Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66381
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳德玉
dc.contributor.authorChung-Ping Kuen
dc.contributor.author古忠平zh_TW
dc.date.accessioned2021-06-17T00:33:04Z-
dc.date.available2022-02-08
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-09
dc.identifier.citationReferences
[1] Milan M. Jovanovic, “Power Supply Technology-Past, Present, and Future,” in Power Conversion and Intelligent Motion China Conf. for Power Electronics (PCIM China) Proc., Shanghai, China, March 21-23, 2007, pp. 3-15.
[2] Application note, SLVA474: High-Efficiency AC-DC TV Power Solutions: Proposing an Intelligent LED Backlight Driving Scheme, Texas Instruments, July 2011.
[3] PFC Tecnology and Design Factor for Large Scale LCD-TV, Texas Instruments, 2008.
[4] AC-DC LCD TV Power Atchitecture and LED Backlight, ON Semiconductor.
[5] Energy Star Program Requirements for Computers Version 5.0,
https://www.energystar.gov/
[6] Energy Star Program Requirements for Televisions Version 4.0 and 5.0.
https://www.energystar.gov/
[7] M. M. Jovanovic, and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview,” IEEE Trans. on Industrial Electronics, Vol. 52, pp. 701-708, Mar. 2005.
[8] Chung-Ping Ku, Sheng-Hsien Lin, and Dan Chen, “A New Control Scheme for Boost PFC Converters for Both CCM and DCM Operations,” in IEEE Energy Conversion Congress and Expo, accepted, 2011.
[9] Yu-Tzung Lin and Ying-Yu Tzou, “Digital control of boost PFC AC/DC converters with low THD and fast dynamic response,” in IEEE 2009 Power Electronics and Motion Control Conference, 2009, pp. 1672-1677.
[10] Fei Zhang, Jianping Xu, Guohua Zhou and Jing Yang, “Transient performance improvement for digital control boost power factor correction converters,” in IEEE 2009 Power Electronics and Motion Control Conference, 2009, pp. 1693-1696.
[11] S. F. Lim and A. M. Khambadkone, “A simple digital DCM control scheme for boost PFC operating in both CCM and DCM,” in IEEE 2010 Energy Conversion Congress and Exposition, 2010, pp. 1218-1225.
[12] B. A. Mather, and D. Maksimovic, “Single comparator based A/D converter for output voltage sensing in power factor correction rectifiers,” in IEEE 2009 Energy Conversion Congress and Exposition, 2009, pp. 1331-1338.
[13] Fu-Zen Chen and Maksimović, D., “Digital Control for Improved Efficiency and Reduced Harmonic Distortion Over Wide Load Range in Boost PFC Rectifiers,” IEEE Transaction on Power Electronics, Vol. 25, pp. 2683-2692, Feb. 2010.
[14] L. Roggia, J. E. Baggio, and J. R. Pinheiro, “Comparison among digital current controllers applied to power factor correction boost converters,” in IEEE 2009 Energy Conversion Congress and Exposition, pp. 2965-2971.
[15] Zhen Z. Ye, M. M. Jovanovic, “Implementation and performance evaluation of DSP-based control for constant-frequency discontinuous-conduction-mode boost PFC front end,” IEEE Trans. on Industrial Electronics, Vol. 52, pp. 98-107, Feb. 2005.
[16] Shi-Huang Tang, Dan Chen, Chun-Shih Huang, Chih-Yuan Liu and Liu, K.H., “A new on-time adjustment scheme for the reduction of input current distortion of critical-mode power factor correction boost converters,” in IEEE 2010 Power Electronics Conference, 2010, pp. 1717-1724.
[17] K.-H. Liu and Y,-L Lin, “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters,” in IEEE 1989 Power Electronics Specialists Conference, 1989, vol. 2, pp. 825-829.
[18] C. Adragna, L. Huber, B. T. Irving, and M. M. Jovanovic, “Analysis and Performance Evaluation of Interleaved DCM/CCM Boundary Boost PFC Converters Around Zero-Crossing of Line Voltage,” in Proc. IEEE Applied Power Electronics Conf., 2009, pp. 1151-1157.
[19] M. S. Elmore, “Input current ripple cancellation in synchronized, parallel connected critically continuous boost converters,” in Proc. IEEE Applied Power Electronics Conf., 1996, pp. 152-158.
[20] L. Huber, B. T. Irving, and M. M. Jovanovic, “Review and Stability Analysis of PLL-Based Interleaving Control of DCM/CCM Boundary Boost PFC Converters,” IEEE Trans. on Power Electronics, Vol. 24, pp. 1992-1999, Aug. 2009.
[21] B. Lu, “A novel control method for interleaved transition mode PFC,” in Proc. IEEE Applied Power Electronics Conf., 2008, pp. 697-701.
[22] X. Xu, W. Liu, and A. Q. Huang, “Two-Phase Interleaved Critical Mode PFC Boost Converter With Closed Loop Interleaving Strategy,” IEEE Trans. on Power Electronics, Vol. 24, pp. 3003-3013, Dec. 2009.
[23] J. R. Pinheiro, H. A. Grundling, D. L. R. Vidor, and J. E. Baggio, “Control strategy of an interleaved boost power factor correction converter,” in Proc. IEEE Power Electronics Specialists Conf., 1999, pp. 137-142.
[24] J. -R. Tsai, T. -F. Wu, C. -Y. Wu, Y. -M. Chen, and M. –C. Lee, “Interleaving Phase Shifters for Critical-Mode Boost PFC,” IEEE Trans. on Power Electronics, Vol. 23, pp. 1348-1357, May 2008.
[25] T. Ishii and Y. Mizutani, “Power factor correction using interleaving technique for critical mode switching converters,” in Proc. IEEE Power Electronics Specialists Conf., 1998, pp. 905-910.
[26] L. Huber, B. T. Irving, and M. M. Jovanovic, “Open-Loop Control Methods for Interleaved DCM/CCM Boundary Boost PFC Converters,” IEEE Trans. on Power Electronics, Vol. 23, pp. 1649-1657, July 2008.
[27] J. Zhang, J. Shao, P. Xu, F. C. Lee, and M. M. Jovanovic, “Evaluation of input current in the critical mode boost PFC converter for distributed power systems,” in Proc. IEEE Applied Power Electronics Conf., 2001, pp. 130-136.
[28] Y. Yin, X. Yang, Y. Bai, Q. Chen, et al., 'A Novel Phase-shift Control Scheme for Interleaved Boost Converters Operating in Critical Conduction Mode,' in Proc. IEEE Applied Power Electronics Conf., 2009, pp. 1313-1317.
[29] K.-M. Ho, C.-A. Yeh, and Y.-S. Lai, 'Novel Digital-Controlled Transition Current Mode Control and Duty Compensation Techniques for Interleaved Power Factor Corrector,' IEEE Trans. Power Electronics, vol. 25, pp. 3085-3094, Dec. 2010.
[30] C. M. de Oliveira Stein, J. R. Pinheiro, and H. L. Hey, “A ZCT auxiliary commutation circuit for interleaved boost converters operating in critical conduction mode,” IEEE Trans. on Power Electronics, Vol. 17, pp. 954-962, Nov. 2002.
[31] B. T. Bucheru and I. D. Jitaru, “High efficiency 100 W quasi-resonant multi-phase interleaved PFC using planar magnetic,” in Proc. IEEE Applied Power Electronics Conf., 2008, pp. 1319-1323.
[32] L. Huber, B. T. Irving, C. Adragna, and M. M. Jovanovic, “Implementation of open-loop control for interleaved DCM/CCM boundary boost PFC converters,” in Proc. IEEE Applied Power Electronics Conf., 2009, pp. 1310-1016.
[33] J. Zhihong and L. Hui, “DSP control of interleaving critical PFC module for high power application,” in Proc. IEEE Industrial Electronics Conf., 2008, pp. 712-716.
[34] J.-S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode,” in Proc. IEEE Applied Power Electronics Conf., 1993, pp. 267-273.
[35] J. -C.Wang, and H. -J. Chen, “Design and analysis of AC/DC converters with interleaved Power Factor Correction,” in Proc. IEEE Intelligent Control and Automation Conf., 2008, pp. 9385-9387.
[36] T. Grote, H. Figge, N. Frohleke, W. Beulen, F. Schafmeister, P. Ide, and J. Bocker, “Semi-Digital Interleaved PFC Control with Optimized Light Load Efficiency,” in Proc. IEEE Applied Power Electronics Conf., 2009, pp. 1722-1727.
[37] J. Zhihong, L. Hui, and H. Lipei, “Parallel-connected Interleaving CCM PFC Converter Based on Duty-Cycle Dynamic Distribution Controller,” in Proc. IEEE Applied Power Electronics Conf., 2009, pp. 780-785.
[38] F.-Z. Chen and D. Maksimovic, “Digital control for efficiency improvements in interleaved boost PFC rectifiers,” in Proc. IEEE Applied Power Electronics Conf., 2010, pp. 188-195.
[39] Chuanyun Wang and Ming Xu, “Asymmetrical interleaving strategy for multi-channel PFC,” in Proc. IEEE Applied Power Electronics Conf., 2008, pp. 1409-1415.
[40] Hangseok Choi, “Novel adaptive master-slave method for interleaved boundary conduction mode (BCM) PFC converters,” in Proc. IEEE Applied Power Electronics Conf., 2010, pp. 36-41.
[41] VIII. Design Considerations for 600W 2-Channel Interleaved CRM Boost PFC in Server Applications, CPES PMC Review Meeting, Nov. 2010.
[42] Hangseok Choi, “Understanding Interleaved Boundary Conduction Mode PFC Converters,” Fairchild Semiconductor Power Seminar 2008-2009.
[43] R. B. Ridley, “A new, continuous-time model for current-mode control [power convertors],” IEEE Trans. on Power Electronics, Vol. 6, pp. 271-280, Apr. 1991.
[44] Zhen Z. Ye, M. M. Jovanovic, “Implementation and performance evaluation of DSP-based control for constant-frequency discontinuous-conduction-mode boost PFC front end,” IEEE Trans. on Industrial Electronics, Vol. 52, pp. 98-107, Feb. 2005.
[45] J. W. Kim, S. M. Choi, and K. T. Kim, “Variable On-time Control of the Critical Conduction Mode Boost Power Factor Correction Converter to Improve Zero-crossing Distortion,” in Proc. IEEE Power Electronics and Drives Systems Conf., 2005, pp. 1542-1546.
[46] L. Roggia, F. Beltrame, J. E. Baggio and J. R. Pinheiro, “Digital control system applied to a PFC boost converter operating in mixed conduction mode,” in Proc. IEEE Power Electronics Conf, 2009, pp. 698-704.
[47] Y.-K. Lo, J.-Y. Lin, and S.-Y. Ou, “Switching-Frequency Control for Regulated Discontinuous - Conduction - Mode Boost Rectifiers,” IEEE Trans. on Industrial Electronics, Vol. 54, pp. 760-768, April 2007.
[48] F.-Z. Chen and D. Maksimovic, “Digital Control for Improved Efficiency and Reduced Harmonic Distortion over Wide Load Range in Boost PFC Rectifiers,” in Proc. IEEE Applied Power Electronics Conf., 2009, pp. 760-766.
[49] W. -Y. Choi, and B. -H. Kwon, “An Efficient Power-Factor Correction Scheme for Plasma Display Panels,” IEEE Trans. on Display Technology, Vol. 4, pp. 70-80, March 2008.
[50] Chung-Ping Ku, Dan Chen, and Chin-Yuan Liu, “A Novel SFVM Control Scheme for Two-Phase Interleaved CCM/DCM Boundary Mode Boost Converter in Power Factor Correction Applications,” IEEE Energy Conversion Congress and Expo, pp. 906 - 911, Atlanta, Georgia, U.S.A., Sept. 2010.
[51] Chung-Ping Ku, Dan Chen, Chun-Shih Huang, and Chin-Yuan Liu, “A Novel SFVM-M3 Control Scheme for Interleaved CCM/DCM Boundary Mode Boost Converter in PFC Applications,” IEEE Transactions on Power Electronics, Vol. 26, pp. 2295-2303, Aug. 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66381-
dc.description.abstract本論文提出一開回路後緣同步電壓模式(Synchronized-OFF voltage-mode, SFVM)主控調變(Master-made-modulated, M3)控制法則,用於二相主僕控制交錯式臨界模式升壓轉換器功因校正電路。多相交錯式功因修正器常應用於功率密度需求的產品,如薄型電視或伺服器等等。文中將針對目前交錯式臨界模式升換器的操作原理以及同步控制方法先作分析,由於變頻操作,要將二台臨界模式升壓轉換器交錯工作極為複雜,而在已知的問題中發現,電流發散的不穩定問題會發生在高輸入電壓的情況,傳統設計使用鎖相回路會造成額外的設計成本和系統複雜度。本論文提出之SFVM-M3控制法則可以即時調整僕轉換器(Slave unit)的導通時間,藉以補償相位差,使二相維持180度相移以達到輸入電流最佳化,並且不需要任何相位補償控制的回路。SFVM-M3控制法則不同於傳統的閉回路鎖相控制,或是利用電流模式控制,其為一開回路控制方法,有效地簡化控制電路,即能在每週期中作補償(cycle-by-cycle)。論文最後提出一類比控制電路來模擬SFVM-M3的可行性,並且實作一台200 W,利用數位控制器實現的平台來作驗證。zh_TW
dc.description.abstractIn recent years, interleaving of converter modules has become an attractive approach to increase converter output power capability. To do so for converters with constant-switching-frequency operation, it is relatively easy and that has been implemented in many commercial practical products. However, for converters with variable-switching-frequency operation, conventional interleaving scheme presents a problem.
In this dissertation, this issue is addressed. There are schemes reported that solves such problems but those are often suffering from increased circuit complexity, and/or additional sensing requirements that increases the overall cost. This problem is analyzed from which new control scheme is proposed in the dissertation. A synchronized-off voltage-mode master-made-modulation (SFVM-M3) scheme is proposed to address this issue while retaining the basic advantages of voltage mode control.
While the proposed scheme has wider practical implication, the focus in this dissertation is to apply this scheme to a critical mode (CRM) power factor correction (PFC) circuit which becomes popular choice in recent years in medium power (about 200 Watts) applications. In a critical mode PFC, it’s a constant on-time variable frequency switching and, therefore, it presents an interleaving problem. The proposed scheme is an elegant approach to solve this problem. Simulations and experiments are conducted to verify the proposed control scheme in the dissertation. The combination of critical mode PFC power modules and the proposed control scheme makes it an attractive approach to higher power PFC applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:33:04Z (GMT). No. of bitstreams: 1
ntu-101-D95921012-1.pdf: 10835491 bytes, checksum: c5a7de91b921cd697220a52fba220f6b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
Table of Contents V
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Challenges of the Conventional Boost PFC Converter 3
1.3 Interleaving the Boost PFC Converters 7
1.4 Motivation and Objective of The research 9
1.5 Outline of the Dissertation 9
Chapter 2 Review of the Interleaved CRM Boost PFC Converters 11
2.1 Introduction 11
2.2 Analysis of an Interleaved CRM Boost PFC Converter 12
2.2.1 Operation of a Two-phase Interleaved CRM Boost PFC Converter 13
2.2.2 The Cancellation of the Input Current Ripple 20
2.3 Review of Closed-loop Synchronization Techniques for Interleaved CRM Boost PFC Converters 23
2.3.1 PLL-Based Synchronization 23
2.3.2 Cycle-by-cycle (CBC) Synchronization 24
2.4 Review of Open-loop Synchronization for the Interleaved CRM Boost PFC Converter 26
2.4.1 Synchronization of ON-Instant 27
2.4.2 Synchronization of OFF-Instant 29
2.5 Review of Adaptive Open-loop Synchronization for the Interleaved CRM Boost PFC Converters 30
2.5.1 Cross-Coupled Synchronization Method 32
2.5.2 Predicted ON-time compensation method 34
2.6 Summary 37
Chapter 3 Proposed SFVM-M3 Interleaved CRM Boost PFC Converter 39
3.1 Introduction 39
3.2 Characteristics of Open-loop SFVM Synchronization 39
3.2.1 Description of the Current Divergence Issue in a Conventional Open-loop SFVM Control Method 41
3.2.2 Explanation of the Erratic ON-time in the Slave Unit44
3.3 A Proposed SFVM-M3 Control Strategy for Interleaved CRM Boost PFC Converter 46
3.3.1 Principle of the Proposed SFVM-M3 Control Scheme 48
3.3.2 Mathematical Analysis of the Divergence Issue 50
3.3.3 Effect of the M3 control signal 53
3.4 Summary 59
Chapter 4 Simulation and Experimental Results 60
4.1 Implementation of the SFVM-M3 control scheme 60
4.2 A Proposed Analog SFVM-M3 Control Circuit 60
4.2.1 Description of the Proposed Analog Control Circuit 61
4.2.2 Simulation Results of the Proposed SFVM-M3 Scheme Using Analog Control Circuit 67
4.3 Digital Implementation of the SFVM-M3 Control Scheme for a Two-phase Interleaved CRM Boost PFC Converter 73
4.3.1 Description of the Proposed Digital-based SFVM-M3 Scheme 73
4.3.2 Implementation of Phase-shift Circuits 76
4.3.3 Experimental Verifications 80
4.4 Summary 85
Chapter 5 Conclusions and Suggestions for Further research86
5.1 Conclusions 86
5.2 Suggestions for Further Research 87
Appendix A 89
Appendix B 90
Appendix C 95
Reference 98
Vita 105
dc.language.isoen
dc.subject回路後緣同步電壓模式zh_TW
dc.subject主僕控制zh_TW
dc.subject交錯式臨界模式升壓轉換器zh_TW
dc.subject功因校正電路zh_TW
dc.subjectPower factor correction (PFC)en
dc.subjectSynchronized-off voltage mode (SFVM)en
dc.subjectMaster-made-modulation controlen
dc.subjectCritical Mode (CRM)en
dc.title交錯臨界模式轉換器之同步截止電壓型主控調變控制法則zh_TW
dc.titleA Synchronized-Off Voltage-Mode Master-Made-Modulation Control Scheme for Interleaved CRM Convertersen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳耀銘,許源浴,李清然,李宗璘,莫清賢
dc.subject.keyword回路後緣同步電壓模式,主僕控制,交錯式臨界模式升壓轉換器,功因校正電路,zh_TW
dc.subject.keywordCritical Mode (CRM),Synchronized-off voltage mode (SFVM),Master-made-modulation control,Power factor correction (PFC),en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2012-02-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
10.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved