請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66441完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴震東(Chen-Tung Yen) | |
| dc.contributor.author | Wan-Ting Tseng | en |
| dc.contributor.author | 曾琬婷 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:35:59Z | - |
| dc.date.available | 2017-02-16 | |
| dc.date.copyright | 2012-02-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-03 | |
| dc.identifier.citation | Adrian ED (1930) The Effects of Injury on Mammalian Nerve Fibres. Proc Roy Soc Ser B 106:596-618.
Ali Z, Ringkamp M, Hartke TV, Chien HF, Flavahan NA, Campbell JN, Meyer RA (1999) Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 81:455-466. Babbedge RC, Soper AJ, Gentry CT, Hood VC, Campbell EA, Urban L (1996) In vitro characterization of a peripheral afferent pathway of the rat after chronic sciatic nerve section. J Neurophysiol 76:3169-3177. Baliki MN, Schnitzer TJ, Bauer WR, Apkarian AV (2011) Brain morphological signatures for chronic pain. PLoS One 6:e26010. Banati RB (2002) Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J Physiol Paris 96:289-299. Banik RK, Brennan TJ (2004) Spontaneous discharge and increased heat sensitivity of rat C-fiber nociceptors are present in vitro after plantar incision. Pain 112:204-213. Barbay S, Peden EK, Falchook G, Nudo RJ (1999) Sensitivity of neurons in somatosensory cortex (S1) to cutaneous stimulation of the hindlimb immediately following a sciatic nerve crush. Somatosens Mot Res 16:103-114. Baron R (2006) Mechanisms of disease: neuropathic pain--a clinical perspective. Nat Clin Pract Neurol 2:95-106. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87-107. Benoliel R, Eliav E, Tal M (2001) No sympathetic nerve sprouting in rat trigeminal ganglion following painful and non-painful infraorbital nerve neuropathy. Neurosci Lett 297:151-154. Berg RW, Chen MT, Huang HC, Hsiao MC, Cheng H (2009) A method for unit recording in the lumbar spinal cord during locomotion of the conscious adult rat. J Neurosci Methods 182:49-54. Bergenheim M, Ribot-Ciscar E, Roll JP, Thunberg J (2004) Spontaneous bursting neuronal discharges recorded from peripheral nerve in human: injury discharges or not? Neurosci Lett 359:1-4. Bermejo R, Szwed M, Friedman W, Ahissar E, Zeigler HP (2004) One whisker whisking: unit recording during conditioned whisking in rats. Somatosens Mot Res 21:183-187. Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195:115-126. Blatow M, Nennig E, Sarpaczki E, Reinhardt J, Schlieter M, Herweh C, Rasche D, Tronnier VM, Sartor K, Stippich C (2009) Altered Somatosensory Processing in Trigeminal Neuralgia. Hum Brain Mapp 30:3495-3508. Bongenhielm U, Robinson PP (1996) Spontaneous and mechanically evoked afferent activity originating from myelinated fibres in ferret inferior alveolar nerve neuromas. Pain 67:399-406. Bongenhielm U, Robinson PP (1998) Afferent activity from myelinated inferior alveolar nerve fibers in ferrets after constriction or section and regeneration. Pain 74:123-132. Bongenhielm U, Boissonade FM, Westermark A, Robinson PP, Fried K (1999) Sympathetic nerve sprouting fails to occur in the trigeminal ganglion after peripheral nerve injury in the rat. Pain 82:283-288. Bourquin AF, Suveges M, Pertin M, Gilliard N, Sardy S, Davison AC, Spahn DR, Decosterd I (2006) Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain 122:14 e11-14. Bruggemann J, Galhardo V, Apkarian AV (2001) Immediate reorganization of the rat somatosensory thalamus after partial ligation of sciatic nerve. J Pain 2:220-228. Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, Becerra L, Borsook D (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68:81-91. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77-92. Cardoso-Cruz H, Sameshima K, Lima D, Galhardo V (2011) Dynamics of circadian thalamocortical flow of information during a peripheral neuropathic pain condition. Frontiers in Integrative Neuroscience 5. Chang CH, Liang KC, Yen CT (2005) Inhibitory avoidance learning altered ensemble activity of amygdaloid neurons in rats. Eur J Neurosci 21:210-218. Chaplan SR, Bach FW, Shafer SL, Yaksh TL (1995) Prolonged alleviation of tactile allodynia by intravenous lidocaine in neuropathic rats. Anesthesiology 83:775-785. Chen Y, Devor M (1998) Ectopic mechanosensitivity in injured sensory axons arises from the site of spontaneous electrogenesis. Eur J Pain 2:165-178. Chua NH, Vissers KC, Sluijter ME (2011) Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications-a review. Acta Neurochir (Wien) 153:763-771. Chudler EH, Anderson LC, Byers MR (1997) Trigeminal ganglion neuronal activity and glial fibrillary acidic protein immunoreactivity after inferior alveolar nerve crush in the adult rat. Pain 73:141-149. Chung JM, Leem JW, Kim SH (1992) Somatic afferent fibers which continuously discharge after being isolated from their receptors. Brain Res 599:29-33. Cline MA, Ochoa J, Torebjork HE (1989) Chronic hyperalgesia and skin warming caused by sensitized C nociceptors. Brain 112 ( Pt 3):621-647. Corbacelli A, Cutilli T, Marinangeli F, Ciccozzi A, Corbacelli C, Necozione S, Masedu F, Varrassi G (2007) Cervical pain and headache in patients with facial asymmetries: the effect of orthognathic surgical correction. Minerva Anestesiol 73:281-289. Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1-32. Cudlip SA, Howe FA, Griffiths JR, Bell BA (2002) Magnetic resonance neurography of peripheral nerve following experimental crush injury, and correlation with functional deficit. J Neurosurg 96:755-759. Davis KD, Taylor KS, Anastakis DJ (2011) Nerve injury triggers changes in the brain. Neuroscientist 17:407-422. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149-158. Desilets-Roy B, Varga C, Lavallee P, Deschenes M (2002) Substrate for cross-talk inhibition between thalamic barreloids. J Neurosci 22:RC218. Devor M (2009a) Ectopic discharge in A beta afferents as a source of neuropathic pain. Exp Brain Res 196:115-128. Devor M (2009b) Ectopia generators. In: Science of pain (Basbaum AI, Baushnell MC, eds), pp 83-88. Oxford & San Diego: Academic Press. Djouhri L, Koutsikou S, Fang X, McMullan S, Lawson SN (2006) Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J Neurosci 26:1281-1292. Dworkin RH, O'Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ, Portenoy RK, Rice AS, Stacey BR, Treede RD, Turk DC, Wallace MS (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132:237-251. Eliades SJ, Wang X (2008) Chronic multi-electrode neural recording in free-roaming monkeys. J Neurosci Methods 172:201-214. Emondi AA, Rebrik SP, Kurgansky AV, Miller KD (2004) Tracking neurons recorded from tetrodes across time. J Neurosci Methods 135:95-105. Fischer TZ, Tan AM, Waxman SG (2009) Thalamic neuron hyperexcitability and enlarged receptive fields in the STZ model of diabetic pain. Brain Res 1268:154-161. Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81:2243-2252. Garraghty PE, Kaas JH (1991) Functional reorganization in adult monkey thalamus after peripheral nerve injury. Neuroreport 2:747-750. Gracely RH, Lynch SA, Bennett GJ (1992) Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain 51:175-194. Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA (2011) Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci 31:5956-5964. Hains BC, Saab CY, Waxman SG (2006) Alterations in burst firing of thalamic VPL neurons and reversal by Na(v)1.3 antisense after spinal cord injury. J Neurophysiol 95:3343-3352. Haiss F, Butovas S, Schwarz C (2010) A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. J Neurosci Methods 187:67-72. Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600-606. Iadarola MJ, Max MB, Berman KF, Byas-Smith MG, Coghill RC, Gracely RH, Bennett GJ (1995) Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 63:55-64. Iwata K, Imai T, Tsuboi Y, Tashiro A, Ogawa A, Morimoto T, Masuda Y, Tachibana Y, Hu J (2001) Alteration of medullary dorsal horn neuronal activity following inferior alveolar nerve transection in rats. J Neurophysiol 86:2868-2877. Jackson A, Fetz EE (2007) Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J Neurophysiol 98:3109-3118. Jain N, Qi HX, Collins CE, Kaas JH (2008) Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. J Neurosci 28:11042-11060. Jhaveri MD, Elmes SJ, Richardson D, Barrett DA, Kendall DA, Mason R, Chapman V (2008) Evidence for a novel functional role of cannabinoid CB(2) receptors in the thalamus of neuropathic rats. Eur J Neurosci 27:1722-1730. Jones EG (2000) Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 23:1-37. Jones EG (2007) The ventral nuclei. In: The thalamus, 2 Edition, pp 775-795. New York: Cambridge University Press. Kaas JH, Qi HX, Burish MJ, Gharbawie OA, Onifer SM, Massey JM (2008) Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Exp Neurol 209:407-416. Kajander KC, Bennett GJ (1992) Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons. J Neurophysiol 68:734-744. Kajander KC, Wakisaka S, Bennett GJ (1992) Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett 138:225-228. Khatri V, Bermejo R, Brumberg JC, Keller A, Zeigler HP (2009) Whisking in air: encoding of kinematics by trigeminal ganglion neurons in awake rats. J Neurophysiol 101:1836-1846. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355-363. Kirillova I, Teliban A, Gorodetskaya N, Grossmann L, Bartsch F, Rausch VH, Struck M, Tode J, Baron R, Janig W (2011) Effect of local and intravenous lidocaine on ongoing activity in injured afferent nerve fibers. Pain 152:1562-1571. Kitagawa J, Takeda M, Suzuki I, Kadoi J, Tsuboi Y, Honda K, Matsumoto S, Nakagawa H, Tanabe A, Iwata K (2006) Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy. Eur J Neurosci 24:1976-1986. Kobayashi A, Shinoda M, Sessle BJ, Honda K, Imamura Y, Hitomi S, Tsuboi Y, Okada-Ogawa A, Iwata K (2011) Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats. Mol Pain 7:12. Komagata S, Chen S, Suzuki A, Yamashita H, Hishida R, Maeda T, Shibata M, Shibuki K (2011) Initial phase of neuropathic pain within a few hours after nerve injury in mice. J Neurosci 31:4896-4905. Kubie JL (1984) A driveable bundle of microwires for collecting single-unit data from freely-moving rats. Physiol Behav 32:115-118. LaMotte RH (1996) Secondary cutaneous dysaesthesiae. In: Neurobiology of nociceptors (Belmonte C, Cervero F, eds), pp 390-417. Oxford, New York: Oxford university press Inc. LaMotte RH, Zhang J-m, Petersen M (1996) Chapter 8 Alterations in the functional properties of dorsal root ganglion cells with unmyelinated axons after a chronic nerve constriction in the rat. In: Progress in Brain Research (Carli G, Zimmermann M, eds), pp 105-111: Elsevier. Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895-926. Leiser SC, Moxon KA (2007) Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat. Neuron 53:117-133. Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR (1989) Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 496:357-360. Lenz FA, Garonzik IM, Zirh TA, Dougherty PM (1998) Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations. Neuroscience 86:1065-1081. Lenz FA, Kwan HC, Martin R, Tasker R, Richardson RT, Dostrovsky JO (1994) Characteristics of somatotopic organization and spontaneous neuronal activity in the region of the thalamic principal sensory nucleus in patients with spinal cord transection. J Neurophysiol 72:1570-1587. Li Y, Dorsi MJ, Meyer RA, Belzberg AJ (2000) Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers. Pain 85:493-502. Lin CT, Wang HY, Tsai YJ, Huang CT, Chen SH, Lue JH (2009) Pre-treatment with lidocaine suppresses ectopic discharges and attenuates neuropeptide Y and c-Fos expressions in the rat cuneate nucleus following median nerve transection. J Chem Neuroanat 38:47-56. Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M (2000) Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85:503-521. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222-15227. Macefield VG (1998) Spontaneous and evoked ectopic discharges recorded from single human axons. Muscle a d Nerve 21:461-468. Majcher K, Tomanek B, Tuor UI, Jasinski A, Foniok T, Rushforth D, Hess G (2007) Functional magnetic resonance imaging within the rat spinal cord following peripheral nerve injury. Neuroimage 38:669-676. Malan TP, Ossipov MH, Gardell LR, Ibrahim M, Bian D, Lai J, Porreca F (2000) Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 86:185-194. Malcangio M, Ramer MS, Jones MG, McMahon SB (2000) Abnormal substance P release from the spinal cord following injury to primary sensory neurons. Eur J Neurosci 12:397-399. Matsumoto M, Xie W, Ma L, Ueda H (2008) Pharmacological switch in Abeta-fiber stimulation-induced spinal transmission in mice with partial sciatic nerve injury. Mol Pain 4:25. Melzack R, Eisenberg H (1968) Skin sensory afterglows. Science 159:445-447. Nicolelis MA, Lin RC, Woodward DJ, Chapin JK (1993) Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361:533-536. Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LM (1997) Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18:529-537. Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci U S A 100:11041-11046. Noguchi K, Kawai Y, Fukuoka T, Senba E, Miki K (1995) Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons. J Neurosci 15:7633-7643. Nordin M, Nystrom B, Wallin U, Hagbarth K-E (1984) Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain 20:231-245. Nystrom B, Hagbarth KE (1981) Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett 27:211-216. Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang CY, Salter MW, Dostrovsky JO, Tsuboi Y, Kondo M, Kitagawa J, Kobayashi A, Noma N, Imamura Y, Iwata K (2009) Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 29:11161-11171. Perret DM, Kim DS, Li KW, Sinavsky K, Newcomb RL, Miller JM, Luo ZD (2011) Application of pulsed radiofrequency currents to rat dorsal root ganglia modulates nerve injury-induced tactile allodynia. Anesth Analg 113:610-616. Petrovic P, Ingvar M, Stone-Elander S, Petersson KM, Hansson P (1999) A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 83:459-470. Peyron R, Schneider F, Faillenot I, Convers P, Barral FG, Garcia-Larrea L, Laurent B (2004) An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63:1838-1846. Pitcher GM, Henry JL (2004) Nociceptive response to innocuous mechanical stimulation is mediated via myelinated afferents and NK-1 receptor activation in a rat model of neuropathic pain. Exp Neurol 186:173-197. Porada I, Bondar I, Spatz WB, Kruger J (2000) Rabbit and monkey visual cortex: more than a year of recording with up to 64 microelectrodes. J Neurosci Methods 95:13-28. Price DD, Hayes RL, Ruda M, Dubner R (1978a) Neural representation of cutaneous aftersensations by spinothalamic tract neurons. Fed Proc 37:2237-2239. Price DD, Hayes RL, Ruda M, Dubner R (1978b) Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J Neurophysiol 41:933-947. Radhakrishnan V, Tsoukatos J, Davis KD, Tasker RR, Lozano AM, Dostrovsky JO (1999) A comparison of the burst activity of lateral thalamic neurons in chronic pain and non-pain patients. Pain 80:567-575. Rausell E, Cusick CG, Taub E, Jones EG (1992) Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type A receptors at thalamic levels. Proc Natl Acad Sci U S A 89:2571-2575. Saito K, Hitomi S, Suzuki I, Masuda Y, Kitagawa J, Tsuboi Y, Kondo M, Sessle BJ, Iwata K (2008) Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats. J Neurophysiol 99:2251-2263. Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707-758. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361-1368. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205-218. Seltzer Z, Beilin BZ, Ginzburg R, Paran Y, Shimko T (1991) The role of injury discharge in the induction of neuropathic pain behavior in rats. Pain 46:327-336. Seminowicz DA, Laferriere AL, Millecamps M, Yu JS, Coderre TJ, Bushnell MC (2009) MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47:1007-1014. Shinozaki T, Sakamoto E, Shiiba S, Ichikawa F, Arakawa Y, Makihara Y, Abe S, Ogawa A, Tsuboi E, Imamura Y (2006) Cervical plexus block helps in diagnosis of orofacial pain originating from cervical structures. Tohoku J Exp Med 210:41-47. Su X, Liang AH, Urban MO (2009) The effect of amitriptyline on ectopic discharge of primary afferent fibers in the L5 dorsal root in a rat model of neuropathic pain. Anesth Analg 108:1671-1679. Sun Q, Tu H, Xing GG, Han JS, Wan Y (2005) Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol 191:128-136. Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP (2005) Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans Neural Syst Rehabil Eng 13:524-541. Swadlow HA (1985) Physiological properties of individual cerebral axons studied in vivo for as long as one year. J Neurophysiol 54:1346-1362. Szymusiak R, Alam N, Steininger TL, McGinty D (1998) Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803:178-188. Tabo E, Jinks SL, Eisele JH, Jr., Carstens E (1999) Behavioral manifestations of neuropathic pain and mechanical allodynia, and changes in spinal dorsal horn neurons, following L4-L6 dorsal root constriction in rats. Pain 80:503-520. Takeda M, Tsuboi Y, Kitagawa J, Nakagawa K, Iwata K, Matsumoto S (2011) Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol Pain 7. Tal M, Devor M (1992) Ectopic discharge in injured nerves: comparison of trigeminal and somatic afferents. Brain Res 579:148-151. Tal M, Bennett GJ (1994) Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57:375-382. Tal M, Eliav E (1996) Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 64:511-518. Tal M, Wall PD, Devor M (1999) Myelinated afferent fiber types that become spontaneously active and mechanosensitive following nerve transection in the rat. Brain Res 824:218-223. Thompson LT, Best PJ (1990) Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res 509:299-308. Tinazzi M, Zanette G, Polo A, Volpato D, Manganotti P, Bonato C, Testoni R, Fiaschi A (1997) Transient deafferentation in humans induces rapid modulation of primary sensory cortex not associated with subcortical changes: a somatosensory evoked potential study. Neurosci Lett 223:21-24. Tolias AS, Ecker AS, Siapas AG, Hoenselaar A, Keliris GA, Logothetis NK (2007) Recording chronically from the same neurons in awake, behaving primates. J Neurophysiol 98:3780-3790. Torebjork HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol 448:765-780. Tsai ML, Yen CT (2003) A simple method for fabricating horizontal and vertical microwire arrays. J Neurosci Methods 131:107-110. Tseng WT, Yen CT, Tsai ML (2011) A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J Neurosci Methods 201:368-376. Tsuboi Y, Takeda M, Tanimoto T, Ikeda M, Matsumoto S, Kitagawa J, Teramoto K, Simizu K, Yamazaki Y, Shima A, Ren K, Iwata K (2004) Alteration of the second branch of the trigeminal nerve activity following inferior alveolar nerve transection in rats. Pain 111:323-334. Varga C, Sik A, Lavallee P, Deschenes M (2002) Dendroarchitecture of relay cells in thalamic barreloids: a substrate for cross-whisker modulation. J Neurosci 22:6186-6194. Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR (2004) Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans Biomed Eng 51:896-904. Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat's infraorbital nerve. J Neurosci 14:2708-2723. Vos BP, Benoist JM, Gautron M, Guilbaud G (2000) Changes in neuronal activities in the two ventral posterior medial thalamic nuclei in an experimental model of trigeminal pain in the rat by constriction of one infraorbital nerve. Somatosens Mot Res 17:109-122. Wall PD, Waxman S, Basbaum AI (1974) Ongoing activity in peripheral nerve: Injury discharge. Exp Neurol 45:576-589. Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7:103-111. Wang CM, Yang L, Lu D, Lu YF, Chen XF, Yu YQ, Li Z, Zhang FK, Li H, Chen J (2011) Simultaneous multisite recordings of neural ensemble responses in the motor cortex of behaving rats to peripheral noxious heat and chemical stimuli. Behav Brain Res 223:192-202. Weissner W, Winterson BJ, Stuart-Tilley A, Devor M, Bove GM (2006) Time course of substance P expression in dorsal root ganglia following complete spinal nerve transection. J Comp Neurol 497:78-87. Williams JC, Rennaker RL, Kipke DR (1999) Stability of chronic multichannel neural recordings: implications for a long-term neural interface. Neurocomputing 26-7:1069-1076. Wilson FA, Ma YY, Greenberg PA, Ryou JW, Kim BH (2003) A microelectrode drive for long term recording of neurons in freely moving and chaired monkeys. J Neurosci Methods 127:49-61. Wu G, Ringkamp M, Hartke TV, Murinson BB, Campbell JN, Griffin JW, Meyer RA (2001) Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci 21:RC140. Yamamoto J, Wilson MA (2008) Large-scale chronically implantable precision motorized microdrive array for freely behaving animals. J Neurophysiol 100:2430-2440. Yang S, Cho J, Lee S, Park K, Kim J, Huh Y, Yoon ES, Shin HS (2010) Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice. J Neurosci Methods. Yates JM, Smith KG, Robinson PP (2000) Ectopic neural activity from myelinated afferent fibres in the lingual nerve of the ferret following three types of injury. Brain Res 874:37-47. Zhou XF, Chie ET, Deng YS, Zhong JH, Xue Q, Rush RA, Xian CJ (1999) Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 92:841-853. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66441 | - |
| dc.description.abstract | 神經性疼痛屬於慢性疼痛,許多人都深受其擾,加上神經性疼痛的致病機制仍不清楚,難以對症下藥而成為臨床上的重要議題。神經性疼痛的病徵包括自發性疼痛(spontaneous pain)、異覺痛(allodynia)與痛覺敏感(hyperalgesia)。下牙槽神經為下顎骨神經(三叉神經的第三分支)的分支。切斷下牙槽神經會造成該神經調控範圍外的大鼠鬍鬚區域(由三叉神經第二分支所調控, 簡稱V2)對輕觸覺刺激敏感(亦稱為跨範圍異覺痛, extraterritorial allodynia),並持續一個月之久。該動物模式因類似神經性疼痛病患的病徵而成為三叉神經性疼痛的動物模式之一。研究發現,下牙槽神經切斷後,大鼠三叉神經的V2神經纖維與神經節(trigeminal ganglion)過度敏感,其傳入的三叉神經脊髓幹核之尾核(trigeminal subnucleus caudalis)中未受傷的V2神經元亦有過敏感化的現象。但直至目前為止,造成這些區域過敏感化的原因仍不清楚。根據文獻,一個可能的來源為受傷的下牙槽三叉神經節所產生的異位性放電(ectopic discharges),另一個則可能來自視丘的過度興奮。因此,本研究將重心放在三叉神經節與視丘中接受臉部感覺訊息的腹後內側核區(ventroposterior medial nucleus, VPM),並利用新研發之電極來長期記錄這兩個深腦核區的神經元活性,以比較在下牙槽神經切斷後,周邊神經與中樞神經的神經元活性變化。直至目前為止,這是第一篇觀察清醒動物的神經元活性於神經受損後變化的研究。
論文中的第一部分為電極研發。其中描述了類束狀微陣列電極的製程與埋設手術,以及功能性測試的結果。該電極重要的特色包括: (1) 以鎢微絲作為電線材料,突出導管尖端的鎢微絲用鑷子撥散呈扇形,就像微陣列電極的排列一樣,降低目標核區的傷害程度。鎢微絲的突出長度保持在1.5 mm,以維持硬度,有效突破大腦的硬腦膜與包覆三叉神經節的硬膜。(2) 使用不銹鋼針管,能輔助穿刺並利於接地,降低雜訊。(3) 參照金屬微絲位於記錄微絲附近,能有效去除局部雜訊。(4) 轉接頭垂直於導管,降低電極整體高度,以利特殊的動物行為測試,如老鼠鬍鬚區域的觸覺刺激。進行該項行為測試時,老鼠須鑽入前方有小洞的方盒中,並於洞口露出口鼻處以進行刺激。因此,必須將電極高度降低,才能讓老鼠順利進入小方盒中。透過連續的神經元活性紀錄,我們發現,類束狀微陣列多通道電極能長期並穩定記錄清醒動物的三叉神經節與視丘VPM的單一神經元活性長達80天。 論文中的第二部分描述三叉神經節與視丘VPM於下牙槽神經受損後的神經元活性長期變化時程,並將這些變化對應至大鼠鬍鬚區域痛覺行為(nocifensive behavior)的進程。利用一系列不同粗細的細絲(von Frey filament)於大鼠鬍鬚區域進行機械性刺激,測試產生縮頭反應的閾值克數。與前人研究相同,我們發現在下牙槽神經切斷後,大鼠的鬍鬚區域的閾值克數降低。與控制組比較後,此痛覺行為有三個階段的變化:早期發展階段、晚期維持階段與恢復階段。下牙槽神經受損後,我們發現 (1) 清醒時的自發性神經元活性上升由受傷的下牙槽神經先開始(第二個小時至第三十天),而後是未受傷的V2三叉神經元(第六個小時至第三十天),最後是視丘VPM V2神經元(第七至第三十天); (2)三叉神經節神經元不論是否來自受損的神經輸入,都有特殊的放電模式,如猛爆型放電(burst firing)、規則型放電(regular firing); (3) 在維持階段時,視丘VPM V2神經元的接受皮膚感覺區(receptive field)有擴大的現象,而且其感覺模式(modality)亦發生轉換 (modality shift)。這些VPM V2神經元原本只對輕觸覺刺激有反應,在神經受損後開始對疼痛刺激有反應; (4) 視丘VPM V2神經元在接受輕觸覺與痛覺刺激後,仍會繼續放電 (誘發後放電,evoked after-discharge); (5)在維持階段時,麻醉會引起三叉神經節 V2神經元的自發性神經元活性上升(與清醒時相比)。上述這些變化在晚期階段皆能發現到,並在最後恢復時期(第四十天至六十天)消失。從這些觀察,我們推測受傷的下牙槽神經所產生的異位性放電 (特別是猛爆型與規則型)可能會造成未受傷的三叉神經節V2 神經元敏感化,亦產生異位性放電與觸覺刺激誘發後放電,進而造成視丘V2的神經元活性過度興奮。視丘V2的神經元的感覺模式轉換與刺激誘發後放電等現象,顯示這些表型改變(phenotype switch)的神經元可能會於皮膚輕觸覺刺激後,因本身過度興奮而挾帶痛覺訊息傳至大腦皮質,引發觸覺疼痛。另外,晚期維持階段時,麻醉引起的三叉神經節V2神經元的自發性神經元活性上升,暗示當病理進程已發展完全後,很難透過麻醉止痛等藥物施予來緩解病徵。 綜合上述結果,我們推論在下牙槽神經受損後,跨範圍異覺痛的早期發展須藉由周邊神經敏感化促成,而在進入晚期時,則是中樞(視丘)與周邊神經敏感化共同作用而維持的。 | zh_TW |
| dc.description.abstract | Neuropathic pain is an important clinical issue, in that long lasting chronic pain arises spontaneously (spontaneous pain), after light touch (allodynia) or enhanced after noxious stimulation (hyperalgesia). It affects a large population of patients and is very difficult to treat. Inferior alveolar nerve (IAN) is a branch of the mandibular trigeminal nerve. Transection of IAN (IANx) is an animal model of trigeminal neuropathic pain and produces extraterritorial allodynia in the maxillary whisker pad area (a part of the maxillary division, V2) for one month. Neuronal hyperactivities in the uninjured V2 division of trigeminal subnucleus caudalis and their afferents have been found in IANx rats, whereas much less in known about how these uninjured V2 primary and secondary neurons became excited after IANx. One possible contributor is barrages of ectopic discharges from injured trigeminal ganglion (TG), and the other is central sensitization in the thalamus. Thus, we focused on TG and ventroposterior medial nucleus (VPM) neurons, and analyzed neuronal excitability using a newly developed long-term deep brain single-unit recording method to compare peripheral and central neuronal activity change in freely moving IANx rats. This is the first study to monitor neuronal activity changes in freely moving rats after nerve injury.
The first part of this thesis is about electrode development. Fabrication and implantation of a bundled microarray electrode and results of functional test were described. The salient features of the design include: (1) short and separated tungsten microwires for stable chronic recording; (2) the use of a 30-guage stainless steel guide tube for facilitating penetration and aiming for deep targets as well as electrical grounding; (3) the inclusion of a reference of the same microwire material inside the bundle to enhance common mode rejection of far field noises; and (4) an adjustable connector. A 90 degree backward bending connector was used, so that implanted rats could perform the same hole-seeking behavior and their faces and whiskers could be stimulated in the behaving state. It was demonstrated that this multi-channel electrode caused minimal tissue damage at the recording site and was able to obtain good, stable single-unit recordings from the trigeminal ganglion and ventroposterior medial thalamus areas of freely moving rats for up to 80 days. In the second part of this thesis, time course of neuronal activity changes in TG and VPM was described and correlated to extraterritorial allodynia. Mechanical head withdrawal threshold showed three phases of allodynia by comparing to sham group: early development, late maintenance and recovery phases. After IANx, we found (1) sequential increase in of spontaneous activities from injured IAN ganglion neurons (2 hour-day 30) to uninjured V2 ganglion neurons (6 hour-day 30), and then to VPM V2 neurons (day 7-30); (2) bursty and regular firing patterns in IAN and V2 branches of TG neurons; (3) expanded receptive field and modality shift in VPM V2 neurons; (4) tactile- and pinch-evoked after-discharges in VPM V2 neurons; (5) anesthesia enhanced spontaneous activity in TG V2 neurons. All these changes can be found in the late phase and disappeared during recovery phase (day 40-60). From these observations, we suggested that ectopic barrages in injured IAN, fired as bursty or regular spiking patterns, may contribute to the developing sensitization of uninjured ganglion neurons and resulted in thalamic sensitization in V2 division after IANx. Modality shift and tactile- or pinch-evoked after-discharges in VPM V2 tactile neurons indicates that nociceptive information may be transmitted to the cortex via these phenotype switched VPM V2 neurons, even by light touch. Anesthesia enhanced spontaneous activity in TG V2 during late phase implied that it is difficult to relieve excitability via anesthetic or analgesic drug while the pathological process has been developed fully. We concluded that after IANx, peripheral sensitization in injured and uninjured peripheral nerves may be involved in the development of extraterritorial allodynia. During late phase of allodynia, central sensitization and peripheral sensitization may work together to maintain pathological process and are responsible for long-lasting nocifensive behavior. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:35:59Z (GMT). No. of bitstreams: 1 ntu-101-D95b41003-1.pdf: 5162346 bytes, checksum: e5c72a845bd1200ac218451bb5fcc49d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要: iii Abstract vi List of Figures and Tables xi Chapter 1. Introduction 1 1.1 Ascending touch and pain pathway of trigeminal system 1 1.2 Peripheral neuropathic pain: clinical background and proposed animal model 2 1.3 Primary afferents sensitization or central synaptic facilitation? Controversy of neuropathic pain initiation 4 1.4 Is thalamic sensitization involved in extraterritorial allodynia? 7 1.5 The need for chronic recording 8 1.6 Goals of this study 10 Chapter 2. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats 11 2.1 Introduction 11 2.2 Materials and methods 13 2.2.1 Electrode construction 13 2.2.2 Functional evaluation of the electrode 16 2.2.2.1. Behavioral test 17 2.2.2.2. Implant surgery 18 2.2.2.3. Recordings 19 2.2.2.4. Data analysis 21 2.2.2.5. Histology 22 2.3 Results 23 2.4 Discussion 26 Figures 31 Chapter 3. Differential role of primary afferents and thalamus in the pathological development of extraterritorial allodynia after inferior alveolar nerve transaction in conscious rats: a longitudinal study 43 3.1 Introduction 43 3.2 Materials and Methods 49 3.2.1 Implant surgery 49 3.2.2 Behavioral test 50 3.2.3 Inferior alveolar nerve transection 52 3.2.4 Electrophysiological recording 52 3.2.5 Histology 55 3.2.6 Data analysis 55 3.3 Results 57 3.3.1 Injury discharges after transection 59 3.3.2 Time course of enhanced spontaneous activity in the awake condition 60 3.3.3 Firing pattern of TG and VPM units in the awake condition 61 3.3.4 Stronger activity of TG V2 units under anesthesia than wakefulness in the late phase of allodynia 65 3.3.5 Increased tactile-evoked responses and enlarged receptive field after IANx 66 3.3.6 Sensory modality shift occurred in the thalamus 67 3.4 Discussion 68 3.4.1 Injured peripheral afferents trigger pathological process of allodynia 69 3.4.2 Thalamic sensitization in the late stage of allodynia 71 3.4.3 Modality shift of VPM V2 neurons as a cause of allodynia 73 Chapter 4. General discussion and conclusion 102 Figure 108 References 110 | |
| dc.language.iso | en | |
| dc.subject | 類束狀微陣列電極 | zh_TW |
| dc.subject | 視丘 | zh_TW |
| dc.subject | 三叉神經節 | zh_TW |
| dc.subject | 單一神經細胞活性紀錄 | zh_TW |
| dc.subject | 長期記錄 | zh_TW |
| dc.subject | 三叉神經性疼痛 | zh_TW |
| dc.subject | 異覺痛 | zh_TW |
| dc.subject | bundle-like microarray electrode | en |
| dc.subject | allodynia | en |
| dc.subject | chronic recording | en |
| dc.subject | single-unit recording | en |
| dc.subject | trigeminal ganglion | en |
| dc.subject | trigeminal neuropathic pain | en |
| dc.title | 大鼠三叉神經節及視丘神經元活性於下牙槽神經性疼痛發展與持續時期之變化 | zh_TW |
| dc.title | Changes in trigeminal ganglionic and thalamic neuronal activity in the development and maintenance of neuropathic pain following inferior alveolar nerve transection in rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 邱麗珠,閔明源,徐百川,陳志成,鄭仁坤 | |
| dc.subject.keyword | 三叉神經性疼痛,異覺痛,長期記錄,單一神經細胞活性紀錄,三叉神經節,視丘,類束狀微陣列電極, | zh_TW |
| dc.subject.keyword | trigeminal neuropathic pain,allodynia,chronic recording,single-unit recording,trigeminal ganglion,bundle-like microarray electrode, | en |
| dc.relation.page | 124 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-03 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
