請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66442
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周晉澄 | |
dc.contributor.author | En-Cheng Yang | en |
dc.contributor.author | 楊恩承 | zh_TW |
dc.date.accessioned | 2021-06-17T00:36:02Z | - |
dc.date.available | 2013-02-16 | |
dc.date.copyright | 2012-02-16 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-03 | |
dc.identifier.citation | 龐飛。動物結核病。行政院農業委員會家畜衛生試驗所,2006。
http://vettech.nvri.gov.tw/Articles/institute/387.html 盧柏樑。認識結核病抗酸菌染色檢驗。高醫醫訊,2009。 http://www.kmu.edu.tw/~kmcj/data/9803/11.htm 行政院農業委員會。牛結核病檢驗方法。行政院農業委員會,2000。 http://www.baphiq.gov.tw/ct.asp?xItem=4800&ctNode=1808&mp=1 張建裕。基礎PCR。臺北,藝軒,22-57,2004。 蔡國榮。應用聚合酶連鎖反應與核酸探針技術偵測乳牛週邊血液之結核複型分枝 桿菌群。國立臺灣大學獸醫學研究所碩士論文,1997。 葉坤松。台灣南部地區結核病牛難以自感染場根除之原因探討。國立屏東科技大學獸醫學研究所碩士論文,2002。 Amaro A, Duarte E, Amado A, Ferronha H, Botelho A. Comparison of three DNA extraction methods for Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium subsp. avium. Lett Appl Microbiol 47: 8-11, 2008. An S, Dong YH, Zhang LH. The impact and molecular genetics of bacterial biofilms. In: Lin WT, ed. Environmental Molecular Microbiology. Caister Academic Press, Norfolk, 211-226, 2010. Artois M, Loukiadis E, Garin-Bastuji B, Thorel MF, Hars J. Infection des mammife`res sauvages par Mycobacterium bovis - Risque de transmission aux bovins domestiques, Bulletin E′ pide′miologique. Agence Franc aise de Se′curite′ Sanitaire des Aliments 13: 1-3, 2004. Belisle JT, Mahaffey SB, Hill PJ. Isolation of mycobacterium species genomic DNA.Methods Mol Biol 465: 1-12, 2009. Biberstein EL, Hiush DC. Mycobacterium species: the agents of animal tuberculosis. In: Hirsh DC, ed. Veterinary Microbiology. Blackwell Science, UK, 158-164, 1999. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 64: 29-63, 1995. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99: 3684-3689, 2002. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611-622, 2009. Caley P, Hickling GJ, Cowan PE, Pfeiffer DU. Effects of sustained control of brushtail possums on levels of Mycobacterium bovis infection in cattle and brushtail possum populations from Hohotaka, New Zealand. N Z Vet J 47: 133-142, 1999. Carter G, Wu M, Drummond DC, Bermudez LE. Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52: 747-752, 2003. Chandra H, Basir SF, Gupta M, Banerjee N. Glutamine synthetase encoded by glnA-1 is necessary for cell wall resistance andpathogenicity of Mycobacterium bovis. Microbiology 156: 3669-3677, 2010. Cleaveland S, Shaw DJ, Mfinanga SG, Shirima G, Kazwala RR, Eblate E, Sharp M. Mycobacterium bovis in rural Tanzania: risk factors for infection in human and cattle populations. Tuberculosis 87: 30-43, 2006. Coleman JD, Coleman MC, Warburton B. Trends in the incidence of tuberculosis in possums and livestock, associated with differing control intensities applied to possum populations. N Z Vet J 54: 52-60, 2006. Colmenero JD, Morata P, Ruiz-Mesa JD, Bautista D, Bermudez P, Bravo MJ, Queipo-Ortuno MI. Multiplex real-time polymerase chain reaction: a practical approach for rapid diagnosis of tuberculous and brucellar vertebral osteomyelitis. Spine 35: 1392-1396, 2010. Cook KL, Britt JS, Bolster CH. Survival of Mycobacterium avium subsp. paratuberculosis in biofilms on livestock watering trough materials. Vet Microbiol 141: 103-109, 2010. Corti S, Stephan R. Detection of Mycobacterium avium subspecies paratuberculosis specific IS900 insertion sequences in bulk-tank milk samples obtained from different regions throughout Switzerland. BMC Microbiol 2: 15, 2002. Costello E, Doherty ML, Monaghan ML, Quigley FC, O'Reilly PF. A study of cattle-to-cattle transmission of Mycobacterium bovis infection. Vet J 155: 245-250, 1998. Costerton JW, Lewandowski Z. Microbial biofilms. Ann Rev Microbiol 49: 711-745, 1995. Courtenay O, Reilly LA, Sweeney FP, Hibberd V, Bryan S, Ul-Hassan A. Is Mycobacterium bovis in the environment important for the persistence of bovine tuberculosis? Biol Lett 2: 460-462, 2006. Courtenay O, Wellington EMH. Mycobacterium bovis in the environment: towards our understanding of its biology. BCVA Cattle Practice 16: 122-126, 2008. Dean GS, Rhodes SG, Coad M, Whelan AO, Cockle PJ, Clifford DJ, Hewinson RG, Vordermeier HM. Minimum infective dose of Mycobacterium bovis in cattle. Infect Immun 73: 6467-6471, 2005. de la Rua-Domenech R, Goodchild AT, Vordermeier HM, Hewinson RG, Christiansen KH, Clifton-Hadley RS. Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, gamma-interferon assay and other ancillary diagnostic techniques. Res Vet Sci 81: 190-210, 2006. Donnelly CA, Woodroffe R, Cox DR, Bourne J, Gettinby G, Le Fevre AM, McInerney JP, Morrison WI. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426: 834-837, 2003. Duffield BJ, Young DA. Survival of Mycobacterium bovis in defined environmental conditions. Vet Microbiol 10: 193-197, 1985. Durr PA, Hewinson RG, Clifton-Hadley RS. Molecular epidemiology of bovine tuberculosis. I. Mycobacterium bovis genotyping. Rev Sci Tech 19: 675-688, 2000 a. Durr PA, Clifton-Hadley RS, Hewinson RG. Molecular epidemiology of bovine tuberculosis. II. Applications of genotyping. Rev Sci Tech 19: 689-701, 2000 b. Espinosa De Los Monteros LE, Galan JC, Gutierrez M, Samper S, Garcia marin JF, Martin C, Dominguez L, De Rafael L, Baquero F, Gomez-Mampaso E, Blazquez J. Allele-specific PCR method based on pncA and oxyR sequences for distinguishing Mycobacterium bovis from M. tuberculosis: intraspecific M. bovis pncA sequence polymorphism. J Clin Microbiol 36: 239-242, 1998. Falkinham JO 3rd, George KL, Parker BC, Gruft H. In vitro susceptibility of human and environmental isolates of Mycobacterium avium, M. intracellulare, and M. scrofulaceum to heavy-metal salts and oxyanions. Antimicrob Agents Chemother 25: 137-139, 1984. Falkinham JO 3rd. Growth in catheter biofilms and antibiotic resistance of Mycobacterium avium. J Med Microbiol 56: 250-254, 2007. Falkinham JO 3rd. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107: 356-367, 2008. Falkinham JO 3rd. The biology of environmental mycobacteria. Environ Microbiol Rep 1: 477-487, 2009. Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A 106: 16393-16399, 2009. Freeman R, Geier H, Weigel KM, Do J, Ford TE, Cangelosi GA. Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium. Appl Environ Microbiol 72: 7554-7558, 2006. Fyfe JA, Lavender CJ, Johnson PD, Globan M, Sievers A, Azuolas J, Stinear TP. Development and application of two multiplex real-time PCR assays for the detection of Mycobacterium ulcerans in clinical and environmental samples. Appl Environ Microbiol 73: 4733-4740, 2007. Gormley E, Doyle MB, Fitzsimons T, Mcgill k, Collins JD. Diagnosis of Mycobacterium bovis infection in cattle by use of the gamma-interferon (BovigamR) assay. Vet Microbiol 112: 171-179, 2006. Griffin JF, Cross JP, Chinn DN, Rogers CR, Buchan GS. Diagnosis of tuberculosis due to M. bovis in New Zealand red deer (Cervus elaphus) using a composite blood test (BTB)and antibody (ELISA)assays. N Z Vet J 42: 173-179, 1994. Griffin JF, Hesketh JB, Mackintosh CG, Shi YE, Buchan GS. BCG vaccination in deer: distinctions between delayed type hypersensitivity and laboratory parameters of immunity. Immunol Cell Biol 71: 559-570, 1993. Guarin N, Budvytiene I, Ghafghaichi L, Banaei N. Comparison of real-time polymerase chain reaction and conventional biochemical methods for identification of Mycobacterium chelonae-Mycobacterium abscessus group to the species level. Diagn Microbiol Infect Dis 67: 333-336, 2010. Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13: 7-10, 2005. Halse TA, Escuyer VE, Musser KA. Evaluation of a single-tube multiplex real-time PCR for differentiation of members of the Mycobacterium tuberculosis complex in clinical specimens. J Clin Microbiol 49: 2562-2567, 2011. Hance AJ, Grandchamp B, Levy-Frebault V, Lecossier D, Rauzier J, Bocart D, Gicquel B. Detection and identification of mycobacteria by amplification of mycobacterial DNA. Molec Microbiol 3: 843-849, 1989. Harvey RW, Young LY. Enrichment and association of bacteria and particulates in salt marsh surface water. Appl Environ Microbiol 39: 894-899, 1980. Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413-417, 1992. Hillemann D, Warren R, Kubica T, Rusch-Gerdes S, Niemann S. Rapid detection of Mycobacterium tuberculosis Beijing genotype strains by real-time PCR. J Clin Microbiol 44: 302-306, 2006. Hiush DC. Mycobacterium avium spp. paratuberculosis (Mycobacterium paratuberculosis). In: Hiush DC, ed. Veterinary Microbiology. Blackwell Science, UK, 104-108, 1999. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88: 7276-7280, 1991. Hong YJ, Chung YH, Kim TS, Song SH, Park KU, Yim JJ, Song J, Lee JH, Kim EC. Usefulness of three-channel multiplex real-time PCR and melting curve analysis for simultaneous detection and identification of the Mycobacterium tuberculosis complex and nontuberculous mycobacteria. J Clin Microbiol 49: 3963-3966, 2011. Huard RC, Lazzarini LC, Butler WR, Van Soolingen D, HO JL. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J Clin Microbiol 41: 1637-1650, 2003. Humblet MF, Boschiroli ML, Saegerman C. Classification of worldwide bovine tuberculosis risk factors in cattle: a stratified approach. Vet Res 40: 50, 2009. Inderlied CB, Kemper CA, Bermudez LE. The Mycobacterium avium complex. Clin Microbiol Rev 6: 266-310, 1993. Ishida S, Arai M, Niikawa H, Kobayashi M. Inhibitory effect of cyclic trihydroxamate siderophore, desferrioxamine E, on the biofilm formation of Mycobacterium species. Biol Pharm Bull 34: 917-920, 2011. Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, Van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907-914, 1997. Kelly WR, Collins JD. The health significance of some infectious agents present in animal effluents. Vet Sci Commun 2: 95-103, 1978. Kim BJ, Hong SK, Lee KH, Yun YJ, Kim EC, Park YG, Bai GH, Kook YH. Differential identification of Mycobacterium tuberculosis complex and nontuberculous Mycobacteria by duplex PCR assay using the RNA polymerase gene (rpoB). J Clin Microbiol 42: 1308-1312, 2004. Koh WJ, Kwon OJ, Lee KS. Nontuberculous mycobacterial pulmonary diseases in immunocompetent patients. Korean J Radiol 3: 145-157, 2002. Kumar P, Nath K, Rath B, Sen MK, Vishalakshi P, Chauhan DS, Katoch VM, Singh S, Tyagi S, Sreenivas V, Prasad HK. Visual format for detection of Mycobacterium tuberculosis and M. bovis in clinical samples using molecular beacons. J Mol Diagn 11: 430-438, 2009. Kunze ZM, Wall S, Appelberg R, Silva MT, Portaels F, McFadden JJ. IS901, a new member of a widespread class of atypical insertion sequences, is associated with pathogenicity in Mycobacterium avium. Mol Microbiol 5: 2265-2272, 1991. Lee AS, Jelfs P, Sintchenko V, Gilbert GL. Identification of non-tuberculous mycobacteria: utility ofthe GenoType Mycobacterium CM/AS assay compared with HPLC and 16S rRNA gene sequencing. J Med Microbiol 58: 900-904, 2009. Leung ET, Zheng L, Wong RY, Chan EW, Au TK, Chan RC, Lui G, Lee N, Ip M. Rapid and simultaneous detection of Mycobacterium tuberculosis complex and Beijing/W genotype in sputum by an optimized DNA extraction protocol and a novel multiplex real-time PCR. J Clin Microbiol 49: 2509-2515, 2011. Maddock EC. Studies on the survival time of the bovine tubercle bacillus in soil, soil and dung, in dung and on grass, with experiments on the preliminary treatment of infected organic matter and the cultivation of the organism. J Hyg 33: 103-117, 1933. Menzies FD, Neill SD. Cattle-to-cattle transmission of bovine tuberculosis. Vet J 160: 92-106, 2000. Michel AL, de Klerk LM, Gey van Pittius NC, Warren RM, van Helden PD. Bovine tuberculosis in African buffaloes: observations regarding Mycobacterium bovis shedding into water and exposure to environmental mycobacteria. BMC Vet Res 3: 23, 2007. Miltner EC, Bermudez LE. Mycobacterium avium grown in Acanthamoeba castellanii is protected fromthe effects of antimicrobials. Antimicrob Agents Chemother 44: 1990-1994, 2000. Morris RS, Pfeiffer DU, Jackson R. The epidemiology of Mycobacterium bovis infections. Vet Microbiol 40: 153-177, 1994. Nakatani SM, Burger M, Assef MC, Brockelt SR, Cogo LL, Messias-Reason IJ. Efficient method for mycobacterial DNA extraction in blood cultures aids rapid PCR identification of Mycobacterium tuberculosis and Mycobacterium avium. Eur J Clin Microbiol Infect Dis 23: 851-854, 2004. Neill SD, Hanna J, O’Brien JJ, McCracken RM. Excretion of Mycobacterium bovis by experimentally infected cattle. Vet Rec 123: 340-343, 1988. Neill SD, Hanna J, Mackie DP, Bryson TG. Isolation of Mycobacterium bovis from the respiratory tracts of skin test-negative cattle. Vet Rec 131: 45-47, 1992. Neill SD, Cassidy J, Hanna J, Mackie DP, Pollock JM, Clements A, Walton E, Bryson DG. Detection of Mycobacterium bovis infection in skin test-negative cattle with an assay for bovine interferon-gamma. Vet Rec 135: 134-135, 1994. Niemann S, Harmsen D, Rusch-Gerdes S, Richter E. Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrB DNA sequence polymorphism analysis. J Clin Microbiol 38: 3231-3234, 2000. Nikaido H, Kim SH, Rosenberg EY. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbiol 8: 1025-1030, 1993. Noordhoek GT, Van Embden JD, Kolk AH. Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories. J Clin Microbiol 34: 2522-2525, 1996. OIE. Manual of diagnostic tests and vaccines for terrestrial animals. Ch 2.4.7. Office International des Epizooties, 2011. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.07_BOVINE_TB.pdf Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69: 164-174, 2008. O’ Reilly LM, Daborn CJ. The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis 76: 1-46, 1995. van Oss CJ, Gillman CF, Neumann AW. Phagocytosis as a surface phenomenon. IV. The minimum size and composition of antigen-antibody complexes that can become phagocytized. Immunol Commun 3: 77-84, 1974. Parker BC, Ford MA, Gruft H, Falkinham JO 3rd. Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am Rev Respir Dis 128: 652-656, 1983. Parsons LM, Brosch R, Cole ST, Somoskovi A, Loder A, Bretzel G, Van Soolingen D, Hale YM, Salfinger M. Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol 40: 2339-2345, 2002. Phillips CJ, Foster CR, Morris PA, Teverson R. The transmission of Mycobacterium bovis infection to cattle. Res Vet Sci 74: 1-15, 2003. Pontiroli A, Travis ER, Sweeney FP, Porter D, Gaze WH, Mason S, Hibberd V, Holden J, Courtenay O, Wellington EM. Pathogen quantitation in complex matrices: a multi-operator comparison of DNA extraction methods with a novel assessment of PCR inhibition. PLoS One 6: e17916, 2011. Primm TP, Lucero CA, Falkinham JO 3rd. Health impacts of environmental mycobacteria. Clin Microbiol Rev 17: 98-106, 2004. Queipo-Ortuno MI, Colmenero JD, Bermudez P, Bravo MJ, Morata P. Rapid differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis using a multiplex real-time PCR assay. PLoS One 4: e4526, 2009. Quinn PJ, Carter ME, Markey B, Carter GR. Mycobacterium species. In: Quinn PJ, ed. Clinical Veterinary Microbiology. Mosby, London, 156-169, 1994. Rastogi N, Frehel C, Ryter A, Ohayon H, Lesourd M, David HL. Multiple drug resistance in Mycobacterium avium: is the cell wall architecture responsible for the exclusion of antimicrobial agents? Antimicrob Agents Chemother 20: 666-677, 1981. Reddington K, O'Grady J, Dorai-Raj S, Niemann S, van Soolingen D, Barry T. A novel multiplex real-time PCR for the identification of mycobacteria associated with zoonotic tuberculosis. PLoS One 6: e23481, 2011. Reddington K, O'Grady J, Dorai-Raj S, Maher M, van Soolingen D, Barry T. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains. J Clin Microbiol 49: 651-657, 2011. Reilly LA, Courtenay O. Husbandry practices, badger sett density and habitat composition as risk factors fortransient and persistent bovine tuberculosis on UK cattle farms. Prev Vet Med 80: 129-142, 2007. Richardson ET, Samson D, Banaei N. Rapid Identification of Mycobacterium tuberculosis and nontuberculous mycobacteria by multiplex, real-time PCR. J Clin Microbiol 47: 1497-1502, 2009. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245: 154-160, 1997. Rodriguez JG, Mejia GA, Portillo PD, Patarroyo ME, Murillo LA. Species-specific identification of Mycobacterium bovis by PCR. Microbiology 141: 2131-2138, 1995. Rosenberg M. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22: 289-295, 1984. Schiller I, Oesch B, Vordermeier HM, Palmer MV, Harris BN, Orloski KA, Buddle BM, Thacker TC, Lyashchenko KP, Waters WR. Bovine tuberculosis: a review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transbound Emerg Dis 57: 205-220, 2010. Schneeberger C, Speiser P, Kury F, Zeillinger R. Quantitative detection of reverse transcriptase-PCR products by means of a noveland sensitive DNA stain. PCR Methods Appl 4: 234-238, 1995. SIGMA. qPCR Technical Guide. SIGMA, 2008. http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/General_Information/qpcr_technical_guide.Par.0001.File.tmp/qpcr_technical_guide.pdf Somerville W, Thibert L, Schwartzman K, Behr MA. Extraction of Mycobacterium tuberculosis DNA: a question of containment. J Clin Microbiol 43: 2996-2997, 2005. Songer JG, Post KW. The genus Mycobacterium. In: Songer JG, ed. Veterinary Microbiology: Bacterial and Fungal Agents of Animal Disease. ELSEVIER SAUNDERS, Missouri, 95-109, 2005. Sutherland IW. The biofilm matrix-an immunobilized but dynamic microbial environment. Trends Microbiol 9: 222-227, 2001. Sweeney FP, Courtenay O, Ul-Hassan A, Hibberd V, Reilly LA, Wellington EM. Immunomagnetic recovery of Mycobacterium bovis from naturally infected environmental samples. Lett Appl Microbiol 43: 364-369, 2006. Taylor RH, Norton CD, LeChevallier MW, Falkinham JO 3rd. Susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum to chlorine, chloramine, chlorine dioxide, and ozone. Appl Environ Microbiol 66: 1702-1705, 2000. Vansnick E, De Rijk P, Vercammen F, Geysen D, Rigouts L, Portaels F. Newly developed primers for the detection of Mycobacterium avium subspecies paratuberculosis. Vet Microbiol (3-4):197-204, 2004. VanGuilder HD, Vrana KE, Freeman WM Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44: 619-626, 2008. Veillette M, Page G, Thorne PS, Duchaine C. Real-time PCR quantification of Mycobacterium immunogenum in used metal working fluids. J Occup Environ Hyg 5: 755-760, 2008. Vitale F, Capra G, Maxia L, Reale S, Vesco G, Caracappa S. Detection of Mycobacterium tuberculosis complex in cattle by PCR using milk, lymph nodeaspirates, and nasal swabs. J Clin Microbiol 36: 1050-1055, 1998. Wards BJ, Collins DM, de Lisle GW. Detection of Mycobacterium bovis in tissues by polymerase chain reaction. Vet Microbiol 43: 227-240, 1995. White PC, Brown JA, Harris S. Badgers (Meles meles), cattle and bovine tuberculosis (Mycobacterium bovis): a hypothesis to explain the influence of habitat on the risk of disease transmission in southwest England. Proc R Soc Lond B 253: 277-284, 1993. Williams RS, Hoy WA. The viability of B. tuberculosis (bovinus) on pasture land, in stored faeces and in liquid manure. J Hyg 30: 413-419, 1930. Wray C. Survival and spread of pathogenic bacteria of veterinary importance within the environment. Vet Bull 45: 543-550, 1975. Yamazaki Y, Danelishvili L, Wu M, Hidaka E, Katsuyama T, Stang B. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol 8: 806-814, 2006. Young JS, Gormley E, Wellington EM. Molecular detection of Mycobacterium bovis and Mycobacterium bovis BCG (Pasteur) in soil. Appl Environ Microbiol 71: 1946-1952, 2005. Zambrano MM, Kolter R. Mycobacterial biofilms: a greasy way to hold it together. Cell 123: 762-764, 2005. Zanini MS, Moreira EC, Lopes MT, Mota P, Salas CE. Detection of Mycobacterium bovis in milk by polymerase chain reaction. Zentralbl Veterinarmed B 45: 473-479, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66442 | - |
dc.description.abstract | 威脅牛隻健康的病原性分枝桿菌包括造成牛結核病的Mycobacterium bovis (M. bovis)、伺機病原性的M. avium及引起副結核病的M. avium subsp. Paratuberculosis (MAP)。分枝桿菌細胞壁富含分枝酸,對環境中的物化因子具有抵抗性,目前已知腐生性的非結核分枝桿菌 (Nontuberculosis mycobacterium, NTM) 廣泛的分布於各種自然及人造的環境,而對絕對胞內寄生病原性的M. bovis在活體外存活情形有不同看法。分枝桿菌細胞壁的厭水屬性使其易在環境中形成生物膜,然M. bovis於乳牛場飲水槽生物膜媒介則尚無相關研究。本論文即設計分子生物學偵測技術以便探討病原性分枝桿菌於乳牛場飲水槽生物膜的存在。研究分為四個部份: (i) 設計Nested PCR合併限制酶切割作為偵測病原核酸的定性分析; (ii) 建立病原核酸定量法; (iii) 評估生物膜M. bovis、M. avium及MAP核酸的回收; (iv) 驗證檢測技術可行性。結果顯示: (i) Nested PCR可以區分M. bovis、M. avium、MAP及其他生物膜內常見的細菌,M. bovis的偵測極限為3 ×10-4 ng核酸; (ii) 經Melting curve analysis 確定Real time PCR-SYBR Green的特異性,M. bovis使用SYBR Green及TaqMan分析之偵測極限分別為1.95 ×10-6 ng及1.30 ×10-7 ng核酸; (iii) B/T Genomic DNA Extraction Miniprep System對生物膜內M. bovis、M. avium及MAP的核酸萃取回收率分別為 (53.7 ±32.4)%、 (28.7 ±21.3)%及 (26.7 ±25.7)%; (iv) 乳牛場飲水槽195個生物膜樣本以Nested PCR搭配限制酶切割分析,M. bovis核酸陽性率為28.72%,核酸濃度介於106-8 gene copies,最後一次採樣升至1011 gene copies。PCR偵測生物膜樣本NTM、M. avium及MAP核酸陽性率分別為54.87%、10.77%及3.59%;(v) 比較不同飲水槽材質,M. bovis陽性率於塑膠製飲水槽生物膜最低 (29.23%),而NTM陽性率於塑膠製飲水槽生物膜最高 (72.31%)。總結本研究設計出生物膜樣本病原性分枝桿菌核酸快速檢測技術,並推論絕對胞內寄生病原M. bovis核酸可以普遍、持續存在於乳牛場飲水槽生物膜中。 | zh_TW |
dc.description.abstract | Pathogenic mycobacteria pose threats to cattle health- including bovine tuberculosis from Mycobacterium bovis (M. bovis), opportunist pathogenic M. avium and paratuberculosis from M. avium subsp. Paratuberculosis (MAP). Mycobacteria are more likely to resist to environmental attacks because of the abundant mycolic acid in cell wall. Non-tuberculosis mycobacterium (NTM) distributes widely in most natural and artificial environment. However, different opinions are raised in academic regarding whether absolutely existence of the pathogenic M. bovis in living animals or not. Mycobacteria can form biofilm that provides protection and also adaption easily to environment. The existence of pathogenic mycobacteria via biofilm formation in drinking trough of dairy farm is not reported and worth investigation. This study aims to design feasible molecular biology detection techniques for the investigation of pathogenic mycobacteria in the biofilm of the drinking trough of dairy farms. The approach methods include: (i) To design nested PCR and restriction enzymes digestion protocol for the analyzing nucleic acid of bacterial pathogens. (ii) To establish reliable pathogenic nucleic acid quantitative method. (iii) To evaluate nucleic acid recovery efficiencies for the extraction of M. bovis, M. avium and MAP in biofilm. (iv) To verify the feasibility of applying the detection techniques in field sampling. Results showed that: (i) Nested PCR can distinguish M. bovis, M. avium and MAP from each other and also from other commensal bacteria in the biofilm. Method detection limit of M. bovis is 3×10-4 ng nucleic acid. (ii) By applying the melting curve analysis, the real time PCR-SYBR Green can determine detection specificity. The detection limit of SYBR Green and TaqMan analysis of M. bovis are 1.95 ×10-6 ng and 1.30 ×10-7 ng nucleic acid. (iii) The recoveries of the nucleic acid through B/T Genomic DNA Extraction Miniprep System for M. bovis, M. avium and MAP in biofilm are (53.7 ±32.4)%, (28.7 ±21.3)% and (26.7 ±25.7)%, respectively. (iv) Positive rate of M. bovis nucleic acid in the biofilm of 195 dairy farm drinking trough samples with nested PCR and restriction enzymes digestion analysis is 28.72%, and the nucleic acid concentration is stability between 106 and 108 gene copies; the last collection sample rises to 1011 gene copies. PCR positive rate of NTM, M. avium and MAP are 54.87%, 10.77% and 3.59%, respectively. (v) The highest and lowest positive rates found in the biofilm of different drinking trough materials were 72.31% of NTM in plastic tank and 29.23% of M. bovis in plastic tank. In conclusion, this study provides feasible techniques to screen pathogenic mycobacterium nucleic acid quickly in biofilm samples, and time-series study infers that the nucleic acid of M. bovis can exist continuously in the biofilm of drinking trough of the dairy farms. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:36:02Z (GMT). No. of bitstreams: 1 ntu-101-R96629029-1.pdf: 1785370 bytes, checksum: 840c373bf23079097714c80252933f52 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝.......................................................i
中文摘要...................................................ii 英文摘要..................................................iii 目錄.......................................................v 表目錄....................................................vii 圖目錄...................................................viii 第一章 緒言................................................1 第二章 文獻回顧.............................................2 2.1 分枝桿菌簡介............................................2 2.2 分枝桿菌的分類...........................................2 2.3 具牛隻病原性的分枝桿菌....................................3 2.4 牛結核病的盛行情形........................................5 2.5 M. bovis於牧場環境存在的情形..............................6 2.6飲水槽生物膜是M. bovis溫床的假說............................9 2.7牛結核病檢測技術..........................................10 2.8分子生物學技術偵測飲水槽生物膜結核菌可行性研究.................17 第三章 材料與方法...........................................19 3.1 實驗架構...............................................19 3.2 材料..................................................21 3.3 方法..................................................24 3.4 統計分析...............................................37 第四章 結果...............................................38 4.1 Nested PCR最佳反應條件試驗...............................38 4.2 Nested PCR之特異性試驗..................................39 4.3 Nested PCR之偵測極限...................................41 4.4 Nested PCR定序結果.....................................43 4.5 Nested PCR產物之限制酶切割分析...........................43 4.6 Real time PCR-SYBR Green定量分析.......................46 4.7 Real time PCR-TaqMan定量分析...........................48 4.8生物膜M. bovis、M. avium及MAP核酸的回收試驗................51 4.9 Nested PCR偵測乳牛場飲水槽生物膜樣本......................54 4.10以PCR及Multiplex PCR偵測乳牛場飲水槽生物膜樣本.............54 4.11以Real time PCR-Sybr Green定量乳牛場飲水槽生物膜樣本M. bovis Nested PCR陽性樣本.........................................57 4.12乳牛場不同材質飲水槽生物膜樣本比較..........................59 第五章 討論...............................................60 第六章 結論...............................................66 第七章 未來研究方向.........................................67 文獻......................................................68 附錄......................................................87 | |
dc.language.iso | zh-TW | |
dc.title | 乳牛場飲水槽生物膜病原性分枝桿菌核酸偵測 | zh_TW |
dc.title | Detection of Pathogenic Mycobacteria Nucleic Acid in Biofilm of Dairy Farm Drinking Trough | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳永惠,陳建先,張靜文,葉光勝 | |
dc.subject.keyword | 乳牛場,飲水槽,生物膜,Mycobacterium bovis,Mycobacterium avium,Mycobacterium avium subsp. paratuberculosis, | zh_TW |
dc.subject.keyword | dairy farm,drinking troughs,biofilm,Mycobacterium bovis,Mycobacterium avium,Mycobacterium avium subsp. paratuberculosis, | en |
dc.relation.page | 106 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-03 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。