.R., Isaacs, J.T., 2005. The SERCA pump as a therapeutic target: making a 'smart bomb' for prostate cancer. Cancer Biol Ther 4, 14-22.
Dhawan, D., Craig, B.A., Cheng, L., Snyder, P.W., Mohammed, S.I., Stewart, J.C., Zheng, R., Loman, R.A., Foster, R.S., Knapp, D.W., 2010. Effects of short-term celecoxib treatment in patients with invasive transitional cell carcinoma of the urinary bladder. Mol.Cancer Ther. 9, 1371-1377.
Dhawan, D., Jeffreys, A.B., Zheng, R., Stewart, J.C., Knapp, D.W., 2008. Cyclooxygenase-2 dependent and independent antitumor effects induced by celecoxib in urinary bladder cancer cells. Mol Cancer Ther 7, 897-904.
Ding, W.X., Ni, H.M., Gao, W., Hou, Y.F., Melan, M.A., Chen, X., Stolz, D.B., Shao, Z.M., Yin, X.M., 2007. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282, 4702-4710.
Dovedi, S.J., Kirby, J.A., Atkins, H., Davies, B.R., Kelly, J.D., 2005. Cyclooxygenase-2 inhibition: a potential mechanism for increasing the efficacy of bacillus calmette-guerin immunotherapy for bladder cancer. J Urol 174, 332-337; discussion 337.
Egger, L., Madden, D.T., Rheme, C., Rao, R.V., Bredesen, D.E., 2007. Endoplasmic reticulum stress-induced cell death mediated by the proteasome. Cell Death.Differ. 14, 1172-1180.
Ermakova, S.P., Kang, B.S., Choi, B.Y., Choi, H.S., Schuster, T.F., Ma, W.Y., Bode, A.M., Dong, Z., 2006. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 66, 9260-9269.
Ermakova, S.P., Kang, B.S., Choi, B.Y., Choi, H.S., Schuster, T.F., Ma, W.Y., Bode, A.M., Dong, Z., 2006. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 66, 9260-9269.
Ferrandina, G., Ranelletti, F.O., Legge, F., Lauriola, L., Salutari, V., Gessi, M., Testa, A.C., Werner, U., Navarra, P., Tringali, G., Battaglia, A., Scambia, G., 2003. Celecoxib modulates the expression of cyclooxygenase-2, ki67, apoptosis-related marker, and microvessel density in human cervical cancer: a pilot study. Clin Cancer Res 9, 4324-4331.
Filho,D.W., Torres,M.A., Bordin,A.L., Crezcynski-Pasa,T.B., Boveris,A., 2004. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury. Mol.Aspects Med. 25, 199-210.
Fu, Y., Lee, A.S., 2006. Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol Ther 5, 741-744.
Gee, J., Lee, I.L., Jendiroba, D., Fischer, S.M., Grossman, H.B., Sabichi, A.L., 2006. Selective cyclooxygenase-2 inhibitors inhibit growth and induce apoptosis of bladder cancer. Oncol Rep 15, 471-477.
Gee, J.R., Burmeister, C.B., Havighurst, T.C., Kim, K., 2009. Cyclin-mediated G1 arrest by celecoxib differs in low-versus high-grade bladder cancer. Anticancer Res. 29, 3769-3775.
Gills, J.J., Lopiccolo, J., Tsurutani, J., Shoemaker, R.H., Best, C.J., Abu-Asab, M.S., Borojerdi, J., Warfel, N.A., Gardner, E.R., Danish, M., Hollander, M.C., Kawabata, S., Tsokos, M., Figg, W.D., Steeg, P.S., Dennis, P.A., 2007. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res 13, 5183-5194.
Grootjans,J., Hodin,C.M., de Haan,J.J., Derikx,J.P., Rouschop,K.M., Verheyen,F.K., van Dam,R.M., Dejong,C.H., Buurman,W.A., Lenaerts,K., 2011. Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology 140, 529-539.
Grosch, S., Maier, T.J., Schiffmann, S., Geisslinger, G., 2006. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98, 736-747.
Grubbs, C.J., Lubet, R.A., Koki, A.T., Leahy, K.M., Masferrer, J.L., Steele, V.E., Kelloff, G.J., Hill, D.L., Seibert, K., 2000. Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder cancers in male B6D2F1 mice and female Fischer-344 rats. Cancer Res 60, 5599-5602.
Hall, M.C., Womack, S., Sagalowsky, A.I., Carmody, T., Erickstad, M.D., Roehrborn, C.G., 1998. Prognostic factors, recurrence, and survival in transitional cell carcinoma of the upper urinary tract: a 30-year experience in 252 patients. Urology 52, 594-601.
Han, C., Leng, J., Demetris, A.J., Wu, T., 2004. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 64, 1369-1376.
Harada, M., Hanada, S., Toivola, D.M., Ghori, N., Omary, M.B., 2008. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 47, 2026-2035.
Harding,H.P., Zhang,Y., Bertolotti,A., Zeng,H., Ron,D., 2000. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol.Cell 5, 897-904.
Harker, W.G., Meyers, F.J., Freiha, F.S., Palmer, J.M., Shortliffe, L.D., Hannigan, J.F., McWhirter, K.M., Torti, F.M., 1985. Cisplatin, methotrexate, and vinblastine (CMV): an effective chemotherapy regimen for metastatic transitional cell carcinoma of the urinary tract. A Northern California Oncology Group study. J Clin Oncol 3, 1463-1470.
Hayashi, T., Saito, A., Okuno, S., Ferrand-Drake, M., Dodd, R.L., Chan, P.H., 2004. Oxidative injury to the endoplasmic reticulum in mouse brains after transient focal ischemia. Neurobiol Dis 15, 229-239.
Hour, T.C., Chen, J., Huang, C.Y., Guan, J.Y., Lu, S.H., Hsieh, C.Y., Pu, Y.S., 2000. Characterization of chemoresistance mechanisms in a series of cisplatin-resistant transitional carcinoma cell lines. Anticancer Res 20, 3221-3225.
Hour, T.C., Huang, C.Y., Lin, C.C., Chen, J., Guan, J.Y., Lee, J.M., Pu, Y.S., 2004. Characterization of molecular events in a series of bladder urothelial carcinoma cell lines with progressive resistance to arsenic trioxide. Anticancer Drugs 15, 779-785.
Hoyer-Hansen, M., Jaattela, M., 2007. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14, 1576-1582.
Huang, S., Sinicrope, F.A., 2010. Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy. 6, 256-269.
Hussain, S.A., James, N.D., 2003. The systemic treatment of advanced and metastatic bladder cancer. Lancet Oncol 4, 489-497.
Jemal, A., Siegel, R., Xu, J., Ward, E., 2010. Cancer statistics, 2010. CA Cancer J.Clin. 60, 277-300.
Jendrossek, V., Handrick, R., Belka, C., 2003. Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 17, 1547-1549.
Jiaan, B.P., Yu, C.C., Lee, Y.H., Huang, J.K., 1993. Uraemia with concomitant urothelial cancer. Br J Urol 72, 458-461.
Jin, S., White, E., 2007. Role of autophagy in cancer: management of metabolic stress. Autophagy 3, 28-31.
Johnsen,S.G., 1970. Testicular biopsy score count--a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones. 1, 2-25.
Johnson, A.J., Hsu, A.L., Lin, H.P., Song, X., Chen, C.S., 2002. The cyclo-oxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca2+-ATPases: a plausible link with its anti-tumour effect and cardiovascular risks. Biochem J 366, 831-837.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., Yoshimori, T., 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728.
Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y., Yoshimori, T., 2004. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117, 2805-2812.
Kardosh, A., Golden, E.B., Pyrko, P., Uddin, J., Hofman, F.M., Chen, T.C., Louie, S.G., Petasis, N.A., Schonthal, A.H., 2008. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 68, 843-851.
Katayama, H., Yamamoto, A., Mizushima, N., Yoshimori, T., Miyawaki, A., 2008. GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct 33, 1-12.
Kikuchi, E., Horiguchi, Y., Nakashima, J., Hatakeyama, N., Matsumoto, M., Nishiyama, T., Murai, M., 2005. Lymphovascular invasion independently predicts increased disease specific survival in patients with transitional cell carcinoma of the upper urinary tract. J Urol 174, 2120-2123; discussion 2124.
Koki, A.T., Masferrer, J.L., 2002. Celecoxib: a specific COX-2 inhibitor with anticancer properties. Cancer Control 9, 28-35.
Krarup,T., 1978. The testes after torsion. Br.J.Urol. 50, 43-46.
Kroemer, G., Marino, G., Levine, B., 2010. Autophagy and the integrated stress response. Mol Cell 40, 280-293.
Kruse, K.B., Brodsky, J.L., McCracken, A.A., 2006. Autophagy: an ER protein quality control process. Autophagy 2, 135-137.
Kulkarni, P., Rajagopalan, K., Yeater, D., Getzenberg, R.H., 2011. Protein folding and the order/disorder paradox. J.Cell Biochem. 112, 1949-1952.
Kulp, S.K., Yang, Y.T., Hung, C.C., Chen, K.F., Lai, J.P., Tseng, P.H., Fowble, J.W., Ward, P.J., Chen, C.S., 2004. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res. 64, 1444-1451.
Kumar,R., Azam,S., Sullivan,J.M., Owen,C., Cavener,D.R., Zhang,P., Ron,D., Harding,H.P., Chen,J.J., Han,A., White,B.C., Krause,G.S., DeGracia,D.J., 2001. Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK. J.Neurochem. 77, 1418-1421.
Langner, C., Hutterer, G., Chromecki, T., Leibl, S., Rehak, P., Zigeuner, R., 2006. Tumor necrosis as prognostic indicator in transitional cell carcinoma of the upper urinary tract. J Urol 176, 910-913; discussion 913-914.
Latini, D.M., Lerner, S.P., Wade, S.W., Lee, D.W., Quale, D.Z., 2010. Bladder cancer detection, treatment and outcomes: opportunities and challenges. Urology 75, 334-339.
Lee, A.S., 2005. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373-381.
Lee, A.S., 2007. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67, 3496-3499.
Lee, A.S., Hendershot, L.M., 2006. ER stress and cancer. Cancer Biol Ther 5, 721-722.
Lee, S.H., Lin, J.S., Tzai, T.S., Chow, N.H., Tong, Y.C., Yang, W.H., Chang, C.C., Cheng, H.L., 1996. Prognostic factors of primary transitional cell carcinoma of the upper urinary tract. Eur Urol 29, 266-270; discussion 271.
Leese, P.T., Hubbard, R.C., Karim, A., Isakson, P.C., Yu, S.S., Geis, G.S., 2000. Effects of celecoxib, a novel cyclooxygenase-2 inhibitor, on platelet function in healthy adults: a randomized, controlled trial. J Clin Pharmacol 40, 124-132.
Levine, B., 2007. Cell biology: autophagy and cancer. Nature 446, 745-747.
Levine, B., Kroemer, G., 2008. Autophagy in the pathogenesis of disease. Cell 132, 27-42.
Li, J., Lee, A.S., 2006. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 6, 45-54.
Lin, W.C., Chen, S.C., Hu, F.C., Chueh, S.C., Pu, Y.S., Yu, H.J., Huang, K.H., 2009. Expression of stathmin in localized upper urinary tract urothelial carcinoma: correlations with prognosis. Urology 74, 1264-1269.
Lin, W.C., Hu, F.C., Chung, S.D., Chueh, S.C., Pu, Y.S., Huang, K.H., 2008. The role of lymphovascular invasion in predicting the prognosis of clinically localized upper tract urothelial carcinoma (pT1-3cN0M0). J Urol 180, 879-884; discussion 884-875.
Liou,K.T., Lin,S.M., Huang,S.S., Chih,C.L., Tsai,S.K., 2003. Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Planta Med. 69, 130-134.
Liou,K.T., Shen,Y.C., Chen,C.F., Tsao,C.M., Tsai,S.K., 2003. Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res. 992, 159-166.
Liou,K.T., Shen,Y.C., Chen,C.F., Tsao,C.M., Tsai,S.K., 2003. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur.J.Pharmacol. 475, 19-27.
Liu, X., Yue, P., Zhou, Z., Khuri, F.R., Sun, S.Y., 2004. Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J.Natl.Cancer Inst. 96, 1769-1780.
Ma, Y., Hendershot, L.M., 2004. The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4, 966-977.
Maclean, K.H., Dorsey, F.C., Cleveland, J.L., Kastan, M.B., 2008. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 118, 79-88.
Macnicol,M.F., 1974. Torsion of the testis in childhood. Br.J.Surg. 61, 905-908.
Maier, T.J., Schilling, K., Schmidt, R., Geisslinger, G., Grosch, S., 2004. Cyclooxygenase-2 (COX-2)-dependent and -independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Biochem Pharmacol 67, 1469-1478.
Maiuri, M.C., Zalckvar, E., Kimchi, A., Kroemer, G., 2007. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8, 741-752.
Marciniak, S.J., Ron, D., 2006. Endoplasmic reticulum stress signaling in disease. Physiol Rev 86, 1133-1149.
Menter, D.G., Schilsky, R.L., DuBois, R.N., 2010. Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin.Cancer Res. 16, 1384-1390.
Misra, U.K., Deedwania, R., Pizzo, S.V., 2006. Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281, 13694-13707.
Mohammed, S.I., Bennett, P.F., Craig, B.A., Glickman, N.W., Mutsaers, A.J., Snyder, P.W., Widmer, W.R., DeGortari, A.E., Bonney, P.L., Knapp, D.W., 2002. Effects of the cyclooxygenase inhibitor, piroxicam, on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Cancer Res 62, 356-358.
Mohammed, S.I., Dhawan, D., Abraham, S., Snyder, P.W., Waters, D.J., Craig, B.A., Lu, M., Wu, L., Zheng, R., Stewart, J., Knapp, D.W., 2006. Cyclooxygenase inhibitors in urinary bladder cancer: in vitro and in vivo effects. Mol Cancer Ther 5, 329-336.
Montie,H.L., Kayali,F., Haezebrouck,A.J., Rossi,N.F., Degracia,D.J., 2005. Renal ischemia and reperfusion activates the eIF 2 alpha kinase PERK. Biochim.Biophys.Acta 1741, 314-324.
Munafo, D.B., Colombo, M.I., 2002. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 3, 472-482.
Nagle, D.G., Ferreira, D., Zhou, Y.D., 2006. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67, 1849-1855.
Nakka,V.P., Gusain,A., Mehta,S.L., Raghubir,R., 2008. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol.Neurobiol. 37, 7-38.
Nakka,V.P., Gusain,A., Raghubir,R., 2010. Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox.Res. 17, 189-202.
Nawrocki, S.T., Carew, J.S., Pino, M.S., Highshaw, R.A., Dunner, K., Jr., Huang, P., Abbruzzese, J.L., McConkey, D.J., 2005. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 65, 11658-11666.
Nortier, J.L., Martinez, M.C., Schmeiser, H.H., Arlt, V.M., Bieler, C.A., Petein, M., Depierreux, M.F., De Pauw, L., Abramowicz, D., Vereerstraeten, P., Vanherweghem, J.L., 2000. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342, 1686-1692.
Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J.A., Urano, F., Imaizumi, K., 2006. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26, 9220-9231.
Ogier-Denis, E., Codogno, P., 2003. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603, 113-128.
Ou, J.H., Pan, C.C., Lin, J.S., Tzai, T.S., Yang, W.H., Chang, C.C., Cheng, H.L., Lin, Y.M., Tong, Y.C., 2000. Transitional cell carcinoma in dialysis patients. Eur Urol 37, 90-94.
Oyadomari, S., Mori, M., 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11, 381-389.
Parker,R.M., Robison,J.R., 1971. Anatomy and diagnosis of torsion of the testicle. J.Urol. 106, 243-247.
Petiot, A., Ogier-Denis, E., Blommaart, E.F., Meijer, A.J., Codogno, P., 2000. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275, 992-998.
Prillaman,H.M., Turner,T.T., 1997. Rescue of testicular function after acute experimental torsion. J.Urol. 157, 340-345.
Pyrko, P., Kardosh, A., Liu, Y.T., Soriano, N., Xiong, W., Chow, R.H., Uddin, J., Petasis, N.A., Mircheff, A.K., Farley, R.A., Louie, S.G., Chen, T.C., Schonthal, A.H., 2007. Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. Mol.Cancer Ther. 6, 1262-1275.
Pyrko, P., Kardosh, A., Wang, W., Xiong, W., Schonthal, A.H., Chen, T.C., 2007a. HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res 67, 10920-10928.
Pyrko, P., Schonthal, A.H., Hofman, F.M., Chen, T.C., Lee, A.S., 2007b. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67, 9809-9816.
Qin, J., Yuan, J., Li, L., Liu, H., Qin, R., Qin, W., Chen, B., Wang, H., Wu, K., 2009. In vitro and in vivo inhibitory effect evaluation of cyclooxygenase-2 inhibitors, antisense cyclooxygenase-2 cDNA, and their combination on the growth of human bladder cancer cells. Biomed Pharmacother 63, 241-248.
Romisch, K., 2005. Endoplasmic reticulum-associated degradation. Annu Rev Cell Dev Biol 21, 435-456.
Rutkowski, D.T., Arnold, S.M., Miller, C.N., Wu, J., Li, J., Gunnison, K.M., Mori, K., Sadighi Akha, A.A., Raden, D., Kaufman, R.J., 2006. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4, e374.
Rutkowski, D.T., Kaufman, R.J., 2004. A trip to the ER: coping with stress. Trends Cell Biol. 14, 20-28.
Sato, K., Tsuchihara, K., Fujii, S., Sugiyama, M., Goya, T., Atomi, Y., Ueno, T., Ochiai, A., Esumi, H., 2007. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 67, 9677-9684.
Sawyers, C.L., 2003. Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4, 343-348.
Schonthal, A.H., 2006. Antitumor properties of dimethyl-celecoxib, a derivative of celecoxib that does not inhibit cyclooxygenase-2: implications for glioma therapy. Neurosurg Focus 20, E21.
Schonthal, A.H., 2007. Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Br J Cancer 97, 1465-1468.
Schonthal, A.H., 2009. Endoplasmic reticulum stress and autophagy as targets for cancer therapy. Cancer Lett 275, 163-169.
Schonthal, A.H., Chen, T.C., Hofman, F.M., Louie, S.G., Petasis, N.A., 2008. Celecoxib analogs that lack COX-2 inhibitory function: preclinical development of novel anticancer drugs. Expert Opin Investig Drugs 17, 197-208.
Seglen, P.O., Gordon, P.B., 1982. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79, 1889-1892.
Seok, Y.M., Cho, H.J., Cha, B.Y., Woo, J.T., Kim, I.K., 2011. Honokiol attenuates vascular contraction through the inhibition of the RhoA/Rho-kinase signalling pathway in rat aortic rings. J Pharm Pharmacol 63, 1244-1251.
Shani, G., Fischer, W.H., Justice, N.J., Kelber, J.A., Vale, W., Gray, P.C., 2008. GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor beta signaling and enhance cell growth. Mol Cell Biol 28, 666-677.
Sheu,M.L., Liu,S.H., Lan,K.H., 2007. Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth. PLoS.One. 2, e1096.
Shigemitsu, K., Tsujishita, Y., Hara, K., Nanahoshi, M., Avruch, J., Yonezawa, K., 1999. Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem 274, 1058-1065.
Sternberg, C.N., Yagoda, A., Scher, H.I., Watson, R.C., Geller, N., Herr, H.W., Morse, M.J., Sogani, P.C., Vaughan, E.D., Bander, N., 1989. Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. Cancer 64, 2448-2458.
Sternberg, C.N., Yagoda, A., Scher, H.I., Watson, R.C., Herr, H.W., Morse, M.J., Sogani, P.C., Vaughan, E.D., Jr., Bander, N., Weiselberg, L.R., et al., 1988. M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for advanced transitional cell carcinoma of the urothelium. J Urol 139, 461-469.
Suzuki, T., Lu, J., Zahed, M., Kita, K., Suzuki, N., 2007. Reduction of GRP78 expression with siRNA activates unfolded protein response leading to apoptosis in HeLa cells. Arch Biochem Biophys 468, 1-14.
Treiman, M., Caspersen, C., Christensen, S.B., 1998. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci 19, 131-135.
Tse,A.K., Wan,C.K., Shen,X.L., Yang,M., Fong,W.F., 2005. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem.Pharmacol. 70, 1443-1457.
Tsutsumi, S., Gotoh, T., Tomisato, W., Mima, S., Hoshino, T., Hwang, H.J., Takenaka, H., Tsuchiya, T., Mori, M., Mizushima, T., 2004. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death.Differ. 11, 1009-1016.
Tsutsumi, S., Namba, T., Tanaka, K.I., Arai, Y., Ishihara, T., Aburaya, M., Mima, S., Hoshino, T., Mizushima, T., 2006. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 25, 1018-1029.
Turner,T.T., Tung,K.S., Tomomasa,H., Wilson,L.W., 1997. Acute testicular ischemia results in germ cell-specific apoptosis in the rat. Biol.Reprod. 57, 1267-1274.
Virrey, J.J., Dong, D., Stiles, C., Patterson, J.B., Pen, L., Ni, M., Schonthal, A.H., Chen, T.C., Hofman, F.M., Lee, A.S., 2008. Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Mol.Cancer Res. 6, 1268-1275.
von der Maase, H., Hansen, S.W., Roberts, J.T., Dogliotti, L., Oliver, T., Moore, M.J., Bodrogi, I., Albers, P., Knuth, A., Lippert, C.M., Kerbrat, P., Sanchez Rovira, P., Wersall, P., Cleall, S.P., Roychowdhury, D.F., Tomlin, I., Visseren-Grul, C.M., Conte, P.F., 2000. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 18, 3068-3077.
Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Habermann, A., Krausslich, H.G., Mizokami, M., Bartenschlager, R., Liang, T.J., 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791-796.
Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H., Lee, M.J., Galas, D.J., Wang, K., 2010. The microRNA spectrum in 12 body fluids. Clin Chem 56, 1733-1741.
Wei,S.M., Yan,Z.Z., Zhou,J., 2008. Taurine reduces testicular ischemia/reperfusion-induced neutrophil recruitment to testis probably by downregulation of pro-inflammatory cytokines and E-selectin. Urology 72, 464-465.
Wei,S.M., Yan,Z.Z., Zhou,J., 2009. Curcumin attenuates ischemia-reperfusion injury in rat testis. Fertil.Steril. 91, 271-277.
Weng, T.I., Wu, H.Y., Chen, B.L., Liu, S.H., 2012. Honokiol Attenuates the Severity of Acute Pancreatitis and Associated Lung Injury via Acceleration of Acinar Cell Apoptosis. Shock.
White, E., 2008. Autophagic cell death unraveled: Pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy 4, 399-401.
Williams, C.S., Watson, A.J., Sheng, H., Helou, R., Shao, J., DuBois, R.N., 2000. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res 60, 6045-6051.
Wu, C.F., Shee, J.J., Ho, D.R., Chen, W.C., Chen, C.S., 2004. Different treatment strategies for end stage renal disease in patients with transitional cell carcinoma. J Urol 171, 126-129.
Wu, J., Kaufman, R.J., 2006. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death.Differ. 13, 374-384.
Wu, J.P., Zhang, W., Wu, F., Zhao, Y., Cheng, L.F., Xie, J.J., Yao, H.P., 2010. Honokiol: an effective inhibitor of high-glucose-induced upregulation of inflammatory cytokine production in human renal mesangial cells.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66494-
dc.description.abstract此篇論文包括了泌尿科兩個重要的疾病,尿路上皮癌 (Urothelial Carcinoma; UC) 及睪丸扭轉 (Testicular torsion),這兩個疾病在臨床治療上,都面臨了一些亟待解決的問題。論文的第一及第二部份,乃針對尿路上皮癌的研究。台灣地區的流行病學研究發現,尿路上皮癌發生率逐年上升,其中上泌尿道 (upper urinary tract) 的尿路上皮癌發生率特別高,且常合併慢性腎臟疾病或末期腎病變。此外,轉移性的尿路上皮癌,病患需接受化學治療,化學治療的反應率為40-70%。但在臨床上,尿路上皮癌常見於中老年人,國內的尿路上皮癌患者,常合併腎功能障礙,加以早期上泌尿道尿路上皮癌的病患,常需手術切除患側的腎臟及輸尿管,更進一步造成腎功能的下降。當腫瘤復發或轉移時需接受化學治療,這些腎功能不好的病患,對化學治療常有較大的副作用及較差的療效。更重要的是,這些病人最後會因化學抗藥性 (chemoresistance)而終至病患死亡,如何降低藥物治療的副作用,並提高其療效及克服化學抗藥性也成為臨床治療的重要課題。
Celecoxib是一種環氧化酵素-2抑制劑 (cyclooxygenase-2 inhibitor),也是是臨床上常用的消炎止痛用藥。Celecoxib已被報告對不同的癌症有治療效果,但其抑癌機轉仍未確認。此論文的第一及第二部份,即是在探討celecoxib對尿路上皮癌的治療效果及機轉,我們主要著眼在內質網壓力 (endoplasmic reticulum stress; ER stress)及細胞自噬作用(autophagy),並研究如何透過這些機轉,調控celecoxib的細胞毒性,希望能發展新的治療模式。
本論文的第三部份則是研究內質網壓力在睪丸扭轉扮演的角色。臨床上,當懷疑睪丸扭轉時需儘早進行手術,最好在4-6小時內手術,回復血流及施行睪丸固定,期能保留睪丸的功能。但在臨床上,即使手術保留睪丸,仍常見睪丸功能的傷害,嚴重者甚至造成睪丸萎縮,影響生殖能力。睪丸扭轉造成睪丸傷害的主因是缺血-再灌流(ischemia-reperfusion),其機轉主要是氧化壓力(oxidative stress)。內質網壓力與睪丸扭轉造成睪丸傷害之間的關係,迄今未有相關的研究。目前臨床上仍無藥物,用以治療睪丸扭轉的併發症,包括睪丸功能傷害及日後的不孕。我們希望釐清內質網壓力在睪丸扭轉中扮演的角色。另外,我們也將利用一木蘭科植物厚朴 (Magnolia officinalis)之成分─異厚朴酚 (honokiol),其已被報告能減輕腦部缺血-再灌流的傷害,研究其是否能降低睪丸扭轉後的睪丸傷害。

第一部份
負調控(down-regulation) 葡萄糖調控蛋白(glucose-regulated protein; GRP78) 能增強celecoxib對尿路上皮癌細胞的毒殺作用
在此部份的研究中我們主要研究內質網壓力在celecoxib引發的細胞毒性中扮演的角色。我們發現celecoxib確實會抑制尿路上皮癌細胞的增生,造成細胞凋亡 (apoptosis),引發細胞週期G1的停滯,並同時引起內質網壓力。藉由調降伴隨蛋白 (chaperone protein) GRP78的表現或以綠茶的兒茶素(−)-epigallocatechin gallate (EGCG) 抑制GRP78的作用,均會增強celecoxib對尿路上皮癌細胞的毒殺作用。此外蛋白酶體抑制劑(proteasome inhibitor)MG132 也會增強celecoxib對尿路上皮癌細胞的細胞毒殺作用。這些發現將對發展出克服化學抗藥性的方法,有相當大的助益。
第二部分
抑制細胞自噬作用(Autophagy)能增加celecoxib在尿路上皮癌細胞的細胞凋亡
我們發現celecoxib引起細胞毒殺作用的同時,也會引起細胞自噬作用,引發LC3及autophagolysosome的表現。3-methyladenine (3-MA)是一細胞自噬作用的抑制劑,合併使用會提高celecoxib引起的細胞毒殺作用,而m-TOR抑制劑rapamycin則會增加自噬作用,而減輕celecoxib引起的細胞毒殺作用。利用LC3-GFP-transfection 的LC3的過度表現(overexpression),則會減少celecoxib引起的細胞毒殺作用。吾人能藉調控自噬作用,來增加celecoxib對尿路上皮癌細胞的細胞毒殺作用,據此發展出新的治療模式。
第三部份
異厚朴酚(honokiol)減輕睪丸扭轉/回復之缺氧及再灌流傷害,與內質網壓力引發的細胞凋亡有關
睪丸扭轉是泌尿科急症,若無及時處理常會導致睪丸萎縮及不孕,我們建立睪丸扭轉的動物模式,並研究其機轉及異厚朴酚 (honokiol) 能否減輕睪丸扭轉/回復之缺氧及再灌流傷害。我們發現在扭轉2小時後恢復灌流,在扭轉後第6小時即可見急性組織學傷害,在第24小時更為明顯。而扭轉後第24小時,細胞凋亡的分子指標如PARP、caspases便會表現,同時合併表現內質網壓力的分子如 (phospho-eIF2α and CHOP)。在恢復灌流前給予honokiol (10mg/kg)能減輕這些急性傷害及內質網壓力。尤其重要的是,honokiol能改善扭轉後第三個月睪丸的造精功能 (spermatogenesis),這有助於減少因睪丸扭轉造成的不孕。
zh_TW
dc.description.abstractThis dissertation combines results from studies of two urological diseases that present special challenges in clinical treatment, and in which the role of endoplasmic reticulum stress (ER stress) is not well understood, urothelial carcinoma (UC) and testicular torsion. The UC study explores some novel strategies for treatment of UC with the cyclooxygenase-2 (COX-2) inhibitor celecoxib, via the modulation of ER stress and autophagy.
Epidemiological studies show that the incidence of upper urinary tract (UUT) UC in Taiwan is much higher than in the western world. This may be a consequence of special carcinogens exposure, such as arsenic-contaminated drinking water or aristolochic acid. Moreover, UC patients in Taiwan have a higher risk of concurrent chronic kidney disease and advanced renal disease. Patients with metastatic UCs need chemotherapy, but due to chemoresistance the achieved response rate is limited, ranging from 40-70%, and the chemoresistance reaction is normally fatal to affected patients. In addition, there are substantial toxicities in current chemotherapeutic regimens such as myelosuppression and nephrotoxicity. Higher rates of chemotherapy-related toxicities and lower rates of treatment efficacy have been noted in patients with concurrent metastatic UCs and late-stage chronic kidney disease. These facts make it imperative to explore novel chemotherapeutic strategies for lowering toxicity, improving efficacy, and controlling chemoresistance.
Celecoxib is a selective inhibitor of cyclooxygenase-2 (COX-2) and is widely used for anti-inflammation or pain control. Considerable preclinical evidence supports the potential of celecoxib against several types of malignancies; however, the utility of celecoxib by itself or in combination with other therapies for treating UC has not been fully explored. We seek clarification of the roles of ER stress and autophagy in celecoxib-induced cytotoxicity, and we search for novel strategies to potentiate the cytotoxic effects of celecoxib by the modulation of ER stress and autophagy.
The testicular torsion study concerns a condition of medical emergency that can cause impairment of semen quality, permanent testicular atrophy, or outright loss of the affected testicle. We explore the role of ER stress in the testicular injury caused by ischemia-reperfusion, and investigate the protective effect of honokiol, a phytochemical used in traditional medical treatment of testicular torsion.
Part 1
Down-regulation of glucose-regulated protein (GRP)78 Potentiates Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role of endoplasmic reticulum (ER) stress play in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and endoplasmic reticulum (ER) stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP)78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate endoplasmic reticulum (ER) stress-related chaperons (IRE-1α and GRP78), caspase-4 and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA , co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces G1 arrest, ER stress and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC.
Part 2
Autophagy Inhibition Enhances Celecoxib-induced Apoptosis in Human Urothelial Carcinoma Cells
In this study, we attempted to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. Cell viability and apoptosis of UC cells were determined by MTT assay and flow cytometry; and the formation of autophagy was examined by immunofluorescence staining, lysotracker, and immunoblotting analysis for LC3, an autophagosome marker. The present results showed that celecoxib induced cell death and apoptosis in human UC cells. Besides, autophagy was detected concomitantly in celecoxib-induced apoptosis as revealed by membrane-bound LC3-II in cells with fragmented Hoechst staining, as well as the formation of lipidized LC3 in immunoblotting analysis. Co-treatment with 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the apoptotic effect of celecoxib in human UC cells by suppression of autophagy. Rapamycin, an inhibitor of mTOR, could alleviate celecoxib-induced apoptosis via the enhancement of autophagy. Consistently, upregulation of autophagy by LC3-GFP-transfection decreased cytotoxicity of celecoxib in human UC cells. In summary, our data indicates that inhibition of autophagy enhances celecoxib induced-apoptosis, suggesting a novel therapeutic strategy against UC.
Part 3
Honokiol Attenuates Torsion/Detorsion-Induced Testicular Injury in Rat Testis via Suppressing Endoplasmic Reticulum Stress-Related Apoptosis
Testicular torsion is a medical emergency that can cause impairment of semen quality, permeant testicular atrophy or loss. In this study, we investigated the protective effect of honokiol, a phytochemical used in traditional medicine, on testicular injury after torsion/detorsion (T/D) in a rat model. Male Wistar rats were randomized to each time point of each group (n=6/time point/group). After 2 h of torsion, testes were counter-rotated to the natural position. Rats in each group underwent a sham operation, T/D, T/D with honokiol treatment (5 mg/kg and 10mg/kg, i.p., immediately before detorsion). Bilateral orchiectomy was performed at 6 h, 24 h, and 3 months after detorsion. Testes were examined histologically. The apoptosis and endoplasmic reticulum (ER) stress was detected by western blot. Histological examination revealed that testicular T/D induced acute injury after 6 and 24 h, and spermatogenesis was decreased by 3 month. 24 h after T/D, there were increases in the activations of apoptosis-related molecules (PARP, and caspases 3 and 7), as well as in the expression levels of ER stress-associated molecules (phospho-eIF2α and CHOP). These increases were significantly reversed by honokiol treatment. Furthermore, honokiol effectively reversed the inhibition of spermatogenesis in testes treated with T/D for 3 months. The study proves the ER stress-related apoptotic pathway is involved in testicular injury following testicular torsion/detorsion. It remains to be determined if alterations in this pathway would have a protective affect against reperfusion damage.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:38:58Z (GMT). No. of bitstreams: 1
ntu-101-D95447004-1.pdf: 2399966 bytes, checksum: 7774d4ea29166167c17b18bd8ca15f08 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………2
誌謝…………………………………………………………… 3
中文摘要………………………………………………………4
Abstract ………………………………………………………7
List of abbreviations………………………………………13
List of figures………………………………………………14
Introduction…………………………………………………15
Part 1: Down-regulation of glucose-regulated Protein (GRP)78 Potentiates
Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells
1.1. Introduction……………………………………………25
1.2. Materials and Methods ………………………………27
1.3. Results …………………………………………………31
1.4. Discussion………………………………………………34
1.5. Conclusions……………………………………………37
Part 2: Autophagy Inhibition Enhances Celecoxib-induced Apoptosis in Human
Urothelial Carcinoma Cells
2.1. Introduction………………………………………………38
2.2. Materials and Methods …………………………………40
2.3. Results …………………………………………………45
2.4. Discussion………………………………………………47
2.5. Conclusions……………………………………………50
Part 3: Honokiol Attenuates Torsion/Detorsion-Induced Testicular Injury in Rat
Testis via Suppressing Endoplasmic Reticulum Stress-Related Apoptosis
3.1. Introduction……………………………………………51
3.2. Materials and Methods ………………………………53
3.3. Results …………………………………………………56
3.4. Discussion………………………………………………58
3.5. Conclusions………………………………………………62
Figures…………………………………………………………63
List of publications ………………………………………83
References ……………………………………………………84
dc.language.isoen
dc.subject內質網壓力zh_TW
dc.subject細胞凋亡zh_TW
dc.subject葡萄糖調控蛋白GRP78zh_TW
dc.subject內質網蛋白不良摺疊效應zh_TW
dc.subject異厚朴酚zh_TW
dc.subject不孕zh_TW
dc.subject環氧化酵素-2抑制劑zh_TW
dc.subject睪丸扭轉zh_TW
dc.subject尿路上皮癌zh_TW
dc.subjectcelecoxibzh_TW
dc.subject細胞自噬zh_TW
dc.subjectAutophageen
dc.subjectInfertilityen
dc.subjectHonochiolen
dc.subjectUnfolded protein responseen
dc.subjectGlucose-regulated protein78en
dc.subjectApoptosisen
dc.subjectEndoplasmic reticulum stressen
dc.subjectCelecoxiben
dc.subjectCyclooxygenase-2 inhibitoren
dc.subjectTesticular torsionen
dc.subjectUrothelial carcinomaen
dc.title內質網壓力在尿路上皮癌及睪丸扭轉之病理生理角色探討zh_TW
dc.titleThe Pathophysiological Role of Endoplasmic Reticulum Stress in Urothelial Carcinoma and Testicular Torsionen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee蕭水銀(Shoei-Yn Lin-Shiau),楊榮森(Rong-Sen Yang),陳世乾(Shyh-Chyan Chen),姜至剛(Chih-Kang Chiang)
dc.subject.keyword內質網壓力,細胞自噬,尿路上皮癌,睪丸扭轉,環氧化酵素-2抑制劑,celecoxib,細胞凋亡,葡萄糖調控蛋白GRP78,內質網蛋白不良摺疊效應,異厚朴酚,不孕,zh_TW
dc.subject.keywordEndoplasmic reticulum stress,Autophage,Urothelial carcinoma,Testicular torsion,Cyclooxygenase-2 inhibitor,Celecoxib,Apoptosis,Glucose-regulated protein78,Unfolded protein response,Honochiol,Infertility,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2012-01-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved