Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66439
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭智馨(Chih-Hsin Cheng)
dc.contributor.authorYing-Ru Linen
dc.contributor.author林映儒zh_TW
dc.date.accessioned2021-06-17T00:35:53Z-
dc.date.available2012-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-03
dc.identifier.citation王明光(2000)土壤環境礦物學。軒藝圖書出版社。818頁。
王德男(1991)台灣蓮霧栽培之過去與前瞻。台灣果樹之生產及研究發展研討會專刊 339-355。
林俊成、鄭美如、劉淑芬、李國忠(2002)台灣林業科學 17:311-321。
行政院農業委員會(2001)平地造林及綠美化方案。
何坤益、程俊堯、蔡維哲、張哲瑋、王成泰(2010)台灣西南沿海地層下陷地區林木受害調查與適應性評估。台灣林學季刊 43:383-394。
李宣德、馮豐隆(2008)森林碳吸存資源調查推估模式系統-以台灣樟樹為例。台灣林業科學 23:S11-22。
林國銓、杜清澤、馬復京、王相華(2003)福山闊葉林木質殘體累積量及其養分含量。台灣林業科學 18:235-244。
林國銓、杜清澤、黃菊美(2007)苗栗地區相思樹和木油桐人工林碳和氮累積量及生產量之估算。中華林學季刊 40:201-218。
林國銓、洪富文、游漢明、馬復京(1994)福山試驗林闊葉林生態系生物量與葉面積指數的累積與分布。林業試驗所研究報告季刊 9:299-315。
林國銓、張乃航、王巧萍、劉瓊霦(2002)福山闊葉林四種樹種綠葉的分解及氮動態變化。台灣林業科學 17:75-85。
林國慶(2003)平地造林政策之分析。農業經濟叢刊 8:111-140。
林國慶、劉婉郁(2007)平地景觀造林政策之執行成果與實證分析。法制論叢 40:175-211。
洪富文、夏禹九、唐凱軍(1986)蓮華池次生暖溫帶山地雨林地上部生物量及葉面積之估算。林業試驗所試驗報告第465號。
邱禮弘(2005)葡萄之合理化施肥技術。行政院農業委員會台中區農業改良區 167-176。
曾聰堯、王亞男、林國銓、杜清澤、王明光、江博能、葉旭容(2009)亞高山地區草原與森林土壤腐植質之比較 42:219-226。
楊榮啟、林文亮(2003)森林測計學。國立編譯館。307頁。
劉宣誠、林銘輝、曲俊麒(1981)大葉桃花心木造林木之生長及木材性質之研究。林試所試驗報告第351號。38頁。
劉黔蘭、莊作權(1986)台灣紅壤之理化與粘土礦物特性。中國農業化學會誌 24:430-442。
顏昌瑞、黃碧海、林宗賢(1991)台灣無患子科果樹荔枝龍眼韶子等之發展趨勢。台灣果樹之生產及研究發展研討會專刊 333-337。
羅紹麟、馮豐隆(1987)生物量調查及分析方法在樟樹資源調查之應用。興大實驗林研究報告 8:67-87。
Alberti, G., Peressotti, A., Piussi, P., Zerbi, G., 2008. Forest ecosystem carbon accumulation during a secondary succession in the Eastern Prealps of Italy. Institute of Chartered Forestry 81, 1-11.
Alriksson, A., Olsson, M. T., 1995. Soil changes in different age classes of Norway spruce (Picea abies (L.) Karst.) on afforested farmland. Plant snd Soil 168-169, 103-110.
Amelung, E., Zech, W., Zhang, X., Follett, R.F., Tiessen, H., Knox, E., Flach, K.W., 1998 .Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climates. Soil Science Society of America Journal 62, 172-181.
Amelung, W., Zech, W., 1999. Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma 92, 73-85.
Attiwill, P.M., Adams, M.A., 1993. Nutrient cycling in forest. New Phytol 124, 561-582.
Bala, G., Caldeira, K., Mirin, A., Wickett, M., 2005. Multicentury Changes to the Global Climate and Carbon cycle: Results from a Coupled Climate. American Meteorological Society 18, 4531-4533.
Balesdent, J., Besnard, E., Arrouay, D., Chenu, C., 1998. The dynamics of carbon in partical-size fractions of soil in a forest-cultivation sequence. Plant and soil 201, 49-57.
Balesgent, J., Chenu, C., Balabane, M., 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage 53, 215-230.
Bashkin, M.A., Binkley, D., 1998. Changes in soil carbon following Eucalyptus afforestation in Hawaii. Ecology 79, 828-833.
Batjes, N.H., 1996. Total carbon and nitrogenin the soils of the world. European Journal of Soil Science 47, 151-163.
Berthrong, S.T., Jobbagy, E.G., Jackson, R.B., 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications 19, 2228-2241.
Bronson, K.F., Cassman, K.G., Wassmann, R., Olk, D.C., Noordwijk, M., Garrity, D.P., 1997. Carbon Sequestration and Organic Resources Management in African Smallholder Agriculture, in Lal, R., Kimble, J.M., Follett, R. F., Stewart, B. A. (eds,), Management of Carbon Sequestration in Soil. Boca, Raton, USA.
Brown, S., Gillespie, A.J.R., Lugo, A.E., 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35, 881-902.
Cairns, M.A., Brown, S., Helmer, E.H., Baumgardner, G.A., 1997. Root biomass allocation in the world’s upland forest. Oeclogia 111, 11.
Caspersen, J.P., Pacala, S.W., Jenkins, J.C., Hurtt, G.C., Moorcroft, P.R., Birdsey, R.A., 2000. Contributions of land-use history to carbon accumulation in U.S. forests. Science 290, 1148-1151.
Christensen B.T., 1985. Carbon and Nitrogen in particle size fractions isolated from Danish Arable soil by ultrasonic dispersion and gravity-sedimentation. Acta Agriculture Scandinarica 35, 175-187.
Christensen, B.T., 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science 52, 345-353.
Dabas, M., Bhatia, S., 1996. Carbon sequestration through afforestation: Role of tropical industrial plantations. Royal Swedish Academy of Sciences 25, 327-330.
D’Annunzio, R., Conche, S., Landais, D., Saint-Andre, L., Foffre, R., Barthes, B.G., 2008. Pairwise comparison of soil organic particle- size distributions in native savannas and Eucalyptus plantations in Congo. Forest Ecology and Management 255, 1050-1056.
Derwisch, S., Schwendenmann, L., Olschewski, R., Holscher, D., 2009. Estimation and economic evaluation of aboveground carbon storage of Tectona grandis plantations in Western Panama 37, 227-240.
Denef, K., Six, J., Merckx, R., Paustian, K., 2004. Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy. Soil Science Society of America Journal 68, 1935-1944.
Dick, W.A., 1983. Organic carbon, nitrogen and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Science Society of America Journal 47, 102-107.
Dominy, C.S., Haynes, R.J., 2002. Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two Oxisols. Biology and Fertility of soils 36, 298-305.
Ellert, B.H., Gregorich, E.G., 1996. Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario. Soil Science 161, 587-603.
Fahey, T.J., Woodbury, P.B., Battles, J.J., Goodale, C.L., Hamburg, S.P., Ollinger, S.V., Woodall, C.W., 2010. Forest carbon storage: ecology, management, policy 8, 245-252.
Falkengren-Grerup, U., Ten Brink, D., Brunet, J. 2006. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. Forest Ecology and Management 225, 74–81.
Feller, C., Beare, M. H., 1997. Physical control of soil organic matter dynamics in the tropics. Geoderma 79, 69-116.
Gijsman, A.J., 1996. Soil aggregate stability and soil organic matter fractions under agropastoral systems established in native savanna. Australian Journal of Soil Research 34, 891-907.
Grerup U.F., Brink, D.J., Brunet, J., 2006. Land use effects on soil N, P, C and pH persist over 40-80 years of forest growth on agricultural soils. Forest Ecology and Management 225, 74-81.
Guggenberger, G., Zech, W., 1999. Soil organic matter composition under primary forest, pasture, and secondary forest succession, Region Hurtar Norte, Costa Rica. Forest Ecology and Management 124, 93-104.
Guo, L.B., Gifford, R.M., 2002. Soils carbon stocks and land use change: a meta analysis. Global Change Biology 8, 345-360.
Hassink, J., 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and soil 191, 77-87.
Houghton, R.A., 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology 11, 945-958.
Hu, Y.L., Zeng, D.H., Fan, Z.P., Chen, G.S., Zhao, Q., Pepper, D., 2008. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China. Journal of Arid Environments 72, 2193-2200.
IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. the Institute for Global Environmental Strategies.
IPCC, 2006. IPCC guidelines for national greenhouse gas inventories. IPCC/IGES. Hayama. Japan. http://www.ipcc-nggip.iges.or.jp/
IPCC, 2007. Climate Change 2007: The Physical Science Basis, Summary for Policy Makers. http://www.ipcc.ch/SPM2feb07.pdf.
Jackson, M.L., 1969. Soil chemical analysis-advanced course Published by the author. University of Wisconsin Soil Science Dep., Madison, Wisconsin.
Jacobs, D.F., Selig, M.F., Severeid, L.R., 2009. Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight. Forest Ecology and Management 258, 288-294.
Jeník, J., 1994. Clonal Growth in woody plants: A review. Folia Geobotanica 29, 291-306.
Jolivet, C., Arrouays, D., Leveque, J., Andreux, F., Chenu, C., 2003. Organic carbon dynamics in soil particle-size separates of sandy Spodosols when forest is cleared for maize cropping. European Journal of Soil Science 54, 257-268.
Kelty, M.J., 2006. The role of species mixtures in plantation forestry. Forest Ecology and Management 223, 195-204.
Kraenzel M., Castillo A., Moore T., Potvin, C., 2003. Carbon storage of harvest-age teak(Tectona grandis) plantation, Panama. Forest Ecology and Management 173, 213-225.
Laganiere, J., Angers, D.A., Pare, D., 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology 16, 439-453.
Liao, c., Luo, Y., Fang, C., Li, B., 2010. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climates change mitigation. PLoS One 5, e10867.
Lisboa, C.C., Conant, R.T., Haddix, M.L., Cerri, C.E.P., Cerri, C.C., 2009. Soil carbon turnover measurement by physical fraction at a forest-to-pasture chronosequence in the Brazilian Amazon. Ecosystems 12, 1212-1221.
Lorenz, K., Lal, R., Shipitalo, M.J., 2008. Chemical stabilization of organic carbon pools in particle size fractions in no-till and meadow soils. Biology and Fertility of soils 44, 1043-1051.
Lugo, A.E., Brown, S., 1993. Management of tropical soils as sinks or sources of atmospheric carbon. Plant and Soil 149, 27-41.
Lutzow, M.V., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions- a review. European Journal of Soil Science 57, 426-445.
MacDicken, K.G., 1997. A guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International. Arlington, Virginia, USA.
Melillo, J.M., Aber, J.D., Linkins, A.E., Ricca, A., Fry, B., Nadelhoffer, K.J., 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil 115, 189-198.
Montagnini F., Nair, P.K.R., 2004. Carbon sequestration: An underexploited environmental benefit of agroforestry system. Agroforestry Systems 61, 281-295.
Morris, S.J., Bohm, S., Haile-Mariam, S., Paul, E.A., 2007. Evaluation of carbon accrual in afforested agricultural soils. Global Change Biology 13, 1145-1156.
Murty, D., Kirschbaum, M.F., Mcmurtrie, R.E., Mcgilvray. H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8, 105-123.
Neufeldt, H., Resck, D.V.S., Ayarza, M.A., 2002. Texture and land-use effects on soil organic matter in Cerrado Oxisols, Central Brazil. Geoderma 107, 151-164.
Neufeldt, H., Silva, T.E., Ayarza, M.A., Zech,W., 2000. Land-use effects on phosphorus fractions in Cerrado oxisols. Biol Fertil Soils 31, 30-37.
Nhantumbo, A.B.J.C., Katterer, T., Ledin, S., Preez, C.C.D., 2009. Carbon loss from Brachystegia spiciformis leaf litter in the sandy soils of southern Mozambique. Nutr Cycl Agroecosyst 83, 13-26.
Oades, J.M., Waters, A.G., 1991. Aggregate Hirarchy in soils, Australian Journal of Soil Research 29, 815-28.
Oostra, S., Majdi, H., Olsson, M., 2006. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden. Scandinavian fournal of Forest Research 21, 364-371.
Paul, K.I., Polglase, P.J., Nyakuengama, J.G., Khanna, P.K., 2002. Change in soil carbon following afforestation. Forest Ecology and Management 168, 241–257.
Pibumrung, P., Gajaseni, N., Popan, A., 2008. Profiles of carbon stocks in forest, reforestation and agricultural land, Northern Thailand. Journal of Forestry Research 19, 11-18.
Post, W.M., Kwon, K.C., 2000. Soil carbon sequestration and land-use change: process and potential. Global Change Biology 6, 317-328.
Raich, J.W., Russell, A.E., Kitayama, K., Parton, W.J., Vitousek, P.M., 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87, 76-87.
Rasmussen, C., Southard, R.J., Horwath, W.R., 2006. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Global Change Biology 12, 834-847.
Ravindranath, N.H., Chaturvedi, R.K., Murthy, I.K., 2008. Forest conservation, afforestation and reforestation in India: Implications for forest carbon stocks. Current Science 95, 216-222.
Ravindranath, N.H., Nayak, M.M., Hiriyur, R.S., Dinesh, C.R., 1991. The status and use of tree biomass in a semi-arid village ecosystem. Biomass and Bioenergy 1, 9-16.
Reich, R.B., Oleksyn, J., Modrzynski, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O.A., Hale, C.M., Tjoelker, M.G., 2005. Linking litter calcium, earthworms and soils properties: a common garden test with 14 tree species. Ecology Litter 8, 811-818.
Rhemtulla, J.M., Mladenoff, D.J., Clayton, M.K., 2009. Historical forest baselines reveal potential for continued carbon sequestration. National Academy of Sciences 106, 6082-6087.
Richter, D.D., Markewitz, D., Trumbore, S.E.,Wells, C.G., 1999. Rapid accumulation and turnover of soil carbon in a reestablishing forest. Nature 400, 56-58.
Ribeiro, C., Madeira, M., Araujo, M.C., 2002. Decomposition and nutrient release from leaf litter of Eucalyptus globules grown under different water and nutrient regimes. Forest Ecology and Management 171, 31-41.
Ritter, E., Vesterdal, L., Gundersen, P., 2003. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant and Soil 249, 319-330.
Roscoe, R., Buurman, P., Velthorst, J.E., 2000. Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay Latosol: carbon, nitrogen and δ13 C distribution in particle-size fractions. European Journal of Soil Science 51, 445-454.
Roshetko, J.M., Delaney, M., Hairiah K., Purnomosidhi, P., 2002. Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? American Journal of Alternative Agriculture 17, 138-148.
Saikh, H., Varadachari, C., Ghosh, K., 1998. Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: A case study in Simlipal National Park, India. Plant and Soil 198, 137-145.
Schlesinger, W.H., 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348, 232-234.
Scott, N.A., Tate, K.R., Ford-Robertson, T., Giltrap, D.J., 1999. Soil carbon storage in plantation forests and pastures: land-use change implication. Tellus 51B, 326-335.
Shang, C., Tiessen, H., 1998. Organic matter stabilization in two semiarid tropical soils: size, density, and magnetic separations. Soil Science Society of America Journal 62, 1247-1257.
Silver, W.L., Ostertag, R., Lugo, A.E., 2000. The potential for carbon sequestration though reforestation of abandoned tropical agricultural and pasture lands, Society for Ecological Restoration 8, 394-407.
Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241,155-176.
Six, J., Elliott, E.T., Paustian, K., Doran, J.W., 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils, Soil Science Society of America Journal 62, 1367-1377.
Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal 64, 681-689.
Smal, H., Olszewska, M., 2008. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant Soil 305, 171-187.
Sollins, P., Homann, P., Caldwell, B.A., 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, 74, 65-105.
Solomon, D., Lehmann, J., Zech, W., 2000. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agriculture, Ecosystems and Environment 78, 203-213.
Sundarapandian, S.M., Swamy, P.S., 1999. Litter production and leaf-litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghat, India. Forest Ecology and Management 123, 231-244.
Tanner, C.B., Jackson, M.L., 1948. Nomographs of sedimentation times for soil particles under gravity or centrifugal acceleration. Soil Science Society of America Journal 12, 60-65.
Tateno, R., Tokuchi, N., Yamanaka, N., Du, S., Otsuki, K., Shimamura, T., Xue, Z., Wang, S., Hou, Q., 2007. Comparion of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. Forest Ecology and Management 241, 84-90.
Tiessen, H., Stewart, J.W.B., 1983. Particle-size Fractions and their Use in Studies of Soil Organic Matter: II. Cultivation Effects on Organic Matter Composition in Size Fraction. Soil Science 47, 509-514.
Torn, M.S., Trumborn, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M., 1997. Mineral control of soil organic carbon storage and turnover. Nature 389, 170-173.
Wall A., Hytonen, J., 2005. Soil fertility of afforested arable land compared to continuously forested sites. Plant and Soils 275, 247-260.
Wang, Q., Wang, S., Huang, Y., 2008 Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. Forest Ecology and management 255, 1210-1218.
Wattel-Koekkoek, E.J.W., Genuchten, P.P.L., Buurman, P., Lagen, B., Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 99, 27-49.
Woldendorp, G., Keenan, R.J., 2005. Coarse woody debris in Australian forest ecosystems: A review. Austral Ecology 30: 834-843.
Wright, A.L., Dou, F., Hons, F.M., 2007. Soil organic Cand N distribution for wheat cropping systems after 20 years of conservation tillage in central Texas. Agriculture, Ecosystems and Environment 121, 376-382.
Vesterdal, L., Ritter, E., Gundersen, P., 2002. Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management 169, 137-147.
Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T.M., Miltner, A., Schroth, G., 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79, 117-161.
Zhang, X., Amelung, W., Yuan, Y., Samson-Liebig, S., Brown, L., Zech, W., 1999. Land-use effects on amino sugars in particle size fractions of an Argiudoll. Applied Soil Ecology 11 ,271-275.
Zinn, Y.L., 2002. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. Forest Ecology and Management 166, 285-294.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66439-
dc.description.abstract隨著全球暖化問題的日益惡化,如何減緩溫室氣體效應的負面危害,成了現今最重要的環境議題。其中,對農地或是劣化土地的造林,是減緩溫室氣體效應危害有效且經濟可行的方法之一。台灣自2002年起開始推動「平地景觀造林及綠美化方案」,迄至2009年為止,造林面積已超過一萬公頃。不過,目前仍缺乏直接證據,用來評估這些新植造林地可能對碳蓄積潛能、蓄積碳量於生態系統的分布情形與土壤性質變化的長期影響。本研究利用現有長期果園廢耕地與造林地(造林時間14~33年,造林面積>0.5 ha)為例子,以現地造林的實際資料,作為推估平地造林長期的碳蓄積潛能與碳庫分布。研究結果顯示長期造林地的生態系統碳含量約介於123.3~205.7 ton C ha-1間,碳量分布以林木生物碳量與土壤有機碳量為主,約占生態系統碳量的90%以上。不過,造林地碳含量的差異,受到造林時間、造林樹種、經營管理與土壤性質的影響。若與鄰近持續耕作農地比較,除了鄰近水田造林地的碳蓄積量無顯著增加外,其餘造林地均有顯著性碳蓄積量的增加,增加碳量介於123.3~205.7 ton C ha-1之間。造林生態系統所增加的碳量,以林木生物碳量為主,約占了80%,另外死有機物質(木質殘體與枯枝落葉)與土壤有機碳量則各占了10%的碳增加量。相反地,水稻田土壤則由於浸水影響,使得農地土壤有機碳量則明顯高於造林地。造林後,增加的土壤有機碳主要在表層0-20 cm,更深層礦質土壤則沒有明顯差異。土壤有機碳粒徑分析進一步指出土壤有機碳以活性大有機物(砂粒粒徑)為主,但部分造林地也顯示,將隨造林時間增加活性大有機物仍可逐漸轉變至低活性粘粒粒徑有機碳,而增加土壤有機碳的穩定性。此外,造林後表層土壤pH值下降,陽離子交換容量與交換鹽基則上升,不過林地與農地在這些土壤性質的差異,受到周圍農地利用影響甚大,農地的施肥,可將影響造林效益的預測。對現有造林地可能的碳吸存量潛力與土壤性質,本論文結果將是至目前為止,最接近對平地造林長期影響潛能的推估。zh_TW
dc.description.abstractClimate change mitigation is an important global issue nowadays. Afforestation in the crop lands has been proposed to be an economical and effective method way to mitigate global warming. In Taiwan, the afforestation policy in the crop lands was began in the year of 2002 and more than 10,000 hectares have been successfully implemented by 2009. However, we still do not have enough information, especially no field data, to assess the carbon storage potential for the afforestation policy. In the present study, we used the in-situ long-term abandoned orchards and afforested lands (afforestation age 14~33 years and afforestation size > 0.5 ha) to estimate the carbon storage potential, the relative carbon pools distribution, and soil properteis. Our results showed that the ecosystem carbon storages in the long-term afforestation sites was between 123.3 to 205.7 ton C ha-1, of which carbon pools in living tree and soil organic matter comprised more than 90% of ecosystem carbon storage. The differences of the ecosystem carbon storages could be attributed to afforestation age, tree species, field management and soil properties. Compared to adjacent crop land, carbon storages at afforested sites were significantly higher by 123.3~205.7 ton C ha-1, except of the paddy field where soil organic carbon could be conserved by saturated water. Most carbon was sequestered in the pool of tree biomass (80%) while dead organic matter (woody debris and litter) and mineral soil organic accounted for remaining 10% apiece. The soil organic carbon (SOC) between afforested and cultivated soils was significantly different at the topsoil of 0-20 cm and no difference for the soil layers of 20-100 cm. Soil particle size fractionation further indicated that these differences were mainly in the labile (sand) fractionation, while some sites might prove that SOC may be further stabilized into recalcitrant (silt and clay) fractionations over time. Moreover, soil pH was decreased and cation exchange capacity and exchangeable bases were increased at afforested sites. These soil properties could be masked by the fertilization in the adjacent crop lands. Till now, our results are the only pratical estimation for predicting the long-term effects of afforestion in carbon sequestration potential, carbon pools distribution, and soil properties in the cropland of Western Taiwan.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:35:53Z (GMT). No. of bitstreams: 1
ntu-101-R97625059-1.pdf: 9924455 bytes, checksum: 1b9cac5361cc27e528c43b060cae1fe1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝辭……………………………………………………………………i
中文摘要………………………………………………………………ii
英文摘要………………………………………………………………iii
圖目錄…………………………………………………………………vii
表目錄…………………………………………………………………viii
第一章、平地造林之碳蓄積潛能:以長期果園廢耕地與造林為例子
1. 前言 …………………………………………………………………1
2. 材料與方 ……………………………………………………………2
2.1 樣區選擇地點………………………………………………………2
2.2 林木生物碳量………………………………………………………3
2.3 地被植物碳量………………………………………………………4
2.4 死有機質碳量………………………………………………………4
2.5 土壤有機碳…………………………………………………………5
2.6 資料分析……………………………………………………………6
3. 結果 …………………………………………………………………6
4. 討論 …………………………………………………………………7
4.1 生態系統林木生物碳量……………………………………………7
4.2 生態系統死有機物質碳量…………………………………………9
4.3 造林地及農耕地土壤有機碳量變化………………………………10
4.4 長期造林之碳量變化………………………………………………12
5. 結論 …………………………………………………………………13
第二章、長期果園廢耕與造林對土壤性質的影響
1. 前言 …………………………………………………………………22
2. 材料與方法 …………………………………………………………24
2.1 研究樣區……………………………………………………………24
2.2 土壤採樣……………………………………………………………24
2.3 土壤基本物理、化學分析…………………………………………24
2.4 SOM 粒徑分離(SOM Partical-Size Fractionation) ……………25
2.5 粘土礦物分析………………………………………………………26
2.6 資料分析……………………………………………………………27
3. 結果 …………………………………………………………………27
3.1 土壤基本質地………………………………………………………27
3.2 有機質土壤粒徑分離………………………………………………28
3.3 粘土礦物之組成及鑑定……………………………………………29
4. 討論 …………………………………………………………………30
4.1 土壤性質的差異……………………………………………………30
4.2 土壤粒徑分離與粘土礦物…………………………………………31
4.3 長期造林地土壤固碳機制…………………………………………33
5 結論……………………………………………………………………33
引用文獻…………………………………………………………………46
附錄………………………………………………………………………59
dc.language.isozh-TW
dc.subject平地造林zh_TW
dc.subject碳蓄積潛能zh_TW
dc.subject生態系統碳儲存量zh_TW
dc.subject林木碳量zh_TW
dc.subject土壤有機碳zh_TW
dc.subjectsoil organic carbonen
dc.subjectAfforestationen
dc.subjectcarbon sequestration potentialen
dc.subjectecosystem carbon storageen
dc.subjecttree biomass carbonen
dc.title長期果園廢耕地與造林地之生態系統碳儲存量與土壤性質zh_TW
dc.titleEcosystem Carbon Stocks and Soil Properties in the Long-term Abandoned Orchards and Afforested Landsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林國銓(Kuo-Chuan Lin),陳尊賢(Zueng-Sang Chen)
dc.subject.keyword平地造林,碳蓄積潛能,生態系統碳儲存量,林木碳量,土壤有機碳,zh_TW
dc.subject.keywordAfforestation,carbon sequestration potential,ecosystem carbon storage,tree biomass carbon,soil organic carbon,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-02-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
9.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved