Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66460
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳紀聖(Jeffrey Chi-Sheng Wu) | |
dc.contributor.author | "Huynh, Chi-Phu" | en |
dc.contributor.author | 黃志富 | zh_TW |
dc.date.accessioned | 2021-06-17T00:36:54Z | - |
dc.date.available | 2020-02-17 | |
dc.date.copyright | 2020-02-17 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-02-06 | |
dc.identifier.citation | 1. Crohn, D., Nitrogen Mineralization and Its Importance in Organic Waste Recycling. 2004
2. Dodds, K.W., Whiles, R. M., Chapter 14 - Nitrogen, Sulfur, Phosphorus, and Other Nutrients. Aquatic Ecology, ed. K.W. Dodds, Whiles, R. M. 2010, London: Academic Press. p. 345-373. 3. Strock, S.J., Ammonification. Encyclopedia of Ecology, ed. E.S. Jørgensen, Fath, D. B. 2008, Academic Press: Elsevier. p. 162-165. 10000. 4. Donahue, N.M., Prinn, R. G., Nonmethane hydrocarbon chemistry in the remote marine boundary layer. Journal of Geophysical Research: Atmospheres, 1990. 95(D11): p. 18387-18411. 5. Shindell, D.T., Faluvegi, G., Koch, M. D., Schmidt, A. G., Unger, N., Bauer, E. S., Improved attribution of climate forcing to emissions. Science, 2009. 326: p. 716-718. 6. Ravishankara, A.R., Daniel, J. S., Portmann, R. W., Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009. 326(5949): p. 123-5. 7. Song, B., Tobias, C. R., Molecular and stable isotope methods to detect and measure anaerobic ammonium oxidation (anammox) in aquatic ecosystems. Methods Enzymol, 2011. 496: p. 63-89. 8. Ward, M.H., Too much of a good thing? Nitrate from nitrogen fertilizers and cancer. Reviews on environmental health, 2009. 24(4): p. 357-363. 9. Patrick, H. Fertilizer Outlook 2013-2017 81st IFA Annual Conference 2013; Available from: http://www.fertilizer.org. 10. Food and Agriculture Organization of the United Nations (FAO) (2017). 2017; Available from: http://ourworldindata.org/meat-production. 11. Erisman, J.W., Sutton, M. A., Galloway, J., Klimont, Z., Winiwarter, W., How a century of ammonia synthesis changed the world. Nature Geoscience, 2008. 1(10): p. 636-639. 12. Liu, J., Ma, K., Ciais, P., Polasky, S., Reducing human nitrogen use for food production. Scientific Reports, 2016. 6: p. 30104. 13. Galloway, N.J., Winiwarter, W., Leip, A., Leach, M. A., Bleeker, A., Erisman, W. J., Nitrogen footprints: past, present and future. Environmental Research Letters, 2014. 9(11). 14. Chanda, T.K. Current world fertilizer trends and outlook to 2015. 2015; Available from: http://www.fao.org/3/a-av252e.pdf. 15. Ratnayak, D.D., Brandt, J. M., Johnson, M. K., CHAPTER 10 - Specialized and Advanced Water Treatment Processes. Water Supply (Sixth Edition), ed. M.J.B. Don D. Ratnayaka, K. Michael Johnson. 2009: Butterworth-Heinemann. p. 365-423. 744. 16. Van der Hoek, J.P., Klapwijk, A., Reduction of regeneration salt requirement and waste disposal in an ion exchange process for nitrate removal from ground water. Waste Management, 1989. 9(4): p. 203-210. 17. Matosic, M., Mijatotic, I., Hodzic, E., Nitrate Removal from Drinking Water Using Ion Exchange – Comparison of Chloride and Bicarbonate Form of the Resins. Chemical and Biochemical Engineering Quarterly, 2000. 14(4): p. 141-146. 18. Soares, M.I.M., Biological Denitrification of Groundwater. Water, Air, and Soil Pollution, 2000. 123(1-4): p. 183-193. 19. Shrimali, M., Singh, P. K., New methods of nitrate removal from water. Environmental Pollution, 2001. 112(3): p. 351-359. 20. Mateju, V., Cizinska, S., Jakub, K., Janoch, T., Biological water denitrification-A review Enzyme and Microbial Technology, 1982. 14: p. 170-183. 21. Fukushima, M., Tatsumi, K., Kengo, M., The Fate of Aniline after a Photo-Fenton Reaction in an Aqueous System Containing Iron(III), Humic Acid, and Hydrogen Peroxide. Enviromental Science & Technology, 2000. 34(10): p. 2006-2013. 22. He, X., Cruz, L. D. A. A., O'shea, E. K., Dionysiou, D. D., Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes. Water Research, 2014. 63: p. 168-178. 23. Andreozzi, R., Caprio, V., Insola, A., Marotta, R., Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999. 53(1): p. 51-59. 24. Wang, J., Wang, S., Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering, 2018. 334: p. 1502-1517. 25. Khan, S., He, X., Khan, A. J., Khan, M. H., Boccelli, L. D., Dionysiou, D. D., Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chemical Engineering, 2017. 318: p. 135-142. 26. Linden, G.K., Mohseni, M., Advanced Oxidation Processes: Applications in Drinking Water Treatment. Comprehensive Water Quality and Purification, ed. S. Ahuja. 2014, Waltham: Elveiser. 148-172. 27. Vellanki, P.B., Batchelor, B., Wahab, A. A., Advanced Reduction Processes: A New Class of Treatment Processes. ENVIRONMENTAL ENGINEERING SCIENCE, 2013. 30(5): p. 264-271. 28. Fujishima, A., Rao, N. T., Tryk, A. D., Titanium dioxide photocatalysis. Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1): p. 1-21. 29. Fujishima, A.H., K., Electrochemical photolysis of water at a semiconductor electrode. Nature Geoscience, 192. 238(5358): p. 37-38. 30. Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M., Kajitvichyanukul, P., Krishnan, A. R., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Photochem Photobiol, 2008. 9(4): p. 171-192. 31. Sambudi, S.N., Modification and characterization of strontium titanate for photocatalytic water splitting, in Dept. of Chemical and Biomolecular Engineering (Biochemical Engineering). 2010, Korea Advanced Institute of Science and Technology: Korea Advanced Institute of Science and Technology. 32. Domenech, X., Jardim, W. F., Litter, I. M., Advanced oxidation processes for contaminant removal, in Elimination of Contaminants removal by heterogeneous photocatalysis, B.S. M.A Blesa, Editor. 2004, CIEMAT,: Madrid. 33. Hoffmann, M.R., Martin, S. T., Choi, W. Y., Bahnemann, D. W., Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995. 95(1): p. 69-96. 34. Pramauro, E., Prevot, B. A., Auguliaro, V., Palmisano, L., Photocatalytic Treatment of Laboratory Wastes Containing Aromatic Amines. Analyst, 1995. 120: p. 237-242. 35. Börnick, H., Eppinger, P., Grischek, T., Worch, E., Simulation of biological degradation of aromatic amines in river bed sediments. Water Research, 2001. 35(3): p. 619-624. 36. Chu, W., Choy, K. W., So, Y. T., The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. Journal of Hazardous Materials, 2007. 141(1): p. 86-91. 37. Soares, P.G.S.O., Orfao, M. J. J., Pereira, R. F. M., Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Applied Catalysis B: Environmental, 2009. 91: p. 441-448. 38. Shin, H., Jung, S., Bae, S., Lee, W., Kim, H., Nitrite Reduction Mechanism on a Pd Surface. Enviromental Science & Technology, 2014. 48(21): p. 12768-12774. 39. Lee, J., Park, H., Choi, W., Selective Photocatalytic Oxidation of NH3 to N2 on Platinized TiO2 in Water. Enviromental Science & Technology, 2002. 36(24): p. 5462-5468. 40. Shiying, H., Pengfu, H., Evangelos, P., Yanfang, F., Yingliang, Y., Lihong, X., Linzhang, Y., High Efficient Visible-Light Photocatalytic Performance of Cu/ZnO/rGO Nanocomposite for Decomposing of Aqueous Ammonia and Treatment of Domestic Wastewater. Front Chem, 2018. 6: p. 219. 41. Yue, M., Wang, R., Cheng, N., Cong, R., Gao, W., Yang, T., ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light. Scientific Report, 2016. 6. 42. Zhang, Y.Y., Jia, Y., Xu, G. G., He, Y. N., Kang, W., Photocatalytic Reduction of Nitrite over TiO2-Graphene Oxide Composites. Enviromental Engineering Science, 2015. 32(7): p. 631-636. 43. Doudrick, K., Monzón, O., Mangonon, A., Hristovski, K., Westerhoff, P., Nitrate Reduction in Water Using Commercial Titanium Dioxide Photocatalysts (P25, P90, and Hombikat UV100 Journal of Enviromental Engineering, 2012. 138(8): p. 852-861. 44. Hirakawa, H., Hashimoto, M., Shiraishi, Y., Hirai, T., Selective Nitrate-to-Ammonia Transformation on Surface Defects of Titanium Dioxide Photocatalysts. American Chemical Society Catalysis, 2017. 7: p. 3713-3720. 45. Jacinto, D.P.S., Berger, T., Fottinger, K., Riss, A., Anderson, A. J., Vinek, H., Can TiO2 promote the reduction of nitrates in water? Journal of Catalysis, 2001. 234: p. 282-291. 46. Hu, Y., Guo, B., Fu, Y., Ren, Y., Tang, G., Chen, X., Y, B., He, H., Facet-Dependent Acidic and Catalytic Properties of Sulfated Titania Solid Superacids. Chemical Communications, 2012. 1-3. 47. Ilinitch, M.O., Nosova, V. L., Gorodetskii, V. V., Ivanov, P. V., Trukhan, N. S., Gribov, N. E., Bogdanov, V. S., Cuperusb, P. F., Catalytic reduction of nitrate and nitrite ions by hydrogen: investigation of the reaction mechanism over Pd and Pd–Cu catalysts. Journal of Molecular Catalysis A: Chemical, 2000. 158(1): p. 237-249. 48. Rao, R.G., Mishra, G. B., Al-pillared clay supported CuPd catalysts for nitrate reduction. Journal of Porous Materials, 2006. 14(2): p. 205-212. 49. Mikami, I., Sakamoto, Y., Yoshinaga, Y., Okuhara, T., Kinetic and adsorption studies on the hydrogenation of nitrate and nitrite in water using Pd-Cu on active carbon support. Applied Catalysis B: Environmental, 2003. 44(1): p. 79-86. 50. Wang, Y., Qu, J., Liu, H., Effect of liquid property on adsorption and catalytic reduction of nitrate over hydrotalcite-supported Pd-Cu catalyst. Journal of Molecular Catalysis A: Chemical, 2007. 272(1-2): p. 31-37. 51. Prüsse U., V., D. K., Supported bimetallic palladium catalysts forwater-phase nitrate reduction. Journal of Molecular Catalysis A: Chemical, 2001. 173: p. 313-328. 52. Zhang, J., Ayusawa, T., Minagawa, M., Kinugawa, K., Yamashita, H., Matsuoka, M., Anpo, M., Investigations of TiO2 Photocatalysts for the Decomposition of NO in the Flow System. Journal of Catalysis, 2001. 198(1): p. 1-8. 53. Serpone, N., Pelizzetti, E., Photocatalysis. Fundamentals and Applications. 1st Edition ed, ed. E.P. Nick Serpone. 1989, New York: Wiley: Wiley-Interscience. 54. Goresy, E.A., Dubrovinsky, L., Gillet, P., Graup, G., Chen, M., An ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater. American Mineralogist, 2015. 95(5-6): p. 892–895. 55. Toma, F., Bertrand, G., Begin, S., Meunier, C., Barres, O., Klein, D., Coddet, C., Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying. Applied Catalysis B: Environmental, 2006. 68(1-2): p. 74-84. 56. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5-8): p. 53-229. 57. Mazzolini, P., Functional properties control of doped TiO2 for transparent electrodes and photoanodes, in Dipartimento Di Energia. 2015: Milano. 58. Mahato, N., Ansari, O. M., Cho, H. M., Production of Utilizable Energy from Renewable Resources: Mechanism, Machinery and Effect on Environment. Advanced Materials Research, 2015. 1116: p. 1-32. 59. Bielski, B.H.J., Cabelli, D. E., Arudi, R. L., Ross, A. B., Reactivity of HO2/O-2 Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 1985. 14(4): p. 1041-1100. 60. Kudo, A., Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Review, 2009. 38(1): p. 253-278. 61. Chen, H., Wang, L., Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein journal of nanotechnology, 2014. 5: p. 696-710. 62. Kohtani, S., Kawashima, A., Miyabe, H., Reactivity of Trapped and Accumulated Electrons in Titanium Dioxide Photocatalysis. Catalysis Today, 2017. 7(10): p. 16. 63. Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y., Wang, Z. L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007. 316: p. 732-735. 64. Bikodoa, O., Pang, L. C., Ithnin, R., Muryn, A. C., Onishi, H., Thorton, G., Direct visualization of defect-mediated dissociation of water on TiO2 (110) Nature Material, 2006. 5: p. 189-192. 65. Lzzeri, M., Selloni, A., Stress-Driven Reconstruction of an Oxide Surface: The Anatase TiO2 (001)−(1×4) Surface. Physical Review Letters, 2001. 87: p. 266105. 66. Barnard, A.S., Curtiss, A. L., Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano Letters, 2005. 5(7): p. 1261-1266. 67. Vittadini, A., Casarin, M., Selloni, A., Chemistry of and on TiO2-anatase surfaces by DFT calculations: a partial review. Theoretical Chemistry Accounts, 2007. 117(5-6): p. 663-671. 68. Gong, X.Q., Selloni, A., Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. Journal of Physical Chemistry B, 2005. 109(42): p. 19560-19562. 69. Lazzeri, M., Vittandini, A., Selloni, A., Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B, 2001. 65. 70. Jiang, F., Yang, L., Zhou, D., He, G., Zhou, J., Wang, F., Chen, Z. G., First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling. Applied Surface Science, 2018. 436: p. 989-994. 71. Lazzeri, M., Vittandini, A., Selloni, A., Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B, 2001. 63(15). 72. Kawano, T., Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports, 2003. 21(9): p. 829-837. 73. Kreuera, D.K., Fuchsa, A., Isea, M., Spaetha, M., Maiera, J., Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochimica Acta, 1998. 43(10-11): p. 1281-1288. 74. Liu, G., Yang, G. H., Wang, X., Cheng, L., Lu, H., Wang, L., Lu, Q. G., Cheng, M. H., Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant {001} Facets. Journal of Physical Chemistry, 2009. 113(52): p. 21784-21788. 75. Ohno, T., Sarukawa, K., Matsumura, M., Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 2002. 26: p. 1167-1170. 76. Tachikawa, T., Yamashita, S., Majima, T., Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. Journal of american chemical society, 2011. 133(18): p. 7197-7204. 77. Selloni, A., Anatase shows its reactive side. Nature Materials, 2008. 7: p. 613-615. 78. Vittadini, A., Selloni, A., Rotzinger, P. F., Grätzel, M., Structure and Energetics of Water Adsorbed at TiO2 Anatase 101 and 001 Surfaces. Physical Review Letters, 1998. 81: p. 2954. 79. Yang, G.H., Liu, G., Qiao, Z. S., Sun, H. C., Jin, G. Y., Smith, C. S., Zou, J., Cheng, M. H., Lu, Q. G., Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets. Journal of the American Chemical Society, 2009. 131(11): p. 4078-4083. 80. Liu, S., Yu, J., Jaroniec, M., Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications. Chemmistry of Materials, 2011. 23: p. 4085-4093. 81. Sellonia, A., Anatase shows its reactive side. Nature Materials, 2008. 7(8): p. 613-615. 82. Yang, G.H., Sun, H. C., Qiao, Z. S., Zou, J., Liu, G., Smith, C. S., Cheng, M. H., Lu, Q. G., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008. 453: p. 638-641. 83. Barnard, A.S., Zapol, P. A., A model for the phase stability of arbitrary nanoparticles as a function of size and shape. The Journal of Chemical Physics, 2004. 121: p. 4276. 84. Wang, Z., Lv, K., Wang, G., Deng, K., Tang, D., Study on the shape control and photocatalytic activity of high-energy anatase titania. Applied Catalysis B: Environmental, 2010. 100(1-2): p. 378-385. 85. Pan, J., Liu, G., Lu, Q. G., Cheng, H. M., On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angewandte Chemie International Edition, 2011. 50: p. 2133-2137. 86. Tachikawa, T., Wang, N., Yamashita, S., Cui, S. C., Majima, T., Design of a Highly Sensitive Fluorescent Probe for Interfacial Electron Transfer on a TiO2 Surface. Angewandte Chemie International Edition, 2010. 49(46): p. 8593-8597. 87. Xiang, Q., Lv, K., Yu, J., Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air. Applied Catalysis B: Environmental, 2010. 96(3-4): p. 557-564. 88. Amano, F., Mahaney, P. O. O., Terada, Y., Yasumoto, T., Shibayama, T., Ohtani, B., Decahedral Single-Crystalline Particles of Anatase Titanium(IV) Oxide with High Photocatalytic Activity. Chemistry of Materials, 2009. 21(13): p. 2601-2603. 89. Zhao, Z., Sun, Z., Zhao, H., Zheng, M., Du, P., Zhao, J., Fan, H., Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. Journal of Materials Chemistry, 2012. 22(41): p. 21965-21971. 90. Han, X., Kuang, Q., Jin, M., Xie, Z., Zheng, L., Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. Journal of the American Chemical Society, 2009. 131(9): p. 3152-3153. 91. Yang, H.X., Li, Z., Sun, C., Yang, G. H., Li, C., Hydrothermal Stability of {001} Faceted Anatase TiO2. Journal of Chemistry of Materials, 2011. 23(15): p. 3486-3494. 92. Sofianou, M.V., Psycharis, V., Boukos, N., Vaimakisb, T., Yu, J., Dillert, R., Bahnenmann, D., Trapalis, C., Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Applied Catalysis B: Environmental, 2013. 142-143: p. 761-768. 93. Zhu, X., Castleberry, R. S., Nanny, A. M., Butler, C. E., Effects of pH and Catalyst Concentration on Photocatalytic Oxidation of Aqueous Ammonia and Nitrite in Titanium Dioxide Suspensions. Enviromental Science & Technology, 2005. 39(10): p. 3784-3791. 94. Shibuya, S., Sekine, Y., Mikami, I., Influence of pH and pH adjustment conditions on photocatalytic oxidation of aqueous ammonia under airflow over Pt-loaded TiO2. Applied Catalysis A: General, 2015. 496: p. 73-78. 95. Zhang, F., Feng, C., Jin, Y., Li, W., Hao, G., , Photocatalytic degradation of ammonia nitrogen with suspended TiO2, in 3rd International Conference on Bioinformatics and Biomedical Engineering. 2009. p. 1-4. 96. Murgia, S., Poletti, A., Selvaggi, R., Photocatalytic Degradation of High Ammonia Concentration Water Solutions by TiO2. Annali di chimica, 2005. 95: p. 335-343. 97. Kobwittaya, K., Sirivithayapakorn, S., Photocatalytic reduction of nitrate over TiO2 and Ag-modified TiO2. Journal of Saudi Chemical Society, 2014. 18(4): p. 291-298. 98. Wang, H., Su, Y., Zhao, H., Yu, H., Chen, S., Zhang, Y., Quan, X., Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environmental Science & Technology, 2014. 48(20): p. 11984-11990. 99. Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate. Catalysis Today, Gao, W., Jin, R., Chen, J., Guan, X., Zeng, H., Zhang, F., Guan, N. 90(3-4): p. 331-336. 100. Sá, J., Agüera, A. C., Gross, S., Anderson, A. J., Photocatalytic nitrate reduction over metal modified TiO2. Applied Catalysis B: Environmental, 2009. 85(3-4): p. 192-200. 101. Monshi, A., Foroughi, R. M., Monshi, R. M., Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. . World Journal of Nano Science and Engineering, 2012. 2: p. 154-160. 102. Coduri, M., Maisano, M., Dozzi, V. M., Selli, E., Morphological Characterization of Shape-Controlled TiO2 Anatase through XRPD Analysis. Zeitschrift für Physikalische Chemie, 2016. 230(9): p. 1233-1248. 103. Mahshid, S., Askari, M., Ghamsari, M.S., Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology, 2007. 189(1-3): p. 296-300. 104. Yoldas, E.B., Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. Journal of Materials Science, 1986. 21(3): p. 1087-1092. 105. Wang, Z., Huang, B., Dai, Y., Zhua, X., Liua, Y., Zhanga, X., Qin, X., The roles of growth conditions on the topotactic transformation from TiOF2 nanocubes to 3D hierarchical TiO2 nanoboxes. CrystEngComm, 2013. 15(17): p. 3436-3441. 106. Hou, C., Liu, W., One-step synthesis of OH-TiO2/TiOF2 nanohybrids and their enhanced solar light photocatalytic performance. Royal Society Open Science, 2018. 5(6): p. 172005. 107. Yu, C.C.J., Nguyen, V. H., Lasek, J., Wu, C.S. J., Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement. Applied Catalysis B: Environmental, 2017. 219: p. 391-400. 108. Ferna´ndez-Nieves, A., Richter, C. N., De las Nieves, F. J. , Point of zero charge estimation for a TiO2/water interface. Progress in Colloid and Polymer Science, 1998. 110: p. 21-24. 109. Luo, X.P., Chen, C. F., Yang, J., Wang, J. Y., Yan, Q., Shi, H. Q., Characterization of La/Fe/TiO2 and its photocatalytic performance in ammonia nitrogen wastewater. International Journal of Environmental Research and Public Health, 2015. 12(11): p. 14626-14639. 110. Pagsberg, P.B. Investigation of the NH2 radical produced by pulse radiolysis of ammonia in aqueous solution. Aspects of Research at Risø 1972; 209-222]. 111. Neta, P., Maruthamuthu, P., Carton, M. P., Fessenden, W. R., Formation and reactivity of the amino radical. Journal of Physical Chemistry, 1978. 82(17): p. 1875-1878. 112. Kim, W., Tachikawa, T., Moon, G. H., Majima, T., Choi, W., Molecular‐Level Understanding of the Photocatalytic Activity Difference between Anatase and Rutile Nanoparticles. Angewandte Chemie International Edition, 2014. 53: p. 14036-14041. 113. Emerson, K., Russo, C. R., Lund, E. R., Thurston, R., Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. Journal of the Fisheries Research Board of Canada, 1975. 32(12): p. 2379-2383. 114. Wang, A.H., Edwards, J. G., Photooxidation of aqueous ammonia with titania-based heterogeneous catalysts. Solar Energy, 1994. 52(6): p. 459-466. 115. Lv, K., Yu, J., Cui, L., Chen, S., Li, M., Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity. Journal of Alloys and Compounds, 2011. 509(13): p. 4557-4562. 116. Zhang, Y., Xia, T., Shang, M., Wallenmeyer, P., Katelyn, D., Peterson, A., Murowchick, J., Dong, L., Chen, X., Structural evolution from TiO2 nanoparticles to nanosheets and their photocatalytic performance in hydrogen generation and environmental pollution removal. RSC Advances, 2014. 4(31): p. 16146–16152. 117. Garron, A., Epron, F., Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water. Water Research, 2005. 39(13): p. 3073-3081. 118. Doudrick, K., Yang, T., Hristovski, K., Westerhoff, P., Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity. Applied Catalysis B: Environmental, 2013. 136-137: p. 40-47. 119. Soares, O.S.G.P., Pereira, M. F. R., Órfão, J. J. M., Faria, J. L., Silva, C. G., Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chemical Engineering Journal, 2014. 251: p. 123-130. 120. Pintar, A., Setinc, M., Levec, J., Hardness and Salt Effects on Catalytic Hydrogenationof Aqueous Nitrate Solutions. Journal of Catalysis, 1998. 174: p. 72-87. 121. Cook, R.A., Dimitrijevic, N., Dreyfus, W. B., Meisel, D., Curtiss, L., Camaioni, M. D., Reducing radicals in nitrate solutions. The NO32-system revisited. The Journal of Chemistry A, 2001. 105(14): p. 3658-3666. 122. Shin, H., Jung, S., Bae, S., Lee, W., Kim, H., Nitrite reduction mechanism on a Pd surface. Enviromental Science & Technology, 2014. 48(21): p. 12768-74. 123. Prüsse, U., Vorlop, K. D., Supported bimetallic palladium catalysts forwater-phase nitrate reduction. Journal of Molecular Catalysis A: Chemical, 2001. 173: p. 313-328. 124. Gao, W., Guan, N., Chen, J., Guan, X., Jin, R., Zeng, H., Liu, Z., Zhang, F., Titania supported Pd-Cu bimetallic catalyst for the reduction of nitrate in drinking water. Applied Catalysis B: Environmental, 2003. 46(2): p. 341-351. 125. Soares, P.G.S.O., Órfão, J. M. J., Esteban, G. S., Castillejos, E., Inmaculada, R. G., Pereira, R. F. M., Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater. 2012. 33(20): p. 2353-2358. 126. Chaplin, P.B., Roundy, E., Guy, A. K., Shapley, R. J., Werth, J. C., Effects of Natural Water Ions and Humic Acid on Catalytic Nitrate Reduction Kinetics Using an Alumina Supported Pd-Cu Catalyst. Enviromental Science & Technology, 2006. 40: p. 3075-3081. 127. Guzman, F., Chuang, S. C. S., Yang, C., Role of Methanol Sacrificing Reagent in the Photocatalytic Evolution of Hydrogen. Industrial & Engineering Chemistry Research, 2013. 52: p. 61-65. 128. Faroug, R., Abd-Elfatah, M., Ossman, E. M., Response surface methodology for optimization of photocatalytic degradation of aqueous ammonia. Journal of Water Supply: Research and Technology, 2018. 67(2): p. 162-175. 129. Silva, C.G., Pereira, F. R. M., Órfão J. M. J., Faria, J. L., Soares, S. G. P. O., Catalytic and Photocatalytic Nitrate Reduction Over Pd-Cu Loaded Over Hybrid Materials of Multi-Walled Carbon Nanotubes and TiO(2). Front Chem, 2018. 6: p. 632-632. 130. Liu, G., You, S., Ma, M., Huang, H., Ren, N., Removal of Nitrate by Photocatalytic Denitrification Using Nonlinear Optical Material. Environmental Science & Technology, 2016. 50(20): p. 11218-11225. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66460 | - |
dc.description.abstract | 過去數十年間,為了因應迅速成長的人口而進行的大量的農業活動造成了許多問題,例如硝酸鹽及氨所致的水汙染。光觸媒可被用來進行先進的氧化及還原反應以有效解決此問題。最常用的光觸媒二氧化鈦因穩定度及蘊藏量皆高,是個適合的選擇,尤其是對於以農業為經濟生產主體的開發中國家。過去的許多研究著手於解決二氧化鈦的已知缺點,像是電子電洞的高結合速率。擁有高比例裸露(001)晶面的二氧化鈦被視為是很有潛力的解方。這個研究旨在於應用二氧化鈦(001)來氧化氨及還原硝酸鹽以達成高移除率及高氮氣產物選擇率的目標。實驗結果顯示FTO1:1可在預設條件及5小時的光照下移除大約60%的氨(初濃度5ppm),且產物具有接近100%的硝酸根選擇率。1Pd-1Cu/FTO1:1在甲酸(0.04M)存在下可在1小時的紫外光照射後完全移除300ppm的硝酸根,產物的氮氣選擇率達89.2%。另外,其他變因如酸鹼值、雙金屬負載及負載方法亦在實驗中探討。 | zh_TW |
dc.description.abstract | During the past few decades, in order to provide for the increasing number of the population, extensive agricultural activities have been carried out leading to the raise of many issues, specially, the pollution of water due to nitrate and ammonia. In order to effectively resolve these issues, advanced oxidation process and advanced reduction process can be employed through the usage of photocatalyst.
TiO2 with large percentage of (001) facet has been extensively studied since being introduced in 2009. This type of photocatalyst can significantly tackle the known disadvantages of TiO2 such as the high recombination rate which makes TiO2 a very promising photocatalyst for resolving the pollution of nitrate and ammonia due to being cheap, stable and highly active. The research has synthesized TiO2 (001) using simply hydrothermal treatment. On the one hand, due to the inherently low reaction rate between ammonia and hydroxyl radicals, the removal of ammonia using FTO1:1 was not remarkable (60% of 5 ppm initial ammonia concentration after 5 hours). However, for the removal of nitrate, results showed that by incorporating Pd and Cu with the TiO2 (001), in the presence of formic acid (0.04 M), complete removal of 300 ppm initial NO3- concentration with 89.2% selectivity toward N2 with in 1 hour was possible. This result is much higher compared to using P25. Moreover, the condition used in this research was much simpler and yet still able to obtain higher results compared to several previous researches in terms of reaction duration, concentration of nitrate and selectivity toward N2 making this photocatalyst highly suitable to be employed to practical system to removal nitrate-polluted agricultural water in developing country thanks to the low investment cost. Furthermore, firstly, the research also contributed in clarifying the controversial reason underlying the low removal of ammonia using photocatalyst (the low reaction rate between hydroxyl radical and ammonia, the adsorption behavior of ammonia onto the surface of the photocatalyst). Secondly, the research thoroughly explained the contradicting results between previous researches with regard to the bimetallic composition. Lastly, the interactive effects between several important reacting factor such as pH, bimetallic composition, concentration of hole scavenger, the loading method were made clear within the research offering the useful explanation and reference for future researches. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:36:54Z (GMT). No. of bitstreams: 1 ntu-109-R06524101-1.pdf: 5464072 bytes, checksum: 8964a284fccdb9355b796a54730e24c5 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Acknowledgement i
Abstract ii Abstract (Chinese) iv Table of Contents v List of Figures viii List of Tables xii Chapter 1. Introduction 1 1.1. Nitrate and Ammonia pollution 1 1.1.1. Review of the nitrogen cycle 1 1.1.2. The harmful effect of NO32-, NO22-, NH3/NH4+ 3 1.1.3. Increasing agricultural activity and escalation of nitrogen pollution 4 1.1.4. Conventional nitrogenous compounds treatment methods 9 1.2. Overview of Advanced Oxidation Process (AOPs) and Advanced Reduction Process (ARPs) 12 1.2.1. Advanced Oxidation Process (AOPs) 12 1.2.2. Advanced Reduction Process 15 1.2.3. Oxidation of ammonia using AOPs and reducing nitrate using ARPs 16 1.3. Introduction of TiO2 photocatalyst 23 1.3.1. TiO2 photocatalyst 23 1.3.2. Semiconductor TiO2 and the disadvantage of charge carrier recombination 25 1.4. (001)-facet exposed TiO2 29 1.4.1. Review of TiO2 facets 29 1.4.2. (001)-facet-dominant TiO2 30 1.5. Synthesis of TiO2 (001) 32 1.5.1. The basis for surface modification of TiO2 33 1.5.2. Synthesis method of TiO2 (001) 36 1.6. Motivation 40 Chapter 2. Experimental 43 2.1. Material and Apparatus 43 2.1.1. Chemical 43 2.1.2. Apparatus 44 2.2. Photocatalyst preparation 45 2.2.1. Preparation of TiO2 (001) 45 2.2.2. Preparation of Pd-Cu/TiO2 46 2.3. Photocatalytic activity evaluation 51 2.3.1. Photocatalytic tests 51 2.3.2. Removal of ammonia 51 2.3.3. Removal of nitrate 51 2.3.4. Determining nitrate concentration 52 2.3.5. Determining ammonia concentration 53 2.3.6. Determining nitrite concentration 53 2.4. Photocatalyst characterization 56 2.4.1. Photocatalyst characterization methods 56 Chapter 3. RESULTS AND DISCUSSION 61 3.1. Photocatalyst characterization results 61 3.1.1. XRD results 61 3.1.2. UV diffuse reflectance spectra 65 3.1.3. EDS Results 66 3.1.4. BET Results 67 3.1.5. SEM Results 69 3.1.6. TEM and HRTEM Results 73 3.2. The oxidation of ammonia using TiO2 (001) results 76 3.2.1. Photocatalytic oxidation of ammonia using (001)-facet exposed TiO2 76 3.2.2. The reduction of NO3-/NO2- using TiO2 (001) 90 Chapter 4. Conclusion 109 References 111 | |
dc.language.iso | en | |
dc.title | 利用 (001) 晶面銳鈦礦二氧化鈦移除水中氨及硝酸根離子 | zh_TW |
dc.title | Removal of ammonia/ammonium and nitrate from water using anatase TiO2 with exposed (001) facet | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 游文岳(Wen-Yueh Yu),康敦彥(Dun-Yen Kang) | |
dc.subject.keyword | (0 0 1)晶面二氧化鈦,光觸媒,雙金屬負載, | zh_TW |
dc.subject.keyword | (001) facet TiO2,photocatalyst,bimetal loading, | en |
dc.relation.page | 118 | |
dc.identifier.doi | 10.6342/NTU202000026 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-02-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
Appears in Collections: | 化學工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-109-1.pdf Restricted Access | 5.34 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.