Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66387
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉
dc.contributor.authorYi-Li Tsengen
dc.contributor.author曾乙立zh_TW
dc.date.accessioned2021-06-17T00:33:20Z-
dc.date.available2017-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-08
dc.identifier.citationAfsar FA, Arif M and Yang J (2008). Detection of ST segment deviation episodes in ECG using KLT with an ensemble neural classifier. Physiological Measurement 29 747-760.
Alesanco A and Garcia J (2010). Clinical Assessment of Wireless ECG Transmission in Real-Time Cardiac Telemonitoring. IEEE Transactions on Information Technology in Biomedicine 14 1144-1152.
Alpert JS, Thygesen K, Antman E and Bassand JP (2000). Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Journal of the American College of Cardiology 36 959-969.
Amann A, Tratnig R and Unterkofler K (2005). Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. BioMedical Engineering OnLine 4 60.
Anand RS (2005). PC based monitoring of human heart sounds. Computers and Electrical Engineering 31 166-173.
Arzeno NM, Deng ZD and Poon CS (2008). Analysis of first-derivative based QRS detection algorithms. IEEE Transactions on Biomedical Engineering 55 478-484.
Badilini F, Moss AJ and Titlebaum EL (1991). Cubic Spline Baseline Estimation In Ambulatory ECG Recordings For The Measurement Of ST Segment Displacements. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Baker N (2005). ZigBee and Bluetooth strengths and weaknesses for industrial applications. Computing & Control Engineering Journal 16 20-25.
Benitez D, Gaydecki PA, Zaidi A and Fitzpatrick AP (2001). The use of the Hilbert transform in ECG signal analysis. Computers in Biology and Medicine 31 399-406.
Bortolan G and Christov II (2008). Principal Component Analysis for detection and assessment of T-wave alternans. Computers in Cardiology.
Burges CJC (1998). A tutorial on Support Vector Machines for pattern recognition. Data Mining and Knowledge Discovery 2 121-167.
Chan TC (2005). ECG in Emergency Medicine and Acute Care. Philadelphia, Elsevier Mosby.
Chang C-C and Lin C-J (2001). LIBSVM : a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Chen D, Durand LG, Guo Z and Lee HC (1997). Time-frequency analysis of the first heart sound. Part 2: An appropriate time-frequency representation technique. Medical & Biological Engineering & Computing 35 311-317.
Chiarugi F, Trypakis D, Kontogiannis V, et al. (2003). Continuous ECG monitoring in the management of pre-hospital health emergencies. Computers in Cardiology.
Cutmore TRH and James DA (1999). Identifying and reducing noise in psychophysiological recordings. International Journal of Psychophysiology 32 129-150.
Daskalov IK, Dotsinsky IA and Christov II (1998). Developments in ECG acquisition, preprocessing, parameter measurement, and recording. IEEE Engineering in Medicine and Biology Magazine 17 50-58.
Davie AP, Francis CM, Caruana L, Sutherland GR and Mcmurray JJV (1997). Assessing diagnosis in heart failure: Which features are any use? Qjm-Monthly Journal of the Association of Physicians 90 335-339.
Debbal S and Bereksi-Reguig F (2004). Analysis of the second heart sound using continuous wavelet transform. Journal of Medical Engineering & Technology 28 151-156.
Debbal SM and Bereksi-Reguig F (2007). Time-frequency analysis of the first and the second heartbeat sounds. Applied Mathematics and Computation 184 1041-1052.
Donoho DL (2006). For most large underdetermined systems of linear equations the minimal l(1)-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59 797-829.
Drew BJ, Dempsey ED, Joo TH, Sommargren CE, Glancy JP, Benedict K and Krucoff MW (2004). Pre-hospital synthesized 12-lead ECG ischemia monitoring with trans-telephonic transmission in acute coronary syndromes: Pilot study results of the ST SMART trial. Journal of Electrocardiology 37 214-221.
Emmel M, Sreeram N, Schickendantz S and Brockmeier K (2006). Experience with an ambulatory 12-lead Holter recording system for evaluation of pediatric dysrhythmias. Journal of Electrocardiology 39 188-193.
Erne P (2008). Beyond auscultation - acoustic cardiography in the diagnosis and assessment of cardiac disease. Swiss Medical Weekly 138 439-452.
Exarchos TP, Tsipouras MG, Exarchos CP, Papaloukas C, Fotiadis DI and Michalis LK (2007). A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artificial Intelligence in Medicine 40 187-200.
Fariborzi H, Moghavvemi M and Mehrkanoon S (2007). Design of a Low-power Microcontroller-based Wireless ECG Monitoring System. 5th Student Conference on Research and Development.
Fensli R, Gunnarson E and Hejlesen O (2004). A wireless ECG system for continuous event recording and communication to a clinical alarm station. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Folland ED, Kriegel BJ, Henderson WG, Hammermeister KE and Sethi GK (1992). Implications of 3rd Heart Sounds in Patients with Valvular Heart-Disease. New England Journal of Medicine 327 458-462.
Fragasso G, Cuko A, Spoladore R, et al. (2007). Validation of Remote Cardiopulmonary Examination in Patients With Heart Failure With a Videophone-Based System. Journal of Cardiac Failure 13 281-286.
Güler N and Fidan U (2006). Wireless Transmission of ECG signal. Journal of Medical Systems 30 231-235.
Giovas P, Thomakos D, Papazachou O and Papadoyannis D (2006). Medical Aspects of Prehospital Cardiac Telecare. M-Health: 389-399.
Goldberger AL, Amaral LaN, Glass L, et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet : Components of a New Research Resource for Complex Physiologic Signals. Circulation 101 e215-220.
Goletsis Y, Papaloukas C, Fotiadis DI, Likas A and Michalis LK (2004). Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis. IEEE Transactions on Biomedical Engineering 51 1717-1725.
Grant M and Boyd S (2008). Graph Implementations for Nonsmooth Convex Programs. Recent Advances in Learning and Control. V Blondel, S Boyd and H Kimura. Heidelberg, Springer Berlin. 371: 95-110.
Groch MW, Domnanovich JR and Erwin WD (1992). A New Heart-Sounds Gating Device for Medical Imaging. IEEE Transactions on Biomedical Engineering 39 307-310.
Harris IS, Lee E, Yeghiazarians Y, Drew BJ and Michaels AD (2006). Phonocardiographic timing of third and fourth heart sounds during acute myocardial infarction. Journal of Electrocardiology 39 305-309.
Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC and Liu HH (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 903-995.
Hult P, Fjallbrant T, Hilden K, Dahlstrom U, Wranne B and Ask P (2005). Detection of the third heart sound using a tailored wavelet approach: method verification. Medical & Biological Engineering & Computing 43 212-217.
Ishikawa M, Sakata K, Maki A, Mizuno H and Ishikawa K (1997). Prognostic significance of a clearly audible fourth heart sound detected a month after an acute myocardial infarction. American Journal of Cardiology 80 619-&.
Jacobson C (2008). ECG diagnosis of acute coronary syndrome. AACN Advanced Critical Care 19 101-108.
Jaw F-S, Tseng Y-L and Jang J-K (2010). Modular design of a long-term portable recorder for physiological signals. Measurement 43 1363-1368.
Jiang Z and Choi S (2008). Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Systems with Applications 34 1056-1069.
Khadra L, Matalgah M, Elasir B and Mawagdeh S (1991). The Wavelet Transform and Its Applications to Phonocardiogram Signal Analysis. Medical Informatics 16 271-277.
Kim J, Shin H, Shin K and Lee M (2009). Robust algorithm for arrhythmia classification in ECG using extreme learning machine. BioMedical Engineering OnLine 8 31.
Klootwijk P, Meij S, Es GA, Mullen EJ, Umans VaWM, Lenderinkf T and Simoons ML (1997). Comparison of usefulness of computer assisted continuous 48-h 3-lead with 12-lead ECG ischaemia monitoring for detection and quantitation of ischaemia in patients with unstable angina. European Heart Journal 18 931-994.
Kohavi R (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th international joint conference on Artificial intelligence. Canada, Morgan Kaufmann Publishers Inc. 2: 1137-1143.
Kumar S, Kambhatla K, Hu F, Lifson M and Xiao Y (2008). Ubiquitous computing for remote cardiac patient monitoring: a survey. International Journal of Telemedicine and Applications 459185.
Lee E, Michaels AD, Selvester RH and Drew BJ (2009). Frequency of diastolic third and fourth heart sounds with myocardial ischemia induced during percutaneous coronary intervention. Journal of Electrocardiology 42 39-45.
Li Y, Cichocki A and Amari S-I (2004). Analysis of Sparse Representation and Blind Source Separation. Neural Computation 16 1193-1234.
Liang H, Lukkarinen S and Hartimo I (1997). Heart sound segmentation algorithm based on heart sound envelogram. Computers in Cardiology.
Libby P and Braunwald E (2008). Braunwald's heart disease: a textbook of cardiovascular medicine. Philadelphia, Saunders/Elsevier.
Lok CE, Morgan CD and Ranganathan N (1998). The accuracy and interobserver agreement in detecting the 'gallop sounds' by cardiac auscultation. Chest 114 1283-1288.
Marcus G, Vessey J, Jordan MV, et al. (2006). Relationship between accurate auscultation of a clinically useful third heart sound and level of experience. Archives of Internal Medicine 166 617-622.
Michaels AD, Shah SJ, Nakamura K, Marcus GM, Gerber IL, Mckeown BH, Jordan MV, Huddleston M and Foster E (2008). Association of the fourth heart sound with increased left ventricular end-diastolic stiffness. Journal of Cardiac Failure 14 431-436.
Moghavvemi M, Tan BH and Tan SY (2003). A non-invasive PC-based measurement of fetal phonocardiography. Sensors and Actuators A: Physical 107 96-103.
Mohebbi M and Moghadam HA (2007). An Algorithm for Automated Detection of Ischemic ECG Beats Using Support Vector Machines. IEEE 15th Signal Processing and Communications Applications.
Papaloukas C, Fotiadis DI, Liavas AP, Likas A and Michalis LK (2001). A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms. Medical & Biological Engineering & Computing 39 105-112.
Papaloukas C, Fotiadis DI, Likas A and Michalis LK (2002). An ischemia detection method based on artificial neural networks. Artificial Intelligence in Medicine 24 167-178.
Papaloukas C, Fotiadis DI, Likas A and Michalis LK (2003). Automated methods for ischemia detection in long-duration ECGs. Cardiovascular Reviews and Reports 24 313-319.
Papaloukas C, Fotiadis DI, Likas A, Stroumbis CS and Michalis LK (2002). Use of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECGs. Journal of Electrocardiology 35 27-34.
Reed TR, Reed NE and Fritzson P (2004). Heart sound analysis for symptom detection and computer-aided diagnosis. Simulation Modelling Practice and Theory 12 129-146.
Roger VL, Go AS, Lloyd-Jones DM, et al. (2011). Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation 123 e18-e209.
Roos M, Toggweiler S, Jamshidi P, Zuber M, Kobza R, Meier R and Erne P (2008). Noninvasive detection of left ventricular systolic dysfunction by acoustic cardiography in cardiac failure patients. Journal of Cardiac Failure 14 310-319.
Rosík V, Karas S, Hebláková E, Tyšler M and Filipová S (2007). Portable Device for High Resolution ECG Mapping. Measurement Science Review 7 57-61.
Schindler DM, Lux RL, Shusterman V and Drew BJ (2007). Karhunen-Loeve representation distinguishes ST-T wave morphology differences in emergency department chest pain patients with non-ST-elevation myocardial infarction versus nonacute coronary syndrome. Journal of Electrocardiology 40 S145-S149.
Shah PM, Gramiak R, Kramer DH and Yu PN (1968). Determinants of atrial (S4) and ventricular (S3) gallop sounds in primary myocardial disease. New England Journal of Medicine 278 753-758.
Smit HW, Verton K and Grimbergen CA (1987). A Low-Cost Multichannel Preamplifier for Physiological Signals. IEEE Transactions on Biomedical Engineering BME-34 307-310.
Stamkopoulos T, Diamantaras K, Maglaveras N and Strintzis M (1998). ECG analysis using nonlinear PCA neural networks for ischemia detection. IEEE Transactions on Signal Processing 46 3058-3067.
Swets JA and Pickett RM (1982). Evaluation of diagnostic systems : methods from signal detection theory. New York, Academic Press.
Thayer WS (1909). Further observations on the third heart sound. Archives of Internal Medicine 4 297-305.
Tseng Y-L, Shi Y-Z and Jaw F-S (2010). Portable, Real-time, 12-lead ECG Monitoring System. Instrumentation Science & Technology 38 305 - 312.
Tuchinda C and Thompson WR (2001). Cardiac auscultatory recording database: Delivering heart sounds through the Internet. Journal of the American Medical Informatics Association 716-720.
Vehkaoja A and Lekkala J (2004). Wearable wireless biopotential measurement device. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Vepa J, Tolay P and Jain A (2008). Segmentation of heart sounds using simplicity features and timing information. IEEE International Conference on Acoustics, Speech and Signal Processing.
Vila J, Presedo J, Delgado M, Barro S, Ruiz R and Palacios F (1997). SUTIL: Intelligent ischemia monitoring system. International Journal of Medical Informatics 47 193-214.
Webster JG and Clark JW (2010). Medical instrumentation : application and design. Hoboken, John Wiley & Sons.
WHO (2007).World health statistics 2007.
from http://www.who.int/whosis/whostat2007/en/index.html.
WHO (2011).World Health Organization: Ten leading causes of deaths.
from http://gamapserver.who.int/gho/interactive_charts/mbd/cod_2008/graph.html.
Wright J, Yang AY, Ganesh A, Sastry SS and Ma Y (2009). Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31 210-227.
Yu H, Lu H, Ouyang T, Liu H and Lu B-L (2010). Vigilance detection based on sparse representation of EEG. Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Zheng J, Zhang Z, Wu T and Zhang Y (2007). A wearable mobihealth care system supporting real-time diagnosis and alarm. Medical and Biological Engineering and Computing 45 877-885.
Zimmerman MW and Povinelli RJ (2004). On improving the classification of myocardial ischemia using Holter ECG data. Computers in Cardiology.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66387-
dc.description.abstract近年來缺血型心臟病一直高居十大死因之首,在世界衛生組織的統計資料中,已開發國家中每一百位死亡人口就有約十六位是死於缺血型心臟病,可見其嚴重性。缺血型心臟病之致死率居高不下的主要原因,是由於其缺乏早期徵兆,且病患發生急性症狀到猝死的過程,往往是在很短的時間內,甚至有許多急性心肌梗塞的患者在猝死前完全沒有任何徵兆。因此,如何早期診斷並且把握治療的黃金一小時,成為近年來心臟病研究的重要課題。本研究使用非侵入式的十二導程心電圖與心音訊號應用在早期偵測缺血型心臟病,在急性冠心症發生之前偵測出心肌的缺血狀況,以期達到早期診斷的可能性,為病患爭取黃金治療時間。
本論文開發十二導程心電圖及心音訊號的監控系統及分析平台,以用於早期偵測缺血型心臟病。由於缺血型心臟病的患者,其心電圖的ST波與T波會短暫的升高或是反轉,本研究使用Support vector machine (SVM)與Sparse representation- based classification (SRC)兩種方法分析心電圖,以偵測心電圖的異常變化,此兩種方法與過去所提出的方法相比,能夠考量醫學知識中的心電圖異常,並配合使用有高準確率的機器學習方法,增加診斷的正確率。除了藉由心電圖早期診斷以外,本研究亦將非侵入式的心音訊號用於輔助診斷心肌功能的異常,本研究使用了適用於分析非線性及非穩態訊號的Hilbert-Huang Transform (HHT)方法,將心音訊號做可適性的時頻分析,以偵測其中與心肌功能相關的第三心音與第四心音。而在監控系統的部分,本論文開發的心電與心音圖監測系統,將多工方法應用在十二導程心電圖的記錄上,以符合無線傳輸和遠距照護的規格,並設計符合醫療需求的電子心音聽診裝置。
將本研究所開發之心電圖與心音分析平台與過去所提出之分析方法相比,本研究提出的方法其針對缺血型心臟病的診斷敏感度及整體準確率皆較高,而監控系統則有助於居家早期偵測缺血型心臟病,將此一整合型系統應用於遠距醫療照護,應可有效提升缺血型心臟病的早期診斷以及縮短就醫的時間。
zh_TW
dc.description.abstractIschemic heart disease has become the first place of ten leading causes of death for many years. According to the statistic results from WHO, up to 16% of mortality is due to ischemic heart disease. The main reason of high death rate is its lack of early symptoms. Patients suffer from sudden death only after a short period of the occurring of acute coronary syndromes. Some even die without any early symptoms. Therefore, early detection of myocardial ischemia has become an important issue recently. In this study, we implemented a non-invasive 12-lead electrocardiogram (ECG) and a phonocardiogram (PCG) monitoring system, and high-accuracy analyzing methods are also proposed for the early detection of ischemic heart diseases. By the detection of the ischemia of cardiac muscles in its early stage, ischemic heart disease can be detected before the occurring of acute symptoms.
Myocardial ischemia commonly manifests as ST- and T-wave changes on the ECG, or the third heart sound (S3) and the fourth heart sound (S4) of the PCG. For the analysis of ECG signals, we proposed two methods, support vector machine (SVM) and sparse representation-based classification (SRC), to detect abnormal ST-T complex. It integrates knowledge-based and novel classifying methods to extract essential information from ECG signals. In comparison with previous methods, the sensitivity for detecting myocardial ischemia is greatly improved using our methods. For the detection of S3 and S4, a time-frequency analysis method, Hilbert-Huang transform (HHT), was used to analyze non-linear and non-stationary PCG signals. This method can decompose the signal adaptively and acquire the instantaneous frequency. Therefore, all the abnormal components of PCG signals correlated to myocardial dysfunction can be detected simultaneously. The design of the monitoring of these non-invasive signals is based on remote home health care concepts. The recording of 12-lead ECG is designed using multiplexing technique suitable for wireless transmission. Moreover, the design of the electronic stethoscope is based on medical concepts with modulated equalizer.
In this investigation, both analyzing methods and monitoring systems for 12-lead ECG and heart sound are proposed. The sensitivity and accuracy of the proposed methods are of better performance compared to previous methods. Furthermore, the whole monitoring system is aimed for remote home health care. With these concepts, detection of myocardial ischemia in its early stage using non-invasive home health care system could be feasible.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:33:20Z (GMT). No. of bitstreams: 1
ntu-101-F95548014-1.pdf: 3007721 bytes, checksum: 6d13463b1f627e4c0ee37c3ffdbb7645 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowledgments i
摘要 iii
Abstract v
1. Introduction 1
1.1 Myocardial ischemia 4
1.1.1 Causes 5
1.1.2 Signs and symptoms 6
1.1.3 Diagnosis 6
1.1.4 Non-invasive early detection 7
1.2 ST-T deviation in ECG 9
1.2.1 Standard 12-lead ECG 10
1.2.2 Early signs for myocardial ischemia in ECG 11
1.2.3 Methods for early detection of myocardial ischemia in ECG 13
1.3 Detection of the third and fourth heart sounds 15
1.3.1 Phonocardiogram 16
1.3.2 Phonocardiography and myocardial ischemia 18
1.3.3 Methods for detecting abnormal heart sound components 19
1.4 ECG and PCG monitoring system 21
2. Materials and Methods 25
2.1 Multi-lead ECG and heart sound monitoring system design 25
2.1.1 Multi-lead ECG monitoring 28
2.1.2 Heart sound/Phonocardiogram (PCG) monitoring 35
2.2 Analysis of ST-T deviation in ECG 40
2.2.1 Preprocessing 40
2.2.1.1 Smoothing and removal of baseline wandering 43
2.2.1.2 Detection of QRS complex 43
2.2.2 Feature extraction 44
2.2.3 Beat classification 45
2.2.3.1 Support vector machine (SVM) 47
2.2.3.2 Sparse representation-based classification (SRC) 48
2.2.4 Performance evaluation 49
2.2.4.1 European ST-T database 49
2.2.4.2 Cross validation 50
2.3 Detection of the third and fourth heart sounds 51
2.3.1 Preprocessing 52
2.3.2 Hilbert-Huang transform (HHT) 55
2.3.2.1 Empirical mode decomposition (EMD) 56
2.3.2.2 Hilbert transform 57
2.3.3 Clustering and recognition 58
3. Results 65
3.1 Prototype of multi-lead ECG and PCG monitoring system 65
3.1.1 Multi-lead ECG 65
3.1.2 Heart sound monitoring system 69
3.2 Results of ECG analysis using SVM and SRC algorithms 71
3.3 Results of the detection of the third and fourth heart sounds 74
4. Discussion 79
4.1 Discussions of the monitoring system aimed for home health care 79
4.1.1 Low-power and multiplexing multi-lead ECG monitoring 80
4.1.2 Medical aided electronic stethoscope 81
4.2 Sensitivity and feature selection of ECG analysis 83
4.3 Validation and difficulty of S3 and S4 detection 86
5. Conclusion 89
References 93
dc.language.isoen
dc.subject缺血型心臟病zh_TW
dc.subject心音zh_TW
dc.subject十二導程心電圖zh_TW
dc.subjectmyocardial ischemiaen
dc.subjectHilbert-Huang transformen
dc.subjectsparse representation-based classificationen
dc.subjectsupport vector machineen
dc.subjectheart sounden
dc.subject12-lead ECGen
dc.subjectischemic heart diseaseen
dc.title多導程心電與心音圖於早期診斷缺血型心臟病之應用zh_TW
dc.titleEarly Detection of Ischemic Heart Disease Using Multi-lead ECG and Heart Soundsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃基礎,鄭國順,謝建興,黃榮山,何奕倫
dc.subject.keyword缺血型心臟病,十二導程心電圖,心音,zh_TW
dc.subject.keywordmyocardial ischemia,ischemic heart disease,12-lead ECG,heart sound,support vector machine,sparse representation-based classification,Hilbert-Huang transform,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2012-02-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved