Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃宇廷
dc.contributor.authorKai-Der Wangen
dc.contributor.author王塏德zh_TW
dc.date.accessioned2021-06-17T00:37:28Z-
dc.date.available2021-02-10
dc.date.copyright2020-02-10
dc.date.issued2019
dc.date.submitted2020-02-06
dc.identifier.citation1. E. E. Flanagan and T. Hinderer, Constraining neutron star tidal Love numbers with gravitational wave detectors, Phys. Rev. D77 (2008) 021502, [0709.1915].
2. T. Hinderer, Tidal Love numbers of neutron stars, Astrophys. J. 677 (2008) 1216–1220, [0711.2420].
3. T. Damour and A. Nagar, Relativistic tidal properties of neutron stars, Phys. Rev. D80 (2009) 084035 [0906.0096].
4. T. Binnington and E. Poisson, Relativistic theory of tidal Love numbers, Phys. Rev. D80 (2009) 084018 ,[0906.1366].
5. B. Kol and M. Smolkin, Black hole stereotyping: Induced gravito-static polarization, JHEP 02 (2012) 010, [1110.3764].
6. V. Cardoso, E. Franzin, A. Maselli, P. Pani and G. Raposo, Testing strong-field gravity with tidal Love numbers, Phys. Rev. D95 (2017) 084014, [1701.01116].
7. E. Poisson, Tidal deformation of a slowly rotating black hole, Phys. Rev. D91 (2015) 044004, [1411.4711].
8. P. Landry and E. Poisson, Tidal deformation of a slowly rotating material body. External metric, Phys. Rev. D91 (2015) 104018, [1503.07366].
9. P. Pani, L. Gualtieri and V. Ferrari, Tidal Love numbers of a slowly spinning neutron star,Phys. Rev. D92 (2015) 124003, [1509.02171].
10. R. A. Porto, The Tune of Love and the Nature(ness) of Spacetime, Fortsch. Phys. 64 (2016) 723–729, [1606.08895].
11. M. H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B266 (1986) 709–736.
12. S. Cai and K.-D. Wang, Non-vanishing of tidal Love numbers, 1906.06850
13. C. M. Will, Gravity: Newtonian, Post-Newtonian, and General Relativistic, pp. 9–72. Springer International Publishing, Cham, 2016. 10.1007/978-3-319-20224-22.
14. K. S. Thorne, Multipole Expansions of Gravitational Radiation, Rev. Mod. Phys. 52 (1980) 299–339.
15. X. H. Zhang, Multipole expansions of the general-relativistic gravitational field of the external universe, Phys. Rev. D34 (1986) 991–1004.
16. T. Regge and J. A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957) 1063–1069.
17. A. Ishibashi and H. Kodama, Stability of higher dimensional Schwarzschild black holes, Prog.Theor. Phys. 110 (2003) 901–919, [hep-th/0305185].
18. F. J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett. 24 (1970) 737–738.
19. H. Kodama and A. Ishibashi, A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701–722,[hep-th/0305147].
20. K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 (1916) 189–196, [physics/9905030].
21. I. Z. Rothstein, Progress in effective field theory approach to the binary inspiral problem, Gen. Rel. Grav. 46 (2014) 1726.
22. S. Chakrabarti, T. Delsate and J. Steinhoff, New perspectives on neutron star and black hole spectroscopy and dynamic tides, 1304.2228.
23. S. Chakrabarti, T. Delsate and J. Steinhoff, Effective action and linear response of compact objects in Newtonian gravity, Phys. Rev. D88 (2013) 084038, [1306.5820].
24. W. D. Goldberger and I. Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D73 (2006) 104030, [hep-th/0511133].
25. S. Mano, H. Suzuki and E. Takasugi, Analytic solutions of the Regge-Wheeler equation and the postMinkowskian expansion, Prog. Theor. Phys. 96 (1996) 549–566, [gr-qc/9605057].
26. G. ’t Hooft and M. Veltman, One-loop divergencies in the theory of gravitation, Annales del’I.H.P. Physique théorique 20 (1974) 69–94.
27. V. Cardoso, M. Kimura, A. Maselli and L. Senatore, Black Holes in an Effective Field Theory Extension of General Relativity, Phys. Rev. Lett. 121 (2018) 251105, [1808.08962].
28. J. Steinhoff, T. Hinderer, A. Buonanno and A. Taracchini, Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian, Phys. Rev. D94 (2016) 104028,[1608.01907].
29. R. F. Penna, Near-horizon Carroll symmetry and black hole Love numbers, 1812.05643.
30. R. H. Price and K. S. Thorne, Membrane Viewpoint on Black Holes: Properties and Evolution of the Stretched Horizon, Phys. Rev. D33 (1986) 915–941.
31. M.-Z. Chung, Y.-T. Huang, J.-W. Kim and S. Lee, The simplest massive S-matrix: from minimal coupling to Black Holes, JHEP 04 (2019) 156,[1812.08752].
32. A. Guevara, A. Ochirov and J. Vines, Scattering of Spinning Black Holes from Exponentiated Soft Factors, JHEP 09 (2019) 056, [1812.06895].
33. K. Yagi, L. C. Stein, N. Yunes and T. Tanaka, Post-Newtonian, Quasi-Circular Binary Inspirals in Quadratic Modified Gravity, Phys. Rev. D85 (2012) 064022, [1110.5950].
34. A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri and V. Ferrari, Probing Planckian corrections at the horizon scale with LISA binaries, Phys. Rev. Lett. 120 (2018) 081101, [1703.10612].
35. A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri and V. Ferrari, From micro to macro and back: probing near-horizon quantum structures with gravitational waves, Class. Quant. Grav. 36 (2019) 167001, [1811.03689].
36. V. Cardoso and P. Pani, Testing the nature of dark compact objects: a status report, Living Rev.Rel. 22 (2019) 4, [1904.05363].
37. M. Vallisneri, Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects, Phys. Rev. D77 (2008) 042001,[gr-qc/0703086].
38. P. Pani and A. Maselli, Love in Extrema Ratio, Int. J. Mod. Phys. D28 (2019) 1944001,[1905.03947].
39. R. Hansen, Multipole moments of stationary space-times, J. Math. Phys. (N.Y.), v. 15, no. 1, pp.46-52 .
40. R. P. Geroch, Multipole moments. II. Curved space, J. Math. Phys. 11 (1970) 2580–2588.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66471-
dc.description.abstract“洛芙係數” 這個物理量涵蓋了天體上一些極緊緻星體的資訊,例如黑洞或中子星。更重要的是我們在未來有機會能測到這個物理量。在廣義相對論中給出的黑洞解,經過計算發現竟然是零,這好比開出了一扇窗讓我們去真正的探索時空的本質。基於黑洞的“洛芙係數” 是零這個奇怪的事實跟愛因斯坦的理論只是有效場理論,也就是在四維時空裡的廣義相對論,我們知道當系統能量夠高時這理論需要一些高階修正項。在這篇文章中,我們分析了在這些高階修正下的黑洞解。我們在新的黑洞解的背景下做線性的微擾,並解了微擾的方程式。在適當的邊界條件下,我們可以提取黑洞的“洛芙係數” 這個資訊。我們發現在這新的黑洞背景下做微擾展開會得出不為零的“洛芙係數”。這更加深了在原本廣義相對論裡,黑洞的“洛芙係數”都是零謎。zh_TW
dc.description.abstractThe tidal Love numbers (TLNs) encode the internal structure of compact objects, such as black holes (BHs) or neutron stars and, more importantly, it is testable in the future gravitational detector. The vanishing of TLNs in vacuum classical general relativity thus offers a fantastic opportunity to probe the very fabric of spacetime, in the advent of a new era of precision gravity.Motivated by the bizarre features that BHs TLNs are all zero and the fact that Einstein’s gravity may not be well-behaved theory in high enough energy scale, we analyze black holes solutions under R^3-type corrections, which is the leading correction induced by quantum corrections in four-dimensions.Our methodology stars with the perturbation of our BHs solutions using a linear perturbation formalism. We then impose the Regge-Wheeler gauge and solve the perturbed differential equations using appropriate boundary conditions, both at the event horizon and infinity. From the resulting solutions, we can identify the induced multipole moments and the tidal fields which allow us to extract TLNs. We showed that perturbations around this black hole background will lead to non-zero TLNs. This further accentuates the “unnaturalness” of the vanishing TLNs for Schwarzschild black hole under Einstein-Hilbert action.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:37:28Z (GMT). No. of bitstreams: 1
ntu-108-R06244005-1.pdf: 554967 bytes, checksum: 5ec8e8b756e7a103408ac958323b2dd7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents[iii] Acknowledgements
[v] 摘要
[vii] Abstract
[1] 1. Introduction
[5] 2. Tidal Love Numbers(TLNs)
[5] 2.1 TLNs in Newtonian theory
[5] 2.1.1 Tidal Potential
[6] 2.1.2 Induced Perturbations and External Problem
[9] 2.2 TLNs in Relativistic theory
[9] 2.2.1 Multipole Moments of a Relativistic Object
[10] 2.2.2 Relativistic Tidal Field Moments
[11] 2.2.3 Asymptotic Spacetime of a Deformed Body
[13] 3. Black Holes TLNs in General Relativity
[13] 3.1 Linear Spacetime Perturbation
[14] 3.2 TLNs of Schwarzschild Bh in D=4
[16] 3.3 TLNs of Schwarzschild BH in D>4
[19] 4. Black Holes TLNs beyond General Relativity
[19] 4.1 Motivation
[21] 4.2 The Perturbed Solutions
[22] 4.3 Calculation of TLNs
[24] 4.3.1 Even-Parity Sector
[24] 4.3.2 Odd-Parity Sector
[27] 5. Conclusions and Outlook
[29] A. Useful Formula
[33] bibliography
dc.language.isoen
dc.subject史瓦西黑洞zh_TW
dc.subject廣義相對論zh_TW
dc.subject量子修正zh_TW
dc.subject微擾zh_TW
dc.subjectperturbationen
dc.subjectSchwarzschild black holeen
dc.subjectquantum correctionen
dc.subjectEinstein-Hilbert actionen
dc.title黑洞之 “洛芙係數”zh_TW
dc.titleBlack Holes Tidal Love Numbersen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳恆榆,賀培銘
dc.subject.keyword廣義相對論,史瓦西黑洞,量子修正,微擾,zh_TW
dc.subject.keywordEinstein-Hilbert action,Schwarzschild black hole,quantum correction,perturbation,en
dc.relation.page35
dc.identifier.doi10.6342/NTU202000351
dc.rights.note有償授權
dc.date.accepted2020-02-07
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
541.96 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved