Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66366
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生(Huu-Sheng Lur)
dc.contributor.authorShu-Hwa Hsuen
dc.contributor.author許書華zh_TW
dc.date.accessioned2021-06-17T00:32:13Z-
dc.date.available2017-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-10
dc.identifier.citation戶刈義次 (1963) 作物學試驗法。東京農業技術學會印行 159-176
陳瀅如 (2009) 乙烯和多元胺對高溫下水稻穀粒發育的關係。 國立台灣大學農藝學研究所碩士論文 台北 台灣。
Alcázar R, Marco F, Cuevas J, Patron M, Ferrando A, Carrasco P, Tiburcio A, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28: 1867-1876
Asthir B, Duffus CM, Smith RC, Spoor W (2002) Diamine oxidase is involved in H2O2 production in the chalazal cells during barley grain filling. J Exp Bot 53: 677-682
Bajaj S, Rajam MV (1996) Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice (restoration of plant regeneration by manipulation of cellular polyamine levels). Plant Physiol 112: 1343-1348
Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125: 2139-2153
Bhatnagar P, Minocha R, Minocha SC (2002) Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. Plant Physiol 128: 1455-1469
Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytol 182: 17-30
Borisjuk L, Rolletschek H, Walenta S, Panitz R, Wobus U, Weber H (2003) Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity. Plant J 36: 318-329
Borrell A, Culianez-Macia FA, Altabella T, Besford RT, Flores D, Tiburcio AF (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109: 771-776
Bortolotti C, Cordeiro A, Alcázar R, Borrell A, Culiañez-Macià FA, Tiburcio AF, Altabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120: 84-92
Brown R, Lemmon B, Olsen O-A (1996) Development of the endosperm in rice (Oryza sativa L.): cellularization. J Plant Res 109: 301-313
Caley CY, Duffus CM, Jeffcoat B (1990) Photosynthesis in the pericarp of developing wheat grains. J Exp Bot 41: 303-307
Cao DD, Hu J, Zhu SJ, Hu WM, Knapp A (2010) Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Sci Hortic 123: 301-307
Capell T, Bassie L (2005) Progress in the modulation of the polyamine biosynthetic pathway in transgenic rice. J Biol Sci 5: 379-390
Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101: 9909-9914
Capell T, Escobar C, Liu H, Burtin D, Lepri O, Christou P (1998) Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet 97: 246-254
Chattopadhyay MK, Gupta S, Sengupta DN, Ghosh B (1997) Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol 34: 477-483
Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa L.) plants. Physiol Plant 116: 192-199
Chattopadhyay MK, Tabor CW, Tabor H (2002) Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (Schizosaccharomyces pombe). Proc Natl Acad Sci U S A 99: 10330-10334
Chou WC, Huang YW, Tsay WS, Chiang TY, Huang DE, Huang HJ (2004) Expression of genes encoding the rice translation initiation factor, eIF5A, is involved in developmental and environmental responses. Physiol Plant 121: 50-57
Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11: 80-88
Duhazé C, Gouzerh G, Gagneul D, Larher F, Bouchereau A (2002) The conversion of spermidine to putrescine and 1,3-diaminopropane in the roots of Limonium tataricum. Plant Sci 163: 639-646
Eastmond P, Lucie K, Rawsthorne S (1996) Photosynthesis by developing embryos of oilseed rape (Brassica napus L.). J Exp Bot 47: 1763-1769
Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31: 937-945
Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69: 701-706
Fouad W, Altpeter F (2009) Transplastomic expression of bacterial L-aspartatea-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress. Transgenic Res 18: 707-718
Fuller DJ, Gerner EW, Russell DH (1977) Polyamine biosynthesis and accumulation during the G1 to S phase transition. J Cell Physiol 93: 81-88
Gehrig H, Winter K, Cushman J, Borland A, Taybi T (2000) An improved RNA isolation method for succulent plant species rich in polyphenols and polysaccharides. Plant Mol Biol Rep 18: 369-376
Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34: 35-45
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 189-198
Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29: 300-311
Iida S, Amano E, Nishio T (1993) A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theor Appl Genet 87: 374-378
Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135: 1565-1573
Ishimaru T, Matsuda T, Ohsugi R, Yamagishi T (2003) Morphological development of rice caryopses located at the different positions in a panicle from early to middle stage of grain filling. Funct Plant Biol 30: 1139-1149
Ito S, Hara T, Kawanami Y, Watanabe T, Thiraporn K, Ohtake N, Sueyoshi K, Mitsui T, Fukuyama T, Takahashi Y, Sato T, Sato A, Ohyama T (2009) Carbon and nitrogen transport during grain filling in rice under high-temperature conditions. J Agron Crop Sci 195: 368-376
Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345: 646-651
Jana S, Choudhuri MA (1982) Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot 12: 345-354
Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Biol Plant 43: 1-11
Kalamaki MS, Alexandrou D, Lazari D, Merkouropoulos G, Fotopoulos V, Pateraki I, Aggelis A, Carrillo-Lopez A, Rubio-Cabetas MJ, Kanellis AK (2009) Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J Exp Bot 60: 1859-1871
Kamauchi S, Wadahama H, Iwasaki K, Nakamoto Y, Nishizawa K, Ishimoto M, Kawada T, Urade R (2008) Molecular cloning and characterization of two soybean protein disulfide isomerases as molecular chaperones for seed storage proteins. FEBS J 275: 2644-2658
Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45: 712-722
Kato-Noguchi H, Morokuma M (2007) Ethanolic fermentation and anoxia tolerance in four rice cultivars. J Plant Physiol 164: 168-173
Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889-905
Kim ST, Kim SG, Kang YH, Wang Y, Kim JY, Yi N, Kim JK, Rakwal R, Koh HJ, Kang KY (2008) Proteomics analysis of rice lesion mimic mutant (spil1) reveals tightly localized Probenazole-Induced protein (PBZ1) in cells undergoing programmed cell death. J Proteome Res 7: 1750-1760
Konstantinos PA, Imene T, Panagiotis MN, Roubelakis-Angelakis KA (2010) ABA-dependent amine oxidases-derived H2O2 affects stomata conductance. Plant Signal Behav 5: 1153-1156
Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91: 500-504
Kumar A, Taylor MA, Arif SAM, Davies HV (1996) Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J 9: 147-158
Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228: 367-381
Li Z, Nada K, Tachibana S (2003) High-temperature-induced alteration of ABA and polyamine contents in leaves and its implication in thermal acclimation of photosynthesis in cucumber (Cucumis sativus L.) J Jpn Soc Hort Sci 72: 393-401
Liang YL, Lur HS (2002) Conjugated and free polyamine levels in normal and aborting maize kernels. Crop Sci 42: 1217-1224
Lin CJ, Li CY, Lin SK, Yang FH, Huang JJ, Liu YH, Lur HS (2010) Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem 58: 10545-10552
Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5: 2140-2156
Moons A, Valcke R, Montagu VM (1998) Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant J 15: 89-98
Moore S, Stein WH (1948) Phtotmetric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176: 367-388
Morita S, Shiratsuchi H, Takahashi J, Fujita K (2004) Effect of high temperature on grain ripening in rice plants: analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Jpn J Crop Sci 73: 77-83
Morita S, Yonemaru J, Takanashi J (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95: 695-701
Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20: 1708-1724
Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3: 1061-1066
Nishimura M, Kusaba M, Miyahara K, Nishio T, Iida S, Imbe T, Sato H (2005) New rice varieties with low levels of easy-to-digest protein, 'LGC-Katsu' and 'LGC-Jun'. Breed Sci 55: 103-105
Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25: 291-299
Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139: 161-169
Perez CM, Juliano BO, Liboon SP, Alcantara JM, Cassman KG (1996) Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem 73: 556-560
Pillai MA, Akiyama T (2004) Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. Mol Genet Genomics 271: 141-149
Quiroga M, Guerrero C, Botella MA, Barcelo A, Amaya I, Medina MI, Alonso FJ, de Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122: 1119-1127
Ramachandran C, Raghavan V (1989) Changes in nuclear DNA content of endosperm cells during grain development in rice (Oryza sativa L.). Ann Bot 64: 459-468
Raman SB, Rathinasabapathi B (2004) Pantothenate synthesis in plants. Plant Sci 167: 961-968
Rathinasabapathi B, Sigua C, Ho J, Gage DA (2000) Osmoprotectant β-alanine betaine synthesis in the Plumbaginaceae: S-adenosyl-l-methionine dependent N-methylation of β-alanine to its betaine is via N-methyl and N,N-dimethyl β-alanines. Physiol Plant 109: 225-231
Reggiani R, Cantu CA, Brambilla I, Bertani A (1988) Accumulation and interconversion of amino-acids in rice roots under anoxia. Plant Cell Physiol 29: 981-987
Richards FJ, Coleman RG (1952) Occurrence of putrescine in potassium-deficient barley. Nature 170: 460-460
Rodriguez AA, Maiale SJ, Menendez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60: 4249-4262
Roy M, Ghosh B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa L.) callus. Physiol Plant 98: 196-200
Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136: 2700-2709
Sambrook J, Fritsch EF Maniatis T (1989) Molecular cloning: A laboratory manual. , Second ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
Sen K, Choudhuri MM, Ghosh B (1981) Changes in polyamine contents during development and germination of rice seeds. Phytochemistry 20: 631-633
Shantz LM, Holm I, Janne OA, Pegg AE (1992) Regulation of S-adenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem J 288: 511-518
She K-C, Kusano H, Yaeshima M, Sasaki T, Satoh H, Shimada H (2010) Reduced rice grain production under high-temperature stress closely correlates with ATP shortage during seed development. Plant Biotechnol 27: 67-73
Slocum RD (2005) Genes, enzymes and regulation of arginine biosynthesis in plants. J Biomed Sci 43: 729-745
Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36: 117-143
Song J, Nada K, Tachibana S (2002) Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol 43: 619-627
Sung HI, Liu LF, Kao CH (1995) The decrease in polyamine levels is not associated with growth inhibition in suspension-cultured rice cells under nitrogen deficiency. Biol Plant 37: 213-217
Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53: 749-790
Tashiro T, Wardlaw IF (1991a) The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res 42: 485-496
Tashiro T, Wardlaw IF (1991b) The effect of high-temperature on the accumulation of dry-matter, carbon and nitrogen in the kernel of rice. Aust J Plant Physiol 18: 259-265
Thu-Hang P, Bassie L, Safwat G, Trung-Nghia P, Christou P, Capell T (2002) Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol 129: 1744-1754
Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Salem-fnayou AB, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167: 519-525
Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579: 1557-1564
Wintermans JF, de Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta 109: 448-453
Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148: 908-925
Xue B, Zhang A, Jiang M (2009) Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize. J Integr Plant Biol 51: 225-234
Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51: 795-809
Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144: 258-277
Yang J, Yunying C, Zhang H, Liu L, Zhang J (2008) Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta 228: 137-1493
Yang JC, Zhang JH, Wang ZQ, Liu K, Wang P (2006) Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot 57: 149-160
Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142: 193-206
Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44: 283-301
Zakaria S, Matsuda T, Tajima S, Niita Y (2002) Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci 5: 160-168
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66366-
dc.description.abstract水稻穎果充實期遭遇高溫增加白堊質粒比例,降低完整米率,碾米品質及米粒外觀劣化為現今稻米市場一大問題。本研究室前人研究顯示高溫下外加氮素可減少糙米白堊質發生,且高溫處理之穎果內生多元胺含量下降,但仍須釐清高溫下穎果內多元胺的功能及其與氮素的關係 。為瞭解高溫下氮素與多元胺影響水稻穎果產量及品質的機制,本研究選擇台灣良質米品種TK9為材料,於穎果充實期進行常溫(25/20 oC, 日/夜溫)及高溫處理 (35/30 oC, 日/夜溫),並於溫度處裡下外加氮肥,分析各發育階段之水稻穎果及成熟穀粒之外觀品質、儲存性蛋白含量、穎果果皮葉綠素含量及氧化逆境相關生理指標,且進一步利用高壓液相層析 (HPLC)設備分析多元胺含量,並以即時定量聚合酶連鎖反應 (Real-time Quantitative PCR)分析多元胺代謝相關基因及逆境反應相關基因之表現。
  結果顯示高溫降低穎果產量及品質,高溫下外加氮素處理之單粒重及儲存性蛋白質含量較高溫處理高,且外加氮素降低白堊質發生率。穎果相關生理分析指出高溫加氮減緩高溫對穎果之生理傷害,如延緩果皮葉綠素降解,減少H2O2及膜系過氧化指標malondialdehyde (MDA)含量。多元胺含量分析結果顯示,穎果內主要多元胺為spermidine,其次為putrescine及spermine,其比例不受溫度處理影響;而高溫下外加氮素可恢復高溫導致之多元胺含量降低。基因表現結果顯示高溫下GBSS、Pro7、Glu等乾物質合成相關基因被抑制,而無氧呼吸相關基因pyruvate decarbox-ylase (PDC)與alchol dehydrogenase (ADH)表現上升,顯示高溫下能量供應效率較低且乾物質合成也被抑制;此外,高溫下提升polyamine oxidase (PAO)表現,可能為導致穎果多元胺含量較少且提升H2O2含量之主因。反之高溫外加氮素處理之GBSS、Pro7、Glu較高,且降低PDC、ADH及PAO表現,顯示氮素可恢復穎果乾物質合成能力,且維持多元胺含量及減少H2O2產生,推測高溫下加氮處理可透過抑制PAO表現緩解高溫對穎果之過氧化傷害。為確認PAO對穎果生理之影響,另於高溫下外加spermidine及1,8-diaminooctane (1,8-DO, PAO抑制劑)處理,結果顯示外加spermidine或抑制PAO活性可增加果皮葉綠素、降低H2O2及MDA含量。推測高溫下氮素可藉由抑制PAO表現,有助於維持多元胺含量,也減少H2O2產生避免過氧化逆境的發生。
zh_TW
dc.description.abstractHigh temperature during the gain-filling stage can increase chalky appear-ance and reduce weight of rice grains. Our previous studies showed that high temperature can reduce polyamine level of rice grains, and application of nitrogen fertilizer can reduce the chalkiness of rice grains. However, the relationship between polyamines level and nitrogen fertilizer during rice grain filling stage at high temperature is still unclear. In order to understand the role of polyamine and its relationship with nitrogen in developing rice grains under high temperature, rice cultivar TK 9 was used as material in this experiment. After flowering, TK 9 was exposed to high temperature for 15 days with or without nitrogen addition during grain filling stage. Grain quality, major storage protein and physiolocal responses were determined after harvest. Polyamine levels of developing rice caryopsis were analyzed by HPLC. Real-time quantitative PCR was further utilized to determine the gene expression of key genes in response to high temperature and nitrogen application.
The results showed that high temperature caused deleterious effects on the yield and quality of rice grains. Applying nitrogen increased dry matter and major storage proteins content, while reduced chalkiness grain ratio. Physiological analysis showed that nitrogen moderated the deleterious ef-fects of high temperature by delaying chlorophyll degradation of pericarp and reducing Malondialdehyde (MDA) concentration. In developing caryopsis, the major polyamine was spermidine (Spd), followed by putrescine (Put) and Spermine (Spm), regardless of temperature treatments. Nitrogen application recovered the decreased level of polyamine under high temperature. In further gene expression analysis, high temperature repressed genes expression related to biosynthesis of starch and protein, such as GBSS, Pro7 and Glu, whereas elevated the expression of hypoxia fermentation-related genes, such as pyruvate decar-boxylase (PDC) and alchol dehydrogenase (ADH). In addition, high temperature enhanced expression of PAO gene, which led to reduction of Spd level and release of hydrogen peroxide (H2O2). High temperature also enhanced expression of the cell death related gene PBZ. On the other hand, nitrogen application repressed expression of PAO gene under high temperature, suggesting that nitrogen prevented degradation of spd and alleviated oxidative stress. Under high temperature, external applycation of spd or 1, 8-diaminooctane (1, 8-DO, PAO inhibitor) sustained caryopsis chlorophyll content and grain weight, but reduced accumulation of H2O2 and MDA. The present findings suggest that the decreased level of polyamines may be involved in high temperature induced defective caryopsis traits, and the nitrogen application can ameliorate the deleterious effects of high temperature by inhibiting the expression of PAO gene.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:32:13Z (GMT). No. of bitstreams: 1
ntu-101-R98621112-1.pdf: 3664238 bytes, checksum: 6fa7426732d65245f0beecc544dd52cc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖與附表目錄 VIII
縮寫字對照表 X
壹、 前言 1
一、 稻米品質與高溫環境 1
二、 多元胺與水稻穀粒發育 3
三、 氮肥與水稻品質 7
四、 試驗推論 9
貳、 材料方法 11
一、 試驗材料之栽培、處理與取樣 11
二、 生理分析方法 12
三、 基因表現分析方法 18
參、 結果 20
一、 生理及品質性狀分析 20
二、 多元胺含量分析 30
三、 高溫及氮素對穎果發育期之相關基因表現分析 33
四、 外加Spermidine 與 PAO (polyamine oxidase) 抑制劑1,8-DO (1,8-diaminooctane)對穎果生理之影響 48
肆、 討論 52
伍、 結論 60
陸、 參考文獻 67
dc.language.isozh-TW
dc.subject高溫zh_TW
dc.subject多元胺zh_TW
dc.subject水稻zh_TW
dc.subjectriceen
dc.subjectpolyamineen
dc.subjecthigh temperatureen
dc.title高溫下水稻充實期多元胺與水稻品質形成的關係zh_TW
dc.titleRelationship between polyamines and the formation of grain quality during grain-filling stage
under high temperature
en
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee朱鈞(Chun Chu),陳宗禮(Chung-Li Chen),高景輝(Ching-Huei Kao),張孟基(Men-Chi Chang)
dc.subject.keyword高溫,多元胺,水稻,zh_TW
dc.subject.keywordhigh temperature,polyamine,rice,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2012-02-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved