Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66369
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志
dc.contributor.authorTse-Yang Tsengen
dc.contributor.author曾哲揚zh_TW
dc.date.accessioned2021-06-17T00:32:22Z-
dc.date.available2017-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-10
dc.identifier.citationAhn, D., L. Cheng, C. Moon, H. Spurgeon, E. G. Lakatta, and M. I. Talan. 2004. Induction of myocardial infarcts of a predictable size and location by branch pattern probability-assisted coronary ligation in C57BL/6 mice. Am. J. Physiol. Heart Circ. Physiol. 286: H1201-H1207.
Beltrami, A. P., L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H. Kasahara, M. Rota, E. Musso, K. Urbanek, A. Leri, J. Kajstura, B. Nadal-Ginard, and P. Anversa. 2003. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763-776.
Bolli, R., A. R. Chugh, D. D'Amario, J. H. Loughran, M. F. Stoddard, S. Ikram, G. M. Beache, S. G. Wagner, A. Leri, T. Hosoda, F. Sanada, J. B. Elmore, P. Goichberg, D. Cappetta, N. K. Solankhi, I. Fahsah, D. G. Rokosh, M.S. Slaughter, J. Kajstura, and P. Anversa. 2011. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378: 1847-1857.
Bollini, S., K. K. Cheung, J. Riegler, X. Dong, N. Smart, M. Ghionzoli, S. P. Loukogeorgakis, P. Maghsoudlou, K. N. Dube´, P. R. Riley, M. F. Lythgoe, and P. De Coppi. 2011. Amniotic Fluid Stem Cells Are Cardioprotective Following Acute Myocardial Infarction. Stem Cells Dev. 20: 1985-1894.
Chen, J., Z. Lu, D. Cheng, S. Peng, and H. Wang. 2011. Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. PLoS ONE 6(5): e19964.
Chiavegato, A., S. Bollini, M. Pozzobon, A. Callegari, L. Gasparotto, J. Taiani, M. Piccoli, E. Lenzini, G. Gerosa, I. Vendramin, E. Cozzi, A. Angelini, L. Iop, G. F. Zanon , A. Atala, P. De Coppi, and S. Sartore. 2007. Human amniotic f luid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J. Mol. Cell. Cardiol. 42: 746-759.
De Coppi, P., G. Bartsch Jr, M. M. Siddiqui1, T. Xu, C. C. Santos., L. Perin, G. Mostoslavsky, A. C. Serre., E. Y. Snyder., J. J. Yoo, M. E. Furth, S. Soker, and A. Atala. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25 (1): 100-106.
Del Ry, S., M. Cabiati, F. Vozzi, B. Battolla, C. Caselli, F. Forini, C. Segnani, T. Prescimone, D. Giannessi, and L. Mattii. 2011. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides 32:1713-1718.
Dimmeler, S., J. Burchfield, and A. M. Zeiher. 2008. Cell-based therapy of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 28: 208-216.
Fatma, S., D. E. Selby, R. D. Singla, and D. K. Singla. 2010. Factors released from embryonic stem cells stimulate c-kit-FLK-1(+ve) progenitor cells and enhance neovascularization. Antioxid. Redox Signal. 13(12): 1857-1865.
Freyman, T., G. Polin, H. Osman H, J. Crary, M. Lu, L. Cheng, M. Palasis, and R. L. Wilensky. 2006. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J. 27: 1114-1122.
Gao, E., Y. H. Lei, X. Shang, Z. M. Huang, L. Zuo, M. Boucher, Q. Fan, J. K. Chuprun, X. L. Ma, and W. J. Koch. 2010. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ. Res. 107: 1445-1453.
Gao, J., J. E. Dennis, R. F. Muzic, M. Lundberg, and A. I. Caplan. 2001. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169: 12-20.
Hare, J. M., J. H. Traverse, T. D. Henry, N. Dib, R. K. Strumpf, S. P. Schulman, G. Gerstenblith, A. N. DeMaria, A. E. Denktas, R. S. Gammon, J. B. Hermiller Jr, M. A. Reisman, G. L. Schaer, and W. Sherman. 2009. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54 (24): 2277-2286.
Hirsch, A., R. Nijveldt, P. A. van der Vleuten, J. G. Tijssen, W. J. van der Giessen, R. A. Tio, J. Waltenberger, J. M. ten Berg, P. A. Doevendans, W. R. Aengevaeren, J. J. Zwaginga, B. J. Biemond, A. C. van Rossum, J. J. Piek, and F. Zijlstra. 2011. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur. Heart J. 32 (14): 1736-1747.
Hochman, J.S., and H. Choo. 1987. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 75(1): 299-306.
Hood, W.B. Jr, B. McCarthy, and B. Lown. 1967. Myocardial infarction following coronary ligation in dogs. Hemodynamic effects of isoproterenol and acetylstrophanthidin. Circ. Res.21: 191-199.
Hofmann, M., K. C. Wollert, G. P. Meyer, A. Menke, L. Arseniev, B. Hertenstein, A. Ganser, W. H. Knapp, and H. Drexler. 2005. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111: 2198-2202.
Huikuri, H. V., K. Kervinen, M. Niemelä, K. Ylitalo, M. Säily, P. Koistinen, E. R. Savolainen, H. Ukkonen, M. Pietilä, J. K. Airaksinen, J. Knuuti, and T. H. Mäkikallio. 2008. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur. Heart J. 29: 2723-2732.
Iacono, E., L. Brunori, A. Pirrone, F. Ricci, P. P. Pagliaro, P. L. Tazzari, and B. Merlo. 2012. Isolation, characterization and differentiation of mesenchymal stem cells (MSCs) from amniotic fluid, cord blood and Wharton's jelly in the horse. Reproduction [Epub ahead of print].
In 't Anker, P. S., S. A. Scherjon, C. Kleijburg-van der Keur, W. A. Noort, F.H. Claas, R. Willemze, W. E. Fibbe, and H.H. Kanhai. 2003. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102: 1548-1549.
Jiang S, H. Haider, N. Idris, A. Salim, and M. Ashraf. 2006. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ. Res. 99(7): 776-784.
Kalra, P. R., J. R. Clague, A. P. Bolger, S. D. Anker, P. A. Poole-Wilson, A. D. Struthers and A. J. Coats. 2003. Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation 107: 571-573.
Kim, J., Y. Lee, H. Kim, K. J. Hwang, H. C. Kwon, S. K. Kim, D. J. Cho, S. G. Kang, and J. You. 2007. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 40: 75-90.
Klemmt P. A., V. Vafaizadeh, and B. Groner. 2010. Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts. Stem Cell Res. Ther. 1: 20.
Lee, R. H., A. A. Pulin, M. J. Seo, D. J. Kota, J. Ylostalo, B. L. Larson, L. Semprun-Prieto, P. Delafontaine, and D. J. Prockop. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5: 54-63.
Lee, W. Y., H. J. Wei, W. W. Lin, Y. C. Yeh, S. M. Hwang, J. J. Wang, M. S. Tsai, Y. Chang, and H. W. Sung. 2011. Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials 32: 5558e-5567.
Lunde, K., S. Solheim, S. Aakhus, H. Arnesen, M. Abdelnoor, T. Egeland, K. Endresen, A. Ilebekk, A. Mangschau, J. G. Fjeld, H. J. Smith, E. Taraldsrud, H. K. Grøgaard, R. Bjørnerheim, M. Brekke, C. Müller, E. Hopp, A. Ragnarsson, J. E. Brinchmann, and K. Forfang. 2006. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Eng. J. Med. 355: 1199-1209.
Manuelpillai, U., J. Tchongue, D. Lourensz, V. Vaghjiani, C. S. Samuel, A. Liu, E. D. Williams, and W. Sievert. 2010. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl4-treated mice. Cell Transplant. 19(9): 1157-1168.
Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. 1981. Proc. Natl. Acad. Sci. U S A. 78 (12): 7634-7638.
Martin-Rendon, E., S. J. Brunskill, C. J. Hyde, S. J. Stanworth, A. Mathur, and S. M. Watt. 2008. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J. 29(15): 1807-1818.
Mäkelä, J., V. Anttila, K. Ylitalo, R. Takalo, S. Lehtonen, T. Mäkikallio, E. Niemelä, S. Dahlbacka, J. Tikkanen, K. Kiviluoma, T. Juvonen, and P. Lehenkari. 2009. Acute homing of bone marrow-derived mononuclear cells in intramyocardial vs. intracoronary transplantation. Scand. Cardiovasc. J. 43(6): 366-373.
Menasche, P., A. A. Hagege, M. Scorsin, B. Pouzet, M. Desnos, D. Duboc, K. Schwartz, J. T. Vilquin, and J. P. Marolleau. 2001. Myoblast transplantation for heart failure. Lancet 357 (9252): 279-280.
Michael, L. H., M. L. Entman, C. J. Hartley, K. A. Youker, J. Zhu, S. R. Hall, H. K. Hawkins, K. Berens, and C.M. Ballantyne. 1995. Myocardial ischemia and reperfusion: a murine model. Am. J. Physiol. 269: H2147-2154.
Moorefield, E.C., E. E. McKee, L. Solchaga, G. Orlando, J. J. Yoo, S. Walker, M. E. Furth, and C. E. Bishop. 2011. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS ONE 6(10): e26535.
Mozid, A. M., S. Arnous, E. C. Sammut, and A. Mathur. 2011. Stem cell therapy for heart diseases. Br. Med. Bull. 98: 143-159.
Nian, M., P. Lee, N. Khaper, and P. Liu. 2004. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94: 1543-1553.
Penn, M. S., S. Ellis, S. Gandhi, A. Greenbaum, Z. Hodes, F. O. Mendelsohn, D. Strasser, A. E. Ting, and W. Sherman. 2012. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ. Res. 110: 304-311.
Perin, L., S. Sedrakyan, S. Giuliani, S. Da Sacco, G. Carraro, L. Shiri, K. V. Lemley, M. Rosol, S. Wu, A. Atala, D. Warburton, and R. E. De Filippo. 2010. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5 (2): e9357.
Pfeffer, M. A., and E. Braunwald. 1990. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81: 1161-1172.
Pfeffer, M.A., J. M. Pfeffer, M. C. Fishbein, P. J. Fletcher, J. Spadaro, R. A. Kloner, and E. Braunwald. 1979. Myocardial infarct size and ventricular function in rats. Circ. Res. 44: 503-512.
Placzek, M. R., I. M. Chung, H. M. Macedo, S. Ismail, T. Mortera Blanco, M. Lim, J. M. Cha, I. Fauzi, Y. Kang, D. C. Yeo, C. Y. Ma, J. M. Polak, N. Panoskaltsis, and A. Mantalaris. 2009. Stem cell bioprocessing: fundamentals and principles. J. R. Soc. Interface 6: 209-232.
Quevedoa, H. C., K. E. Hatzistergosa, B. N. Oskoueia, G. S. Feigenbauma, J. E. Rodrigueza, D. Valdesa, P. M. Pattanya, J. P. Zambranoa, Q. Hua, I. McNiecea, A. W. Heldmana, and J. M. Harea. 2009. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. U S A. 106(33): 14022-14027.
Rangappa, S., R. Makkar, and J. Forrester. 2010. Current status of myocardial regeneration: new cell sources and new strategies. J. Cardiovasc. Pharmacol. Ther. 15(4): 338-343.
Roelen, D. L., B. J. van der Mast, P. S. in't Anker, C. Kleijburg, M. Eikmans, E. van Beelen, G. M. de Groot-Swings, W. E. Fibbe, H. H. Kanhai, S. A. Scherjon, and F. H. Claas. 2009. Differential immunomodulatory effects of fetal versus maternal multipotent stromal cells. Hum Immunol. 70(1): 16-23.
Salto-Tellez, M., L. S. Yung, R. M. El-Oakley, T. P. Tang, Z. A. ALmsherqi, and S. K. Lim. 2004. Myocardial infarction in the C57BL/6J mouse: a quantifiable and highly reproducible experimental model. Cardiovasc. Pathol. 13(2): 91-97.
Schächinger, V., S. Erbs, A. Elsässer, W. Haberbosch, R. Hambrecht, H. Hölschermann, J. Yu, R. Corti, D. G. Mathey, C. W. Hamm, T. Süselbeck, B. Assmus, T. Tonn, S. Dimmeler, and A. M. Zeiher. 2006. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Eng. J. Med. 355: 1210-1221.
Shabbir, A., D. Zisa, H. Lin, M. Mastri, G. Roloff, G. Suzuki, and T. Lee. 2010. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am. J. Physiol. Heart Circ. Physiol. 299: H1428-1438.
Sun, Y., and K. T. Weber. 1996. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J. Mol. Cell. Cardiol. 28: 851-858.
Sutton, M. G.,and N. Sharpe. 2000. Left ventricular remodeling after myocardial infarction pathophysiology and therapy Circulation 101: 2981-2988.
Takahashi, M., T. S. Li, R. Suzuki, T. Kobayashi, H. Ito, Y. Ikeda, M. Matsuzaki, and K. Hamano. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol. Heart Circ. Physiol. 291: H886-893.
Tarnavski, O. 2009. Mouse surgical models in cardiovascular research. Cardiovascular genomics, methods in molecular biology 573: 115-137.
Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.
Timmers, L., S. K. Lim, I. E. Hoefer, F. Arslan, R. C. Lai, A. A. van Oorschot, M. J. Goumans, C. Strijder, S. K. Sze, A. Choo, J. J. Piek, P. A. Doevendans, G. Pasterkamp, and D. P. de Kleijn. 2011. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 6 (3): 206-214.
Van den Borne, S. W., M. J. Diez, W. M. Blankesteijn, J. Verjans, L. Hofstra, and J. Narula. 2010. Myocardial remodeling after infarction: the role of myofibroblasts.Nat. Rev. Cardiol. 7: 30-37.
Virag, J.A., and R. M. Lust. 2011. Coronary artery ligation and intramyocardial injection in a murine model of infarction. JoVE. 52.
Vulliet, P. R., M. Greeley, S. M. Halloran, K. A. MacDonald, and M. D. Kittleson. 2004. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363 (9411): 783-784.
Wang, J., H. Bo, X. Meng, Y. Wu, Y. Bao, and Y. Li. 2006. A simple and fast experimental model of myocardial infarction in the mouse. Tex. Heart Inst. J. 33: 290-293.
Westrich, J., P. Yaeger, C. He, J. Stewart, R. Chen, G. Seleznik, S. Larson, B. Wentworth, M. O’Callaghan, S. Wadsworth, G. Akita, G. Molnar. 2010. Factors affecting residence time of mesenchymal stromal cells (MSC) injected into the myocardium. Cell Transplant. 19: 937-948.
Willems, I. E., M. G. Havenith, J. G. De Mey, and M. J. Daemen. 1994. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145: 868–875.
Wollert, K. C., G. P. Meyer, J. Lotz, S. Ringes-Lichtenberg, P. Lippolt, C. Breidenbach, S. Fichtner, T. Korte, B. Hornig, D. Messinger, L. Arseniev, B. Hertenstein, A. Ganser, and H. Drexler. 2004. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364: 141-148.
Zheng, Y. B., Z. L. Gao, C. Xie, H. P. Zhu, L. Peng, J. H. Chen, and Y. T. Chong. 2008. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol. Int. 32: 1439-1448.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66369-
dc.description.abstract心臟疾病為國人的主要死亡原因,心肌梗塞為其中一項最知名的致命原因。心肌梗塞會導致梗塞區域之心肌細胞因死亡,並使心室結構擴張、心臟功能逐漸下降,最終可能導致心臟衰竭。幹細胞療法已證實可對受損的心臟發揮修復作用,其治療機制來自於其分化能力或來自分泌的細胞激素。羊水幹細胞為近年來新發現之幹細胞種類,可通過低侵入性之操作方式取得、且具優秀之分化潛能與免疫調節功能,並具有於體內或體外分化成為心肌細胞之潛力。目前的研究結果顯示羊水幹細胞對心肌梗塞模式動物具治療效果,但針對其分泌能力於心肌梗塞之治療效果的研究報告仍相較缺乏。因此本試驗中將利用肌肉注射之方式,測試羊水幹細胞是否能藉其分泌之因子產生治療效果。
為測試羊水幹細胞移植是否可對心肌梗塞小鼠產生治療效果,首先將由本研究室建立之Ds-red 紅色螢光轉基因豬之羊水中分離羊水幹細胞供後續試驗使用。本試驗中取得的紅色螢光豬羊水幹細胞,經表面抗原鑑定發現所取得的紅色螢光豬羊水幹細胞不會表現CD31及CD4a二項標誌,而會表現CD44與CD90,且經繼代後仍可穩定表現紅螢光蛋白質。
為確保後續之羊水幹細胞移植實驗可順利進行,需先建立穩定的心肌梗塞小鼠模型。本試驗將以8週齡之雄性C57/B6小鼠做為模式動物,將其分為心肌梗塞組與偽手術組,心肌梗塞組之小鼠採永久性結紮之方式紮起冠狀動脈左前降枝。之後利用心臟超音波及組織切片分析檢測心臟結構及功能之變化。手術後4週,心肌梗塞組小鼠之左心室收縮末期內徑與左心室舒張末期內徑均顯著增加(p < 0.05)。手術後2週心肌梗塞小鼠之左心室射血分率降至47.82 ± 2.21%,且於手術後4週更進一步降為35.51 ± 4.13%。此外,心肌梗塞組小鼠梗塞區域之心室壁厚度顯著變薄(p < 0.05),且於梗塞區域形成了由纖維組織構成的疤痕。以上結果證實我們成功的建立了合適的心肌梗塞小鼠模式。
為謀測試肌肉注射羊水幹細胞是否可對心肌梗塞小鼠產生治療效果,本試驗中將B6小鼠分做3組:中細胞劑量組(1 x 106 cells per leg),高細胞劑量組(4 x 106 cells per leg) 與PBS對照組。細胞或PBS將於心肌梗塞手術完成後20分鐘,直接以肌肉注射之方式移植至左右腿的大腿肌肉中。手術後4週,中細胞劑量組(43.16 ± 2.81%)及高細胞劑量組(50.04 ± 5.37%)與PBS對照組(37.54 ± 3.98%)相較,均保持較佳的左心室射血分率 (p < 0.05)。且中細胞劑量組與高細胞劑量組其手術後4週之左心室射血分率與手術後2週之左心室射血分率保持在相同水平。移植中細胞劑量組與高細胞劑量組於梗塞區域之心室壁厚度於心肌梗塞後仍保持較厚(p < 0.05),在高細胞劑量組中疤痕的尺寸亦較PBS對照組小(p < 0.05)。且中細胞劑量組與高細胞劑量組之左心室擴張指數均較PBS對照組為小(p < 0.05),顯示其左心室之擴張程度較低。此外利用非侵入式活體影像系統分析由各組小鼠取得之肌肉、心、肺、腎等組織樣本後,發現只有於中細胞劑量組與高細胞劑量組小鼠之腿部肌肉中可偵測到紅色螢光蛋白質之訊號,顯示該處仍留有所植入的紅色螢光豬羊水細胞,於其它組織內並無偵測到紅色螢光蛋白質之訊號。
綜上所述,肌肉注射豬羊水幹細胞可降低小鼠心肌梗塞後左心室之疤痕尺寸、維持其心室壁厚度、減低其左心室擴張程度,且可幫助保持較佳的心臟功能。由於所移植之羊水幹細胞會留存在腿部肌肉中,可推測其對於心臟結構與功能之治療功效應來自於其分泌之因子。
zh_TW
dc.description.abstractHeart diseases have been one of the major causes of death in Taiwan for years. Myocardial infarction (MI) is the best-known case among heart diseases, and often causes cell death in ischemic area, results in pathological remodeling and decreasing cardiac function, even may leads to heart failure eventually. Stem cell therapy had been demonstrated that could repair damaged heart through differentiation potential and factors secreting of stem cells. Amniotic fluid stem cells (AFSCs) among stem cells can be obtained with low-invasively procedure, and possess immunosuppressive properties, and shows cardiomyoplasticity in vivo and in vitro. Previous studies showed transplantation of AFSCs has beneficial effects for MI animals, but studies focused on its secretion abilities still lacks. Hence, the aims of this study are to investigate their therapeutic potential on MI mice by using the manner of AFSCs intramuscular injection.
In order to test the therapeutic potential of factors released by AFSCs, porcine AFSCs were isolated from amniotic fluid of E70 porcine fetus of Ds-red-transgenic pig. These cells express surface antigen CD44 and slight express CD90, do not express CD4a, CD31, and can stably express red fluorescence protein (RFP) after serial passage.
Before starting to test the therapeutic potential of AFSCs, appropriate MI model needs to be established. For this purpose, 8-week-old male C57/B6 mice were divided into MI group and Sham group. MI was induced by ligation of the left descending coronary. Four weeks after surgery, both of left ventricular (LV) end-systolic dimension and LV end-diastolic dimension increased significantly in MI group (p < 0.05). Two weeks after surgery, ejection fraction in MI group decreased to 47.82 ± 2.21%, and then further decreased to 35.51 ± 4.13% two weeks later. In addition, wall thickness decreased in infracted region, and fibrosis scar has formed within injury sites. Above results indicated suitable MI model has been established.
In order to test the effects of AFSCs intramuscular injection on MI mice, MI model mice were divided into 3 groups: medium cell dose (1 x 106 cells per leg) group Cell-M, high cell dose (4 x 106 cells per leg) group Cell-H and PBS group. Cells or PBS were directly injected into hamstring muscle 20 minutes after MI surgery. Four weeks after MI surgery, Cell-M and Cell-H groups (43.16 ± 2.81%, 50.04 ± 5.37%) when compared with PBS group (37.54 ± 3.98%) preserved significantly better LV ejection fraction (p < 0.05). And the ejection fraction in Cell-M and Cell-H groups four weeks after MI persevered in same level when compared to two weeks after MI. Infarct scar sizes in both Cell-M and Cell-H groups were smaller than in PBS group. Wall thickness in scar region preserved thicker in Cell-M and Cell-H groups when compared with PBS group. Cell-M and Cell-H groups also showed smaller LV expansion index, which indicated lower degree of LV dilation. The specimens of hamstring muscle, heart, lung, liver and kidney from mice in all groups were collected and detected by IVIS (in vivo imaging system) for RFP signals from injected or migrated cells. The result showed that only hamstring muscles from Cell-M and Cell-H groups exhibit RFP positive signals.
In summary, intramuscular injection of porcine AFSCs can reduce scar size, reduce pathological remodeling, and preserve better heart function after MI bearing. Putatively, intramuscularly injected AFSCs resided in hamstring muscle, and possibly assist recovery of heart morphology and function through their secreting factors.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:32:22Z (GMT). No. of bitstreams: 1
ntu-101-R98626013-1.pdf: 15977400 bytes, checksum: e566deb60805e2c65ff6a81ea8558063 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書……………………………….………………………………….….I
誌謝…………………………………………….………..………………………………II
目錄…………………………………………………………………………………….III
Index of Figures……………………………………………………………………….V
Index of Tables………………………………...……………………………………VIII
中文摘要………………………………………………...……….…….……...…….…IX
英文摘要……………………………………………………….……...……………….XI
前言………………………………...……………………………………………………1
第一章 文獻檢討...……………………………………………………………………..3
1.1心臟之結構與功能…………………………………...………………………..3
1.2心肌梗塞……………………………………………...………………………..5
1.2.1心肌梗塞簡介……………………………………………………………5
1.2.2心肌梗塞後之心室重塑…………………………………………..……..6
1.2.3心肌梗塞治療……………………………………………………..……..7
1.2.4心肌梗塞動物模式………………………………………………...…….8
1.3幹細胞簡介……………………………………………………………………10
1.3.1幹細胞…………………………………………………………………..10
1.3.2羊水幹細胞……………………………………………………………..11
1.4細胞療法於心肌梗塞之應用…………………………………………..……..13
1.4.1細胞療法於心肌梗塞治療之研究進展………………………………..13
1.4.2細胞療法於心肌梗塞治療之機制探討………………………………..14
1.4.3細胞移植策略比較……………………………………………………..15
第二章 試驗內容……………………………………………………………………...17
試驗一:紅色螢光豬之羊水幹細胞的建立............…………………………….17
(一) 前言…………………………..…………………………………………...17
(二) 材料與方法…………………..…………………………………………...18
(三) 結果與討論…………………..…………………………………………...20
試驗二:心肌梗塞小鼠模型之建立與檢測…………..…………………………….23
(一) 前言…………………..…………………………………………………...23
(二) 材料與方法…………..…………………………………………………...24
(三) 結果與討論…………..…………………………………………………...28
試驗三:應用肌肉注射豬羊水幹細胞治療心肌梗塞小鼠之可行性探討…….…..36
(一) 前言……………………..………………………………………………...36
(二) 材料與方法…………….………………………………………………....38
(三) 結果與討論…………..…………………………………………………...40
第三章 綜合討論……………………………………………………………………...50
第四章 結論…………………………………………………………………………...53
第五章 未來展望……………………………………………………………………...54
參考文獻………………………………………………….……………………………55
dc.language.isozh-TW
dc.subject細胞移植zh_TW
dc.subject心肌梗塞zh_TW
dc.subject羊水幹細胞zh_TW
dc.subject紅色螢光豬zh_TW
dc.subjectCell transplantationen
dc.subjectMyocardial infarctionen
dc.subjectAmniotic fluid stem cellen
dc.subjectDs-red transgenic pigen
dc.title遠端肌肉注射羊水幹細胞之心肌梗塞小鼠治療模式zh_TW
dc.titleRemote intramuscular injection of amniotic fluid stem cells in myocardial infarction mouse modelen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭登貴,劉逸軒,李愛先
dc.subject.keyword心肌梗塞,羊水幹細胞,紅色螢光豬,細胞移植,zh_TW
dc.subject.keywordMyocardial infarction,Amniotic fluid stem cell,Ds-red transgenic pig,Cell transplantation,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2012-02-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
15.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved