請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66425
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王傑智(Chieh-Chih Wang) | |
dc.contributor.author | Shao-Chen Wang | en |
dc.contributor.author | 王紹丞 | zh_TW |
dc.date.accessioned | 2021-06-17T00:35:12Z | - |
dc.date.available | 2013-03-19 | |
dc.date.copyright | 2012-03-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-06 | |
dc.identifier.citation | [1] K. Arras. Feature-based multi-hypothesis localization and tracking using geometric constraints. Robotics and Autonomous Systems, 44(1):41–53, July 2003.
[2] A. Birk and S. Carpin. Merging occupancy grid maps from multiple robots. Proceedings of the IEEE: Special Issue on Multi-Robot Systems, 94(7):1384 –1397, July 2006. [3] S. Blackman. Multiple hypothesis tracking for multiple target tracking. IEEE Aerospace and Electronic Systems Magazine, 19(1):5–18, Jan. 2004. [4] C.-H. Chang, S.-C. Wang, and C.-C. Wang. Vision-based cooperative simultaneous localization and tracking. In IEEE International Conference on Robotics and Automation, pages 5191–5197, 2011. [5] I. J. Cox and G. T. Wilfong, editors. Autonomous robot vehicles. Springer-Verlag New York, Inc., 1990. [6] M. Dietl, J.-S. Gutmann, and B. Nebel. Cooperative sensing in dynamic environments. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1706–1713, 2001. [7] J. Fenwick, P. Newman, and J. Leonard. Cooperative concurrent mapping and localization. In IEEE International Conference on Robotics and Automation, pages 1810–1817, 2002. [8] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to collaborative multi-robot localization. Autonomous Robots, 8(3):325–344, 2000. [9] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments. Journal of Arti?cial Intelligence Research, 11:391–427, 1999. [10] D. Gohring and H.-D. Burkhard. Multi robot object tracking and self localization using visual percept relations. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 31–36, Oct. 2006. [11] A. Howard. Multi-robot simultaneous localization and mapping using particle filters. International Journal of Robotics Research, 25(12):1243–1256, 2006. [12] A. Howard, M. Matark, and G. Sukhatme. Localization for mobile robot teams using maximum likelihood estimation. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 434–439, 2002. [13] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382, June 1991. [14] S. Matzka and R. Altendorfer. A comparison of track-to-track fusion algorithms for automotive sensor fusion. In IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pages 189–194, 2008. [15] D. Reid. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 24(6):843–854, Dec. 1979. [16] T. Rofer, T. Laue, J. Muller, O. Bosche, A. Burchardt, E. Damrose, K. Gillmann, C. Graf, T. J. de Haas, A. H‥artl, A. Rieskamp, A. Schreck, I. Sieverdingbeck, and J.-H. Worch. B-human team report and code release 2009, 2009. Only available online: http://www.b-human.de/download.php?file=coderelease09_doc. [17] S. Roumeliotis and G. Bekey. Distributed multirobot localization. IEEE Transactions on Robotics and Automation, 18(5):781–795, Oct. 2002. [18] T. Schmitt, R. Hanek, S. Buck, M. Beetz, and T. S. R. Hanek. Cooperative probabilistic state estimation for vision-based autonomous mobile robots. IEEE Transactions on Robotics and Automation, 18(5):670–684, 2002. [19] C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue. Simultaneous localization, calibration, and tracking in an ad hoc sensor network. In The Fifth International Conference on Information Processing in Sensor Networks, pages 27–33, 2006. [20] S. Thrun and Y. Liu. Multi-robot slam with sparse extended information filers. Robotics Research, 15:254–266, 2005. [21] N. Tsokas and K. Kyriakopoulos. A multiple hypothesis people tracker for teams of mobile robots. In IEEE International Conference on Robotics and Automation, pages 446–451. IEEE, 2010. [22] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte. Simultaneous localization, mapping and moving object tracking. The International Journal of Robotics Research, 26(9):889–916, Sept. 2007. [23] X. Zhou and S. Roumeliotis. Multi-robot slam with unknown initial correspondence: The robot rendezvous case. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1785–1792, Oct. 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66425 | - |
dc.description.abstract | 在環境中定位對於自主移動式機器人來說是不可或缺的能力。過去的研究已顯示,協作型定位(Cooperative Localization)對於多機器人定位的應用非常有幫助。然而,當環境中的移動物體位於機器人周遭時,可能會影響協作型定位的效能。本論文提出協作型同時定位與追蹤(Cooperative Simultaneous Localization and Tracking)方法,展現定位與追蹤之間能夠互相幫助。在本研究的實驗中,當機器人處於定位資訊缺乏的環境中,利用追蹤所獲得的資訊,仍能有效地協助估計其位置。在資料連結(data association)錯誤的情況下,結合定位與追蹤反而可能造成彼此的錯誤估測。因此,透過結合協作型同時定位與追蹤以及多重假設追蹤(Multiple Hypothesis Tracking)兩方法,來保留正確的資料連結。此外,兩方法之結合甚至能夠在靜止物體對稱之環境中協助估測機器人位置。在此研究的實驗中採用機器人足球賽(RoboCup)之環境設定,使用之人形機器人僅具有低精確性之鏡頭及里程表(odometer)。實驗結果顯示,基於多重假設追蹤之多機器人同時定位與追蹤能提供穩健及精確的定位以及追蹤資訊。 | zh_TW |
dc.description.abstract | Localization is one of the most essential capabilities of autonomous robots. Cooperative localization has been proved to be effective in multi-robot localization. However, nearby moving objects could degrade the cooperative localization performance. In this thesis, we demonstrate that the cooperative simultaneous localization and tracking approach is superior in challenging scenarios. Localization and moving object tracking are mutually beneficial. We also illustrate the disadvantage of jointly estimating the states while the data associations are incorrect. The cooperative localization and tracking approach is integrated with the multiple hypothesis tracking (MHT) framework in order to maintain correct data associations. By integrating with the MHT framework, the proposed method is even able to correctly estimate the robots’ poses while the static features are symmetrically distributed. The proposed approach is evaluated using humanoid robots in the RoboCup environment in which only uncertain data from onboard cameras and odometry are usded. Ample experimental results with ground truthing from laser scanners demonstrate the accuracy and feasibility of the proposed MHT based multi-robot simultaneous localization and tracking algorithm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:35:12Z (GMT). No. of bitstreams: 1 ntu-101-R98944020-1.pdf: 687115 bytes, checksum: ae2834c70ff13bb37ef0e73ab740b47d (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 1 Introduction 1 2 Related Work 6 3 Front-End Image Processing 8 3.1 Localization and Tracking in the 2D Space 8 3.2 Map Feature and Ball Detection 9 3.3 Nao Robot Detection 10 4 Cooperative Localization and Tracking 12 4.1 Augmented State EKF 12 4.2 The Motion Model 13 4.3 The Measurement Model 14 5 Multiple Hypothesis Tracking 16 5.1 MHT Overview 16 5.2 Data Association Hypotheses 17 5.3 Hypotheses Score 19 5.4 Track Management 19 5.5 Hypotheses Pruning and Merging 20 6 Experimental Evaluation 22 6.1 Ground Truth System 22 6.2 The General Case 24 6.3 The Ball Gazing Case 29 6.4 The Ambiguous Scene Case 32 7 Conclusion and Future Work 35 Bibliography 36 | |
dc.language.iso | en | |
dc.title | 基於多重假設追蹤之多機器人同時定位與追蹤 | zh_TW |
dc.title | MHT-Based Multi-Robot Simultaneous Localization and Tracking | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 傅立成(Li-Chen Fu),黃漢邦(Han-Pang Huang) | |
dc.subject.keyword | 多機器人,多重假設追蹤,定位,追蹤,同時定位與追蹤, | zh_TW |
dc.subject.keyword | Multi-Robot,MHT,Multiple Hypothesis Tracking,Localization,Tracking,Simultaneous Localization and Tracking, | en |
dc.relation.page | 38 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 671.01 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。