Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66392
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李培芬(Pei-Fen Lee)
dc.contributor.authorHsiao-Yun Sunen
dc.contributor.author孫筱雲zh_TW
dc.date.accessioned2021-06-17T00:33:35Z-
dc.date.available2012-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-09
dc.identifier.citationAckleson, S. G. and Klemas, V., 1987. Remote sensing of submerged aquatic vegetation in Lower Chesapeake Bay: a comparison of Landsat MSS to TM imagery. Remote Sensing of Environment 22: 235-248.
Andrade, F. and Ferreira, M. A., 2011. A method for monitoring shallow seagrass meadows (Zostera spp.) using terrestrial oblique large-scale photography. Aquatic Botany 95(2): 103-109.
Bajjouk, T., Guillaumont, B. and Populus, J., 1996. Application of airborne imaging spectrometry system data to intertidal seaweed classification and mapping. Hydrobiologia 326/327(1): 463–471.
Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., et al., 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633-641.
Björk M., Short F., Mcleod, E. and Beer, S., 2008. Managing seagrasses for resilience to climate change. IUCN, Gland, Switzerland.
Bouvet, G., Ferraris, J. and Andrefouet, S., 2003. Evaluation of large-scale unsupervised classification of New Caledonia reef ecosystems using Landsat 7 ETM+ imagery. Oceanologica Acta 26(3): 281-290.
Bricker, S. B., Ferreira, J. G. and Simas, T., 2003. An integrated methodology for assessment of estuarine trophic status. Ecological Modelling 169: 39-60.
Chauvaud, S., Bouchon, C. and Maniere, R., 1998. Remote sensing techniques adapted to high resolution mapping of tropical coastal marine ecosystems (coral reefs, seagrass beds and mangroves). International Journal of Remote Sensing 19(18): 3625-3639.
Congalton, R. G., 2007. Thematic and positional accuracy assessment of digital remotely sensed data. In: McRoberts, R. E., Reams, G. A., Van Deusen, P. C. and McWilliams, W. H. (ed.), Proceedings of the seventh annual forest inventory and analysis symposium. U.S. Department of Agriculture, Forest Service, pp. 149-154.
Congalton, R. G., 2010. Remote sensing: an overview. GIScience and Remote Sensing, 47(4): 443-459.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M. et al., 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253-260.
Cuevas-Jimenez, A. and Ardisson, P. L., 2002. Mapping shallow coral reefs by colour aerial photography. International Journal of Remote Sensing 23(18): 3697-3712.
Dekker, A., Brando, V., Anstee, J., Fyfe, S., Malthus, T. and Karpouzli, E., 2006. Remote sensing of seagrass ecosystems: use of spaceborne and airborne sensors. In: Larkum, A. W. D., Orth, R. J. and Duarte, C. M. (ed.), Seagrasses: biology, ecology, and conservation. Springer, pp. 347-359.
Dierssen, H. M., Zimmerman, R. C., Leathers, R. A., Downes, T. V. and Davis, C. O., 2003. Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by highresolution airborne imagery. Limnology and Oceanography 48(1): 444-455.
Dogan, O. K., Akyurek, Z. and Beklioglu, M., 2009. Identification and mapping of submerged plants in a shallow lake using quickbird satellite data. Journal of Environmental Management 90: 2138-2143.
Duarte, C. M., 1991. Seagrass depth limit. Aquatic Botany 40: 363-377.
Duarte, C. M. and Chiscano, C. L., 1999. Seagrass biomass and production: a reassessment. Aquatic Botany 65: 159-174.
Duarte, C. M., 2001. Seagrass Ecosystems. In: Levin, S. L. (ed.), Encyclopedia of biodiversity, Vol. 5. Academic Press, San Diego, CA, USA.
Foody, G. M., 2004. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering & Remote Sensing 70 (5): 627–633.
Fyfe, S. K., 2003. Spatial and temporal variation in spectral reflectance: are seagrass species spectrally distinct? Limnology and Oceanography 48(1, part2): 464-479.
Gausman, H. W., 1982. Visible light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sensing Environment 13: 233-238.
Green, E. P., and Short, F. T., 2003. World atlas of seagrasses. University of California Press, Berkeley, CA, USA.
Gullstrom, M., Lunden, B., Bodin, M., Kangwe, J., Ohman, M. C., Mtolera, M. S. P. and Bjork, M., 2006. Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuarine Coastal and Shelf Science 67(3): 399-408.
Habeeb, R. L., Johnson, C. R., Wotherspoon, S. and Mumby, P. J., 2007. Optimal scales to observe habitat dynamics: a coral reef example. Ecological Applications 17(3): 641-647.
Hemminga, M. and Duarte, C. M., 2000. Seagrass ecology. Cambridge University Press, Cambridge, UK.
Holmes, K. W., Van Niel, K. P., Kendrick, G. A. and Radford, B., 2007. Probabilistic large-area mapping of seagrass species distributions. Aquatic Conservation-Marine and Freshwater Ecosystems 17(4): 385-407.
Hughes, A. R., Williams, S. L., Duarte, C. M., Heck Jr, K. L. and Waycott, M., 2009. Associations of concern: declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment 7: 242-246.
Jensen, J. R., 1996. Introductory digital image processing: a remote sensing perspective. 2nd edition. Prentice-Hall, Englewood Cliffs, New Jersey, USA.
Jensen, J. R., Rutchey, K., Koch, M. S. and Narumalani, S., 1995. Inland wetland change detection in the Everglades Water Conservation area 2A using a time series of normalized remotely sensed data. Photogrammetric Engineering and Remote Sensing 61(2): 199-209.
Kendrick, G. A., Aylward, M. J., Hegge, B. J., Cambridge, M. L., Hillman, K., et al., 2002. Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquatic Botany 73(1): 75-87.
Kirkman, H., Olive, L. and Digby, B., 1988. Mapping of underwater seagrass meadows. In: Procedings of symposium on remote sensing of the coastal zone, Gold Coast, Queensland. Department of Geographic Information, pp. VA2.1-VA2.9.
Knudby, A. and Nordlund, L., 2011. Remote sensing of seagrasses in a patchy multi-specie environment. International Journal of Remote Sensing 32(8): 2227-2244.
Koch, E., Ackerman, J., Verduin, J. and Keulen, M., 2006. Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Larkum, A. W. D., Orth, R. J. and Duarte, C. M. (ed.), Seagrasses: biology, ecology, and conservation. Springer, pp. 193-225.
Lan, C. Y., Kao, W. Y., Lin, H. J. and Shao, K. T., 2005. Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis. Marine Biology 148(1): 25-34.
Larkum, A. W. D., Orth, R. J. and Duarte, C. M. (ed.), 2006. Seagrasses: biology, ecology and conservation. Springer, Dordrecht, the Netherlands.
Lillesand, T. M. and Kiefer, R. W., 1994. Remote sensing and image interpretation. 3rd edition. John Wiley & Sons, New York, USA.
Lin, H. J., Hsieh, L. Y. and Liu, P. J., 2005. Seagrasses of Tongsha Island, with descriptions of four new records to Taiwan. Botanical Bulletin of Academia Sinica 46: 163-168.
Luczkovich, J. J., Wagner, T. W., Michalek, J. L. and Stoffle, R. W., 1993. Discrimination of coral reefs, seagrass meadows, and sand bottom types from space: a Dominican Republic case study. Photogrammetric Engineering & Remote Sensing 59(3): 385-389.
Marbá, N., Santiago, R., Díaz-Almela, E., Álvarez, E. and Duarte, C. M., 2006a. Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science 67: 475-483.
Marbá, N., Holmer, M., Gacia, E. and Barrón, C., 2006b. Seagrass beds and coastal biogeochemistry. In: Larkum, A. W. D., Orth, R. J. and Duarte, C. M. (ed.), Seagrasses: biology, ecology, and conservation. Springer, pp. 135-157.
McKenzie, L. J., Finkbeiner, M. A. and Kirkman, H., 2001. Methods for mapping seagrass distribution. In: Short, F. T. and Cotes, R. G. (ed.), Global seagrass research methods. Elsevier Science B.V., pp. 101-121.
Meehan, A. J., Williams, R. J. and Watford, F. A., 2005. Detecting trends in seagrass abundance using aerial photograph interpretation: problems arising with the evolution of mapping methods. Estuaries 28(3): 462-472.
Moore, K. A., Wilcox , D. J. and Orth, R. J., 2000. Analysis of the abundance of submersed aquatic vegetation communities in the Chesapeake Bay. Estuaries 23(1): 115-127.
Mumby, P. J. and Edwards, A. J., 2002. Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing of Environment 82: 24-857.
Mumby, P. J., Green, E. P., Edwards, A. J. and Clark, C. D., 1997a. Coral reef habitat mapping: how much detail can remote sensing provide? Marine Biology 130: 193-202.
Mumby, P. J., Green, E. P., Edwards, A. J. and Clark, C. D., 1997b. Measurement of seagrass standing crop using satellite and digital airborne remote sensing. Marine Ecology Progress Series 159: 51-60.
Mumby, P. J., Green, E. P., Edwards, A. J. and Clark, C. D., 1999. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. Journal of Environmental Management 55: 157-166.
Mumby, P. J., Green, E. P., Edwards, A. J. and Clark, C. D., et al., 1997. Coral reef habitat mapping: how much detail can remote sensing provide? Marine Biology 130: 193-202.
Orth, R. J., Batiuk, R. A., Bergstrom, P. W. and Moore, K. A., 2002. A perspective on two decades of policies and regulations influencing the protection and restoration of submerged aquatic vegetation in Chesapeake Bay, USA. Bulletin of Marine Science 71: 1391-1403.
Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., et al., 2006a. A global crisis for seagrass ecosystems. BioScience 56: 987-996.
Orth, R. J., Luckenbach, M. L., Marion, S. R., Moore, K. A. and Wilcox, D. J., 2006b. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquatic Botany 84(1): 26-36.
Phinn, S., Roelfsema, C., Dekker, A., Brando, A. and Anstee, J., 2008. Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sensing of Environment 112(8): 3413-3425.
Richards, J. A., John, A. and Jia, X., 1999. Remote sensing digital image analysis. Springer-Verlag, Berlin, Germany.
Roelfsema, C. M., Phinn, S. R., Udy, N. and Maxwell, P., 2009. An integrated field and remote sensing approach for mapping seagrass cover, Moreton Bay, Australia. Spatial Science 54(1): 45-62.
Schweizer, D., Armstrong, R. A. and Posada, J., 2005. Remote sensing characterization of benthic habitats and submerged vegetation biomass in Los Roques Archipelago National Park, Venezuela. International Journal of Remote Sensing 26(12): 2657-2667.
Short, F. T. and Wyllie-Echeverria, S., 1996. Natural and humaninduced disturbance of seagrasses. Environmental Conservation 23: 17-27.
Short, F. T., Coles, R. G. and Pergent-Martini, C., 2001. Global seagrass distribution. In: Short, F. T. and Cotes, R. G. (ed.), Global seagrass research methods. Elsevier Science B.V., pp. 5-30.
Short, F., Carruthers, T., Dennison, W. and Waycott, M., 2007. Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology 350: 3-20.
Spalding, M., Taylor, M., Ravilious, C., Short, F. and Green, E., 2003. Global overview: the distribution and status of seagrasses. In: Green, E. P., Short, F. T. (ed.) World atlas of seagrasses: present status and future conservation. University of California Press, pp. 5-26.
Turner, W., Spector, S., Gardiner, N., Fladeland, N., Sterling, E. and Marc Steininger, 2003. Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution 18(6): 306-314.
Van der Straete, T., Goossens, R. and Ghabour, T. K., 2006. The use of multitemporal Landsat images for the change detection of the coastal zone near Hurghada, Egypt. International Journal of Remote Sensing 27: 3645-3655.
Ward, D. H., Markon, C. J. and Douglas, D. C., 1996. Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska. Aquatic Botany 58: 229-240.
Woolley, J. T., 1971. Reflectance and transmittance of light by leaves. Plant Physiol 47: 656-662.
Xie, Y., Sha, Z. and Yu, M., 2008. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology 1(1): 9-23.
Zacharias, M., Niemann, O. and Borstad, G., 1992. An assessment and classification of a multispectral band set for the remote sensing of intertidal seaweeds. Canadian Journal of Remote Sensing Remote Sensing 18: 263-274.
Zainal, A. J. M., Dalby, D. H. and Robinson, I. S., 1993. Monitoring marine ecological changes on the east coast of Bahrain with Landsat TM. Photogrammetric Engineering & Remote Sensing 59(3): 415-421.
Zimmerman, R. and Dekker, A., 2006. Aquatic optics: basic concepts for understanding how light affects seagrasses and makes them measurable from space. In: Larkum, A. W. D., Orth, R. J. and Duarte, C. M. (ed.), Seagrasses: Biology, Ecology, and Conservation. Springer, pp. 295-301.
史天元、薛憲文、王慧蓉、陳杰宗、陳佳勳,2010。測深光達原理、現有系統與服務,地籍測量,29 : 44-58。
史天元、薛憲文、陳雅信、陳杰宗、陳佳勳,2011。澎湖與東沙環礁透水光達成果報告,「以透水光達測繪技術測製東沙地區數值地形模型工作」成果發表會,國立交通大學,新竹市。
李培芬,1993。遙測和地理資訊系統在生態學研究之應用。生物科學,36卷2期,第101至112頁。
李培芬等,2006。東沙環礁國家公園生態解說手冊。內政部營建署,台北市。
海洋國家公園管理處。關於東沙—地質地形:地質和土壤。Available from http://dongsha.cpami.gov.tw/tw/index.aspx (accessed 27 Sep 2011)
林幸助,蕭淑娟,2010。東沙海域大型藻類生物量與海草物候、生產力調查。內政部營建署海洋國家公園管理處委託辦理計劃,高雄市。
柯智仁,2004。臺灣海草分類與分布之研究。碩士論文,國立中山大學,高雄市。
陳陽益、王玉懷、李忠潘、薛憲文、田文敏,2008。東沙內環礁海域海流水深棲地調查。海洋國家公園管理處委託辦理計劃,高雄市。
藍國華、薛憲文,2009。「東沙環礁海域之海底地形、地貌調查以及航道、錨泊區規劃」成果報告書。海洋國家公園管理處委託辦理計劃,高雄市。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66392-
dc.description.abstract本研究對2009年夏季的東沙島周圍海草床,以高解析度捷鳥(Quickbird)衛星影像進行海草範圍與不同海草群落的分布描繪,透過基本的兩種影像分類方法探討遙測技術應用於多物種組成之海草床的準確度,並嘗試加入海域深度資料以改善影像分類的結果,藉此產生全景、連續且尺度精細的海草分布地圖,同時探討東沙島周圍海草床可透過光譜區分出的海草群落組成,以及在光譜上易造成混淆的棲地資訊,並針對海草床內部特徵進行相關討論。
  本研究以非監督式分類法繪製海草床範圍,產生整體準確度達76%的棲地分布圖,並找出可透過影像光譜區分出的海草群落,進一步將海草床區分成三種海草組成,在結合了非以海草為主要覆蓋物的海床棲地類型後,產生整體準確度達59%的海草群落與棲地分布圖;此外,本研究以監督式分類法對相同類別進行分析,在海草範圍上產生整體準確度為59%的分布圖,以及整體準確度為46%的海草群落與棲地分布圖。就海草類別的生產者準度上,非監督式分類可達97%,監督式分類可達63%;在海草類別的使用者準度上,非監督式分類為76%,監督式分類則可達84%。經由假設檢定發現在海草範圍的分布描繪上,非監督式分類法比監督式分類法擁有較高的分類準確度,然而不論是非監督式分類或監督式分類,深度資料的加入皆無顯著改善影像的分類準確度,可能是由於東沙島周圍海域深度淺且地形平緩,故在影像分類上並不用考量深度對遙測的影響。
  研究結果中,從光譜分離度分析可發現,珊瑚的光譜特徵與有出現鋸齒葉水絲草(Cymodocea serrulata)或水韭菜(Syringodium isoetifolium)的海草群落相似;海草種類間的頻繁共存,亦使影像分類難以區分開各個種類的海草,如圓葉水絲草(Cymodocea rotundata)與泰來草(Thalassia hemprichii)因時常混生而難以透過光譜將兩者分離。
整體而言,對於多物種且混生情形複雜的東沙島海草床,影像分類技術的使用會有部份限制,但透過衛星影像繪製海草床或海草群落的分布圖可解決東沙島地處偏遠、交通不便的問題,對於海草床的監測與保育管理亦有相當大的幫助。
zh_TW
dc.description.abstractThis study is to understand the capability of Quickbird satellite image for mapping the spatial distribution of seagrasses around the Dongsha Island, where the seagrass meadow there is composed of at least six species and occupies an area of 12 km2. Through two methods of image classification, both seagrass coverage and communities with different coexisted assemblages of seagrass species can be mapped, and the thematic maps produced can provide high-resolution and continuous distribution message.
The results showed that using the unsupervised classification to map the seagrass coverage, the thematic map had an overall accuracy of 76%, as well as the producer’s accuracy of 97% and the user’s accuracy of 76% for the seagrass class. When the seagrass meadow was divided into three types of seagrass communities by the unsupervised classification, the overall accuracy was 59%. By using supervised classification, the thematic map had a lower overall accuracy on the seagrass coverage and communities (59% and 46%, respectively), while the producer’s and user’s accuracy of the seagrass classes combined were 63% and 84%. The accuracy of the unsupervised classification was significantly higher than that of the supervised classification in mapping the seagrass coverage. No matter which classification was used, the input of the depth data didn’t improve the accuracy of the image classification, which might be owing to the shallowness of the water and the gentleness of the terrain around the Dongsha Island.
Moreover, this study found that some compositions of seagrass species had similar spectral features with some other habitats, which may cause misclassification. For example, the spectral separability between corals and the seagrass communities with Cymodocea serrulata (or Syringodium isoetifolium) was poor. As the frequent mixture of seagrass species also led to the difficulty of spectral discrimination between some species pairs, like Cymodocea rotundata and Thalassia hemprichii.
Although remote sensing techniques have some limitations in complex environments, such as image classification in the Dongsha Island, it is still an cost-effective way to monitor seagrass meadows located in faraway places, and is quite helpful to seagrass conservation and management.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:33:35Z (GMT). No. of bitstreams: 1
ntu-101-R97b44025-1.pdf: 3344454 bytes, checksum: 9d09a4138291267c1fa89a317328d0a1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xi
第1章 前言 - 1 -
第2章 文獻回顧 - 6 -
第3章 研究方法 - 10 -
3.1 研究區域 - 10 -
3.2 資料來源與處理 - 12 -
3.2.1 海草床與棲地調查 - 12 -
3.2.2 衛星影像 - 13 -
3.2.3 地理資訊系統(Geographic Information System)整合 - 15 -
3.2.4 水深 - 15 -
3.2.5 遮罩(mask)與裁切 - 18 -
3.3 影像分類(Image Classification) - 19 -
3.3.1 非監督式分類(Unsupervised Classification) - 19 -
3.3.2 監督式分類(Supervised Classification) - 20 -
3.3.3 準確度評估(Accuracy Assessment) - 21 -
3.3.4 分類結果比較 - 22 -
3.4 光譜與分離度(Separability)分析 - 24 -
第4章 結果 - 25 -
4.1 海草床與棲地調查 - 25 -
4.2 非監督式分類 - 29 -
4.2.1 影像分類類別 - 29 -
4.2.2 非監督式分類結果與準確度 - 31 -
4.3 監督式分類 - 35 -
4.3.1 監督式分類結果與準確度 - 37 -
4.3.2 與非監督式分類比較 - 43 -
4.4 水深影響 - 48 -
4.4.1 非監督式分類結果與比較 - 48 -
4.4.2 監督式分類結果與比較 - 61 -
4.5 各種棲地與海草之光譜與分離度 - 73 -
4.5.1 影像分類類別 - 73 -
4.5.2 純種海草床 - 81 -
4.5.3 覆蓋度 - 84 -
第5章 討論與結論 - 91 -
參考文獻 - 97 -
附錄 - 104 -
dc.language.isozh-TW
dc.subject東沙島zh_TW
dc.subject海草zh_TW
dc.subject遙測zh_TW
dc.subject捷鳥衛星zh_TW
dc.subject影像分類zh_TW
dc.subject水深zh_TW
dc.subjectdepthen
dc.subjectDongsha Islanden
dc.subjectseagrassen
dc.subjectremote sensingen
dc.subjectQuickbirden
dc.subjectimage classificationen
dc.title利用遙測影像探討東沙島周圍海草床分布zh_TW
dc.titleSeagrass Mapping around the Dongsha Island by Remote Sensingen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee丁宗蘇,沈聖峰
dc.subject.keyword東沙島,海草,遙測,捷鳥衛星,影像分類,水深,zh_TW
dc.subject.keywordDongsha Island,seagrass,remote sensing,Quickbird,image classification,depth,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2012-02-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved