請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66354
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊台鴻,鄭郅言 | |
dc.contributor.author | Ching-Wen Huang | en |
dc.contributor.author | 黃慶文 | zh_TW |
dc.date.accessioned | 2021-06-17T00:31:40Z | - |
dc.date.available | 2013-03-19 | |
dc.date.copyright | 2012-03-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-10 | |
dc.identifier.citation | 1. Ingvar, S. (1920) Reaction of cells to the galvanic current in tissue cultures. Proceedings of the society for experimental biology and medicine, 17, 198-199.
2. Sato, M.J., Ueda, M., Takagi, H., Watanabe, T.M. and Yanagida, T. (2007) Input-output relationship in galvanotactic response of Dictyostelium cells. Biosystems, 88, 261-272. 3. McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. (2005) Controlling cell behavior electrically: Current views and future potential. Physiol. Rev., 85, 943-978. 4. Szatkowski, M., Mycielska, M., Knowles, R., Kho, A.L. and Djamgoz, M.B.A. (2000) Electrophysiological recordings from the rat prostate gland in vitro: identified single-cell and transepithelial (lumen) potentials. BJU Int., 86, 1068-1075. 5. Wang, C.C., Lu, J.N. and Young, T.H. (2007) The alteration of cell membrane charge after cultured on polymer membranes. Biomaterials, 28, 625-631. 6. Liotta, L.A., Rao, C.N. and Wewer, U.M. (1986) Biochemical interactions of tumor-cells with the basement-membrane. Annu. Rev. Biochem., 55, 1037-1057. 7. Chu, Y.W., Yang, P.C., Yang, S.C., Shyu, Y.C., Hendrix, M.J.C., Wu, R. and Wu, C.W. (1997) Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am. J. Respir. Cell Mol. Biol., 17, 353-360. 8. Cuzick, J., Holland, R., Barth, V., Davies, R., Faupel, M., Fentiman, I., Frischbier, H.J., LaMarque, J.L., Merson, M., Sacchini, V. et al. (1998) Electropotential measurements as a new diagnostic modality for breast cancer. Lancet, 352, 359-363. 9. Nuccitelli, R. (2011) In Pullar, C. E. (ed.), The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer Taylor & Francis, pp. 1-16. 10. Mycielska, M.E. and Djamgoz, M.B.A. (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci., 117, 1631-1639. 11. Faupel, M., Vanel, D., Barth, V., Davies, R., Fentiman, I.S., Holland, R., Lamarque, J.L., Sacchini, V. and Schreer, I. (1997) Electropotential evaluation as a new technique for diagnosing breast lesions. Eur. J. Radiol., 24, 33-38. 12. Djamgoz, M.B.A. (2011) In Pullar, C. E. (ed.), The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer Taylor & Francis, pp. 267-292. 13. Djamgoz, M.B.A., Mycielska, M., Madeja, Z., Fraser, S.P. and Korohoda, W. (2001) Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na+ channel activity. J. Cell Sci., 114, 2697-2705. 14. Revest, P.A., Jones, H.C. and Abbott, N.J. (1993) The transendothelial DC potential of rat blood-brain barrier vessels in situ. Advances in experimental medicine and biology, 331, 71-74. 15. Pu, J., McCaig, C.D., Cao, L., Zhao, Z.Q., Segall, J.E. and Zhao, M. (2007) EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J. Cell Sci., 120, 3395-3403. 16. Yan, X., Han, J., Zhang, Z., Wang, J., Cheng, Q., Gao, K., Ni, Y. and Wang, Y. (2009) Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Bioelectromagnetics, 30, 29-35. 17. Zhao, M., Dick, A., Forrester, J.V. and McCaig, C.D. (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol. Biol. Cell, 10, 1259-1276. 18. Zhao, M., Pu, J., Forrester, J.V. and McCaig, C.D. (2002) Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. Faseb J., 16, 857-859. 19. Gruler, H. and Nuccitelli, R. (1991) Neural crest cell galvanotaxis - new data and a novel-approach to the analysis of both galvanotaxis and chemotaxis. Cell Motil. Cytoskeleton, 19, 121-133. 20. Rajnicek, A.M., Gow, N.A.R. and McCaig, C.D. (1992) Electric field-induced orientation of rat hippocampal-neurons in vitro. Exp. Physiol., 77, 229-232. 21. Pu, J. and Zhao, M. (2005) Golgi polarization in a strong electric field. J. Cell Sci., 118, 1117-1128. 22. Hart, F.X. (2008) The mechanical transduction of physiological strength electric fields. Bioelectromagnetics, 29, 447-455. 23. Jaffe, L.F. (1977) Electrophoresis along cell-membranes. Nature, 265, 600-602. 24. Orida, N. and Poo, M.M. (1978) Electrophoretic movement and localization of acetylcholine receptors in embryonic muscle-cell membrane. Nature, 275, 31-35. 25. McLaughlin, S. and Poo, M.M. (1981) The role of electroosmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys. J., 34, 85-93. 26. Pullar, C.E., Isseroff, R.R. and Nuccitelli, R. (2001) Cyclic AMP-dependent protein kinase a plays a role in the directed migration of human keratinocytes in a DC electric field. Cell Motil. Cytoskeleton, 50, 207-217. 27. Pullar, C.E. and Isseroff, R.R. (2005) Cyclic AMP mediates keratinocyte directional migration in an electric field. J. Cell Sci., 118, 2023-2034. 28. Pullar, C.E., Baier, B.S., Kariya, Y., Russell, A.J., Horst, B.A.J., Marinkovich, M.P. and Isseroff, R.R. (2006) Beta 4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol. Biol. Cell, 17, 4925-4935. 29. Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G.P., Wang, F., Guo, A.H., Walczysko, P., Gu, Y. et al. (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 442, 457-460. 30. Rajnicek, A.M., Foubister, L.E. and McCaig, C.D. (2006) Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. J. Cell Sci., 119, 1723-1735. 31. Rajnicek, A.M., Foubister, L.E. and McCaig, C.D. (2006) Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. J. Cell Sci., 119, 1736-1745. 32. Yao, L., Shanley, L., McCaig, C. and Zhao, M. (2008) Small applied electric fields guide migration of hippocampal neurons. J. Cell. Physiol., 216, 527-535. 33. Sato, M.J., Kuwayama, H., van Egmond, W.N., Takayama, A.L.K., Takagi, H., van Haastert, P.J.M., Yanagida, T. and Ueda, M. (2009) Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling. Proc. Natl. Acad. Sci. U. S. A., 106, 6667-6672. 34. Shanley, L.J., Walczysko, P., Bain, M., MacEwan, D.J. and Zhao, M. (2006) Influx of extracellular Ca2+ is necessary for electrotaxis in Dictyostelium. J. Cell Sci., 119, 4741-4748. 35. Ozkucur, N., Monsees, T.K., Perike, S., Do, H.Q. and Funk, R.H.W. (2009) Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells. PLoS One, 4, 10. 36. Jennings, J., Chen, D.Q. and Feldman, D. (2008) Transcriptional response of dermal fibroblasts in direct current electric fields. Bioelectromagnetics, 29, 394-405. 37. Jennings, J.A., Chen, D.Q. and Feldman, D.S. (2010) Upregulation of chemokine (C-C motif) ligand 20 in adult epidermal keratinocytes in direct current electric fields. Arch. Dermatol. Res., 302, 211-220. 38. Song, B., Gu, Y., Pu, J., Reid, B., Zhao, Z.Q. and Zhao, M. (2007) Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc., 2, 1479-1489. 39. Li, X.F. and Kolega, J. (2002) Effects of direct current electric fields on cell migration and actin filament distribution in bovine vascular endothelial cells. Journal of Vascular Research, 39, 391-404. 40. Li, J. and Lin, F. (2011) Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol., 21, 489-497. 41. Lin, F., Baldessari, F., Gyenge, C.C., Sato, T., Chambers, R.D., Santiago, J.G. and Butcher, E.C. (2008) Lymphocyte electrotaxis in vitro and in vivo. J. Immunol., 181, 2465-2471. 42. Rezai, P., Siddiqui, A., Selvaganapathy, P.R. and Gupta, B.P. (2010) Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab on a Chip, 10, 220-226. 43. Li, J., Nandagopal, S., Wu, D., Romanuik, S.F., Paul, K., Thomson, D.J. and Lin, F. (2011) Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices. Lab on a Chip, 11, 1298-1304. 44. Chen, J.J.W., Peck, K., Hong, T.M., Yang, S.C., Sher, Y.P., Shih, J.Y., Wu, R., Cheng, J.L., Roffler, S.R., Wu, C.W. et al. (2001) Global analysis of gene expression in invasion by a lung cancer model. Cancer Res., 61, 5223-5230. 45. Muller, T., Gradl, G., Howitz, S., Shirley, S., Schnelle, T. and Fuhr, G. (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelectron., 14, 247-256. 46. Gray, D.S., Tan, J.L., Voldman, J. and Chen, C.S. (2004) Dielectrophoretic registration of living cells to a microelectrode array (vol 19, pg 1765, 2004). Biosens. Bioelectron., 19, 1765-1774. 47. Hsiung, L.C., Yang, C.H., Chiu, C.L., Chen, C.L., Wang, Y., Lee, H., Cheng, J.Y., Ho, M.C. and Wo, A.M. (2008) A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosens. Bioelectron., 24, 869-875. 48. Lu, K.Y., Wo, A.M., Lo, Y.J., Chen, K.C., Lin, C.M. and Yang, C.R. (2006) Three dimensional electrode array for cell lysis via electroporation. Biosens. Bioelectron., 22, 568-574. 49. Jain, T. and Muthuswamy, J. (2007) Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells. Biosens. Bioelectron., 22, 863-870. 50. Cheng, J.Y., Wei, C.W., Hsu, K.H. and Young, T.H. (2004) Direct-write laser micromachining and universal surface modification of PMMA for device development. Sens. Actuator B-Chem., 99, 186-196. 51. Cheng, J.Y., Yen, M.H., Hsu, W.C., Jhang, J.H. and Young, T.H. (2007) ITO patterning by a low power Q-switched green laser and its use in the fabrication of a transparent flow meter. Journal of Micromechanics and Microengineering, 17, 2316-2323. 52. Gaver, D.P. and Kute, S.M. (1998) A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys. J., 75, 721-733. 53. Farokhzad, O.C., Khademhosseini, A., Yon, S.Y., Hermann, A., Cheng, J.J., Chin, C., Kiselyuk, A., Teply, B., Eng, G. and Langer, R. (2005) Microfluidic system for studying nanoparticles and microparticles the interaction of with cells. Anal. Chem., 77, 5453-5459. 54. Tilles, A.W., Baskaran, H., Roy, P., Yarmush, M.L. and Toner, M. (2001) Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol. Bioeng., 73, 379-389. 55. Cheng, J.Y., Yen, M.H., Hsu, W.C. and Young, T.H. (2007), The 8th International Symposium on Laser Precision Microfabrication (LPM2007), Vienna, Austria. 56. Shih, J.Y., Yang, S.C., Hong, T.M., Yuan, A., Chen, J.J.W., Yu, C.J., Chang, Y.L., Lee, Y.C., Peck, K., Wu, C.W. et al. (2001) Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J. Natl. Cancer Inst., 93, 1392-1400. 57. Cheng, J.Y., Yen, M.H., Kuo, C.T. and Young, T.H. (2008) A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics, 2. 58. Zhao, M., AgiusFernandez, A., Forrester, J.V. and McCaig, C.D. (1996) Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent. J. Cell Sci., 109, 1405-1414. 59. Sun, S., Titushkin, I. and Cho, M. (2006) Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 69, 133-141. 60. Glantz, S.A. (1992) Primer of Biostatistics. third ed. McGraw-Hill, New York. 61. Erickson, C.A. and Nuccitelli, R. (1984) Embryonic fibroblast motility and orientation can be influenced by physiological electric-fields. J. Cell Biol., 98, 296-307. 62. Cooper, M.S. and Keller, R.E. (1984) Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 81, 160-164. 63. Giugni, T.D., Braslau, D.L. and Haigler, H.T. (1987) Electric Field-induced Redistribution and Postfield Relaxation of Epidermal Growth Factor Receptors on A431 Cells. J. Cell Biol., 104, 1291-1297. 64. Wells, A. (2000), Advances in Cancer Research, Vol 78. Academic Press Inc, San Diego, Vol. 78, pp. 31-101. 65. Wieduwilt, M.J. and Moasser, M.M. (2008) The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cellular and Molecular Life Sciences, 65, 1566-1584. 66. Hsu, T.H., Yen, M.H., Liao, W.Y., Cheng, J.Y. and Lee, C.H. (2009) Label-free quantification of asymmetric cancer-cell filopodium activities in a multi-gradient chip. Lab on a Chip, 9, 884-890. 67. Wang, C.C., Lee, K.L. and Lee, C.H. (2009) Wide-field optical nanoprofilometry using structured illumination. Opt. Lett., 34, 3538-3540. 68. Wang, C.C., Kao, Y.C., Chi, P.Y., Huang, C.W., Lin, J.Y., Chou, C.F., Cheng, J.Y. and Lee, C.H. (2011) Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip. Lab on a Chip, 11, 695-699. 69. Liu, C.C., Lin, C.C., Chen, W.S.E., Chen, H.Y., Chang, P.C., Chen, J.J.W. and Yang, P.C. (2006) CRSD: a comprehensive web server for composite regulatory signature discovery. Nucleic Acids Res., 34, W571-W577. 70. Simon, D.P., Meethal, S.V., Wilson, A.C., Gallego, M.J., Weinecke, S.L., Bruce, E., Lyons, P., Haasl, R., Bowen, R.L. and Atwood, C.S. (2009) Activin receptor signaling regulates prostatic epithelial cell adhesion and viability. Neoplasia, 11, 365-U372. 71. Yeo, M.G., Oh, H.J., Cho, H.S., Chun, J.S., Marcantonio, E.E. and Song, W.K. (2011) Phosphorylation of Ser 21 in Fyn regulates its kinase activity, focal adhesion targeting, and is required for cell migration. J. Cell. Physiol., 226, 236-247. 72. Lewin, B., Siu, A., Baker, C., Dang, D.M., Schnitt, R., Eisapooran, P. and Ramos, D.M. (2010) Expression of Fyn kinase modulates EMT in oral cancer cells. Anticancer Res., 30, 2591-2596. 73. Sossey-Alaoui, K., Li, X.R., Ranalli, T.A. and Cowell, J.K. (2005) WAVE3-mediated cell migration and lamellipodia formation are regulated downstream of phosphatidylinositol 3-kinase. J. Biol. Chem., 280, 21748-21755. 74. Tachibana, K., Nakanishi, H., Mandai, K., Ozaki, K., Ikeda, W., Yamamoto, Y., Nagafuchi, A., Tsukita, S. and Takai, Y. (2000) Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol., 150, 1161-1175. 75. Ogita, H., Rikitake, Y., Miyoshi, J. and Takai, Y. (2010) Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci., 86, 621-629. 76. Huang, C.W., Cheng, J.Y., Yen, M.H. and Young, T.H. (2009) Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens. Bioelectron., 24, 3510-3516. 77. Twamley, G.M., Kypta, R.M., Hall, B. and Courtneidge, S.A. (1992) Association of Fyn with the activated platelet-derived growth factor receptor: requirements for binding and phosphorylation. Oncogene, 7, 1893-1899. 78. Chiarugi, P., Cirri, P., Raugei, G., Manao, G., Taddei, L. and Ramponi, G. (1996) Low M(r) phosphotyrosine protein phosphatase interacts with the PDGF receptor directly via its catalytic site. Biochemical and Biophysical Research Communications, 219, 21-25. 79. Gelderloos, J.A., Rosenkranz, S., Bazenet, C. and Kazlauskas, A. (1998) A role for Src in signal relay by the platelet-derived growth factor alpha receptor. The Journal of biological chemistry, 273, 5908-5901. 80. Hock, B., Bohme, B., Karn, T., Feller, S., Rubsamen-Waigmann, H. and Strebhardt, K. (1998) Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions. Oncogene, 17, 255-256. 81. Bucciantini, M., Chiarugi, P., Cirri, P., Taddei, L., Stefani, M., Raugei, G., Nordlund, P. and Ramponi, G. (1999) The low Mr phosphotyrosine protein phosphatase behaves differently when phosphorylated at Tyr131 or Tyr132 by Src kinase. FEBS letters, 456, 73-78. 82. Zisch, A.H., Pazzagli, C., Freeman, A.L., Schneller, M., Hadman, M., Smith, J.W., Ruoslahti, E. and Pasquale, E.B. (2000) Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene, 19, 177-178. 83. Avrov, K. and Kazlauskas, A. (2003) The role of c-Src in platelet-derived growth factor alpha receptor internalization. Experimental cell research, 291, 426-423. 84. Knoll, B. and Drescher, U. (2004) Src family kinases are involved in EphA receptor-mediated retinal axon guidance. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24, 6248-6245. 85. Hu, Y.H., Bock, G., Wick, G. and Xu, Q.B. (1998) Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. Faseb J., 12, 1135-1142. 86. Tanis, K.Q., Veach, D., Duewel, H.S., Bornmann, W.G. and Koleske, A.J. (2003) Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Molecular and cellular biology, 23, 3884-3889. 87. Plattner, R., Koleske, A.J., Kazlauskas, A. and Pendergast, A.M. (2004) Bidirectional signaling links the Abelson kinases to the platelet-derived growth factor receptor. Molecular and cellular biology, 24, 2573-2578. 88. Oda, A., Miki, H., Wada, I., Yamaguchi, H., Yamazaki, D., Suetsugu, S., Nakajima, M., Nakayama, A., Okawa, K., Miyazaki, H. et al. (2005) WAVE/Scars in platelets. Blood, 105, 3141-3148. 89. Suetsugu, S., Miki, H. and Takenawa, T. (1999) Identification of two human WAVE SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochemical and Biophysical Research Communications, 260, 296-302. 90. Ito, H., Kyo, S., Kanaya, T., Takakura, M., Inoue, M. and Namiki, M. (1998) Expression of human telomerase subunits and correlation with telomerase activity in urothelial cancer. Clin. Cancer Res., 4, 1603-1608. 91. Huang, H.D., Cruz, F. and Bazzoni, G. (2006) Junctional adhesion molecule-A regulates cell migration and resistance to shear stress. J. Cell. Physiol., 209, 122-130. 92. Mruk, D.D. and Lau, A.S.N. (2009) RAB13 participates in ectoplasmic specialization dynamics in the rat testis. Biol. Reprod., 80, 590-601. 93. Kanda, I., Nishimura, N., Nakatsuji, H., Yamamura, R., Nakanishi, H. and Sasaki, T. (2008) Involvement of Rab13 and JRAB/MICAL-L2 in epithelial cell scattering. Oncogene, 27, 1687-1695. 94. Schulz, W.A., Ingenwerth, M., Djuidje, C.E., Hader, C., Rahnenfuhrer, J. and Engers, R. (2010) Changes in cortical cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic ERG deregulation. BMC Cancer, 10, 9. 95. Tamura, M., Gu, J.G., Matsumoto, K., Aota, S., Parsons, R. and Yamada, K.M. (1998) Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science, 280, 1614-1617. 96. Griepp, E.B., Dolan, W.J., Robbins, E.S. and Sabatini, D.D. (1983) Participation of plasma-membrane proteins in the formation of tight junctions by cultured epithelial-cells. J. Cell Biol., 96, 693-702. 97. Villa, H., Perez-Pertejo, Y., Garcia-Estrada, C., Reguera, R.M., Requena, J.M., Tekwani, B.L., Balana-Fouce, R. and Ordonez, D. (2003) Molecular and functional characterization of adenylate kinase 2 gene from Leishmania donovani. Eur. J. Biochem., 270, 4339-4347. 98. Lin, W.H., Huang, C.J., Liu, M.W., Chang, H.M., Chen, Y.J., Tai, T.Y. and Chuang, L.M. (2001) Cloning, mapping, and characterization of the human sorbin and SH3 domain containing 1 (SORBS1) gene: A protein associated with c-Abl during insulin signaling in the hepatoma cell line Hep3B. Genomics, 74, 12-20. 99. Neves, S.R., Ram, P.T. and Iyengar, R. (2002) G protein pathways. Science, 296, 1636-1639. 100. Sangaletti, S., Di Carlo, E., Gariboldi, S., Miotti, S., Cappetti, B., Parenza, M., Rumio, C., Brekken, R.A., Chiodoni, C. and Colombo, M.P. (2008) Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res., 68, 9050-9059. 101. Kuramoto, K., Negishi, M. and Katoh, H. (2009) Regulation of dendrite growth by the Cdc42 activator Zizimin1/Dock9 in hippocampal neurons. J. Neurosci. Res., 87, 1794-1805. 102. Kaur, S., Leszczynska, K., Abraham, S., Scarcia, M., Hiltbrunner, S., Marshall, C.J., Mavria, G., Bicknell, R. and Heath, V.L. (2010) RhoJ/TCL regulates endothelial motility and tube formation and modulates actomyosin contractility and focal adhesion numbers. Arteriosclerosis, Thrombosis, and Vascular Biology. 103. Valdimarsdottir, G., Goumans, M.J., Rosendahl, A., Brugman, M., Itoh, S., Lebrin, F., Sideras, P. and ten Dijke, P. (2002) Stimulation of ID1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation, 106, 2263-2270. 104. Lawrence, D.A. (2001) Latent-TGF-beta: An overview. Mol. Cell. Biochem., 219, 163-170. 105. Gomez-Duran, A., Mulero-Navarro, S., Chang, X.Q. and Fernandez-Salguero, P.M. (2006) LTBP-1 blockade in dioxin receptor-null mouse embryo fibroblasts decreases TGF-beta activity: Role of extracellular proteases plasmin and elastase. J. Cell. Biochem., 97, 380-392. 106. Sillman, A.L., Quang, D.M., Farboud, B., Fang, K.S., Nuccitelli, R. and Isseroff, R.R. (2003) Human dermal fibroblasts do not exhibit directional migration on collagen I in direct-current electric fields of physiological strength. Exp. Dermatol., 12, 396-402. 107. Nishimura, K.Y., Isseroff, R.R. and Nuccitelli, R. (1996) Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci., 109, 199-207. 108. Dijkstra, E.W. (1959) A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269-271. 109. Naor, D., Sionov, R.V. and IshShalom, D. (1997) CD44: Structure, function, and association with the malignant process. Adv.Cancer Res., 71, 241-319. 110. Qin, N., Yagel, S., Momplaisir, M.L., Codd, E.E. and D'Andrea, M.R. (2002) Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Mol. Pharmacol., 62, 485-496. 111. Fu, B.H., Wu, Z.Z. and Qin, J. (2011) Effects of integrin alpha 6 beta 1 on migration of hepatocellular carcinoma cells. Mol. Biol. Rep., 38, 3271-3276. 112. Fishman, D.A., Kearns, A., Chilukuri, K., Bafetti, L.M., O'Toole, E.A., Georgacopoulos, J., Ravosa, M.J. and Stack, M.S. (1998) Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha 2 beta 1-integrin-mediated interaction with type I collagen. Invasion Metastasis, 18, 15-26. 113. Marchan, S., Perez-Torras, S., Vidal, A., Adan, J., Mitjans, F., Carbo, N. and Mazo, A. (2010) Dual effects of beta(3) integrin subunit expression on human pancreatic cancer models. Anal. Cell. Pathol., 33, 191-205. 114. Ekins, S., Bugrim, A., Brovold, L., Kirillov, E., Nikolsky, Y., Rakhmatulin, E., Sorokina, S., Ryabov, A., Serebryiskaya, T., Melnikov, A. et al. (2006) Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms. Xenobiotica, 36, 877-901. 115. Weiss, P. (1934) In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J. Exp. Zool., 68, 393-448. 116. Williams, S.C. (1936) A study of the reactions of growing embryonic nerve fibers to the passage of direct electric current through the surrounding medium. The Anatomical Record, 64, 56-57. 117. Marsh, G. and Beams, H.W. (1946) In vitro control of growing chick nerve fibers by applied electric currents. Journal of Cellular and Comparative Physiology, 27, 139-157. 118. Ingvar, D. (1947) Experiments on the influence of electric current upon growing nerve cell processes in vitro. Acta Physiol. Scand., 13, 150-154. 119. Jaffe, L.F. and Poo, M.M. (1979) Neurites grow faster towards the cathode than the anode in a steady-field. J. Exp. Zool., 209, 115-127. 120. Hinkle, L., McCaig, C.D. and Robinson, K.R. (1981) The direction of growth of differentiating neurons and myoblasts from frog embryos in an applied electric-field. J. Physiol.-London, 314, 121-&. 121. Patel, N. and Poo, M.M. (1982) Orientation of neurite growth by extracellular electric-fields. J. Neurosci., 2, 483-496. 122. McCaig, C.D. (1990) Nerve branching is induced and oriented by a small applied electric-field. J. Cell Sci., 95, 605-615. 123. Stump, R.F. and Robinson, K.R. (1983) Xenopus neural crest cell migration in an applied electrical-field. J. Cell Biol., 97, 1226-1233. 124. Luther, P.W., Peng, H.B. and Lin, J.J.C. (1983) Changes in cell shape and actin distribution induced by constant electric fields. Nature, 303, 61-64. 125. Erickson, C.A. and Nuccitelli, R. (1982) Embryonic cell motility can be guided by weak electric fields. J. Cell Biol., 95, A314-A314. 126. Nuccitelli, R. and Erickson, C.A. (1983) Embryonic cell motility can be guided by physiological electric fields. Experimental cell research, 147, 195-201. 127. Cooper, M.S. and Schliwa, M. (1985) Electrical and ionic controls of tissue cell locomotion in DC electric fields. J. Neurosci. Res., 13, 223-244. 128. Onuma, E.K. and Hui, S.W. (1985) A calcium requirement for electric field-induced cell shape changes and preferential orientation. Cell Calcium, 6, 281-292. 129. Brown, M.J. and Loew, L.M. (1994) Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol., 127, 117-128. 130. Rapp, B., Deboisfleurychevance, A. and Gruler, H. (1988) Galvanotaxis of human granulocytes. Dose-response curve. Eur. Biophys. J. Biophys. Lett., 16, 313-319. 131. Sulik, G.L., Soong, H.K., Chang, P.C.T., Parkinson, W.C., Elner, S.G. and Elner, V.M. (1992) Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture. Acta Ophthalmologica, 70, 115-122. 132. Han, J., Yan, X.L., Han, Q.H., Li, Y.J., Du, Z.J. and Hui, Y.N. (2011) Integrin beta 1 subunit signaling is involved in the directed migration of human retinal pigment epithelial cells following electric field stimulation. Ophthalmic Res., 45, 15-22. 133. Sheridan, D.M., Isseroff, R.R. and Nuccitelli, R. (1996) Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J. Invest. Dermatol., 106, 642-646. 134. Grahn, J.C., Reilly, D.A., Nuccitelli, R.L. and Isseroff, R.R. (2003) Melanocytes do not migrate directionally in physiological DC electric fields. Wound Repair Regen., 11, 64-70. 135. Zhao, M., Bai, H., Wang, E., Forrester, J.V. and McCaig, C.D. (2004) Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci., 117, 397-405. 136. Fraser, S.P., Diss, J.K.J., Chioni, A.M., Mycielska, M.E., Pan, H.Y., Yamaci, R.F., Pani, F., Siwy, Z., Krasowska, M., Grzywna, Z. et al. (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin. Cancer Res., 11, 5381-5389. 137. Curtze, S., Dembo, M., Miron, M. and Jones, D.B. (2004) Dynamic changes in traction forces with DC electric field in osteoblast-like cells. J. Cell Sci., 117, 2721-2729. 138. Zhang, J.P., Calafiore, M., Zeng, Q.L., Zhang, X.Z., Huang, Y.S., Li, R.A., Deng, W.B. and Zhao, M. (2011) Electrically guiding migration of human induced pluripotent stem cells. Stem Cell Rev. Rep., 7, 987-996. 139. Cork, R.J., McGinnis, M.E., Tsai, J. and Robinson, K.R. (1994) The growth of PC12 neurites is biased towards the anode of an applied electrical-field. J. Neurobiol., 25, 1509-1516. 140. Li, L., El-Hayek, Y.H., Liu, B.S., Chen, Y.H., Gomez, E., Wu, X.H., Ning, K., Li, L.J., Chang, N., Zhang, L. et al. (2008) Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells, 26, 2193-2200. 141. Arocena, M., Zhao, M., Collinson, J.M. and Song, B. (2010) A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J. Neurosci. Res., 88, 3267-3274. 142. Meng, X.T., Arocena, M., Penninger, J., Gage, F.H., Zhao, M. and Song, B. (2011) PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp. Neurol., 227, 210-217. 143. Chang, P.C.T., Sulik, G.L., Soong, H.K. and Parkinson, W.C. (1996) Galvanotropic and galvanotaxic responses of corneal endothelial cells. J. Formos. Med. Assoc., 95, 623-627. 144. Korohoda, W., Mycielska, M., Janda, E. and Madeja, Z. (2000) Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields. Cell Motil. Cytoskeleton, 45, 10-26. 145. Cormie, P. and Robinson, K.R. (2007) Embryonic zebrafish neuronal growth is not affected by an applied electric field in vitro. Neuroscience Letters 411, 128-132. 146. Minc, N. and Chang, F. (2010) Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr. Biol., 20, 710-716. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66354 | - |
dc.description.abstract | 趨電性,指貼覆的活體細胞,對具有生理強度之直流電場反應產生的趨向性爬行。在本研究中,我們發展不同的微流體細胞培養晶片,並搭配顯微系統,將其應用於人類肺癌細胞的趨電性觀測上。我們設計並製造了一種可以提供三種不同電場強度的單通道微流體晶片,並研究肺癌細胞對不同強度的電場的趨電性反應。我們以軟體模擬電場在晶片的細胞培養微腔體中分佈的情形,並與實際量測的數據比對,可觀察到在微腔體中的電場呈現均勻分佈。用於此研究的人類肺腺癌細胞株有兩種,分別是具有低轉移能力的CL1-0細胞株,及其具有高轉移能力的CL1-5子細胞株。兩細胞株在外加電場74-375mV/mm下展現截然不同的反應。CL1-5細胞朝向正極爬行,且細胞本體逐漸垂直於電場方向排列。反之,CL1-0沒有表現明顯的趨電性行為。
為了瞭解生理直流電場對細胞基因表現的全面性影響,在本研究中我們採用了微陣列分析法。此微陣列分析使用Affymetrix公司的GeneChip。為了收取分析所需的大量細胞樣本,我們設計並製造了一種大尺寸電場晶片(LEFC)。用於分析的細胞施加以0(對照組)或300mV/mm(實驗組)強度的電場兩小時。將電場刺激下顯現表現差異的基因比對KEGG及BioCarta資料庫,以探討電場可能影響之訊息傳遞路徑。對CL1-5樣本的分析結果顯示,受電場調控的基因與adherens junction、 telomerase RNA component gene regulation及tight junction有高度相關性。對CL1-0樣本的分析結果則顯示,受電場調控的基因與translation、purine metabolism及 cell apoptosis有關。換言之,CL1-0的受電場調控基因與細胞貼覆及細胞能動性並沒有顯著的相關性。此外,在CL1-5的顯著表現差異基因中,有相對高比例的基因產物為膜蛋白,但在CL1-0的顯著表現差異基因中沒有觀察到膜蛋白基因。此結果顯示膜蛋白可能與細胞的趨電性行為有相關性。 我們的研究證實具高轉移與低轉移特性的肺癌細胞,不僅在趨電性的行為表現程度上有顯著差異,其受電場調控的基因表現變化也不同。某些受電場調控基因已知與趨電性有關,其他則是首次被觀測到。此研究結果顯示,趨電性與癌細胞的轉移性具有正相關,且電場作用的機制牽涉到其對基因表現的調控。因此,藉由建立受電場調控基因之蛋白質產物間交互作用的網路,並考慮CL1-0與CL1-5細胞原有的膜蛋白表現差異,在本研究中我們進一步預測了可能具有感測電場能力並開啟訊息傳遞的膜蛋白。 | zh_TW |
dc.description.abstract | Electrotaxis is the movement of adherent living cells in response to a direct current (dc) electric field (EF) of physiological strength. In this work, microfluidic cell culture chips were developed to be used for long-term electrotaxis study on a microscope. The cellular response under three different electric field strengths was studied in a single channel microfluidic chip. EF inside the micro-chamber was numerically simulated and compared to the measured value. Lung cancer cell lines with high and weak metastasis potential, CL1-5 and CL1-0, respectively, were used to demonstrate the function of the multi-field chip (MFC). The two cell lines exhibited greatly different response under the applied EF of E = 74-375mV/mm. CL1-5 cells migrated toward the anode while CL1-0 cells did not show obvious response. Under the applied EF, cell orientation was observed accompanying the cell migration in CL1-5.
To understand the transcriptional response of CL1-5 and CL1-0 cells to a dcEF, microarray analysis was performed in this study. Affymetrix GeneChip was used for microarray analysis. A large electric-field chip (LEFC) was designed, fabricated, and used for sample collection. CL cells were treated with the EF strength of 0mV/mm (the control group) and 300mV/mm (the EF-treated group) for two hours. Signaling pathways involving the genes that expressed differently between the two groups were revealed. In CL1-5, it was shown that the EF-regulated genes highly correlated to adherens junction, telomerase RNA component gene regulation, and tight junction. In CL1-0, the same analysis revealed that the EF-regulated genes were mainly involved in translation, purine metabolism, and cell apoptosis. In other words, the EF-regulated genes in CL1-0 did not show strong correlation to cell adhesion and migration. We further observed a high percentage of significantly regulated genes which encode cell membrane proteins in CL1-5, suggesting that dcEF may directly influence the activity of cell membrane proteins in signal transduction. However, the dcEF did not have significant influence in membrane protein encoding genes in CL1-0. Our study demonstrated that CL1-0 and CL1-5 not only showed distinct activities induced by the dcEF, they also showed different gene expression changes. Some of the EF-regulated genes have been reported to be essential whereas others are novel for electrotaxis. Our result confirms that the regulation of gene expression is involved in the mechanism of electrotactic response. By building an interaction network of EF-regulated genes and considering the original gene expression differences of the two cell lines, we proposed several membrane proteins that may sense the EF signal and cause the different electrotactic responses between the high and low metastatic cancer cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:31:40Z (GMT). No. of bitstreams: 1 ntu-101-D95548007-1.pdf: 3061286 bytes, checksum: 5e5e228b9ec6536b447d56d92f998431 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 摘要 i
ABSTRACT iii LIST of FIGURES viii LIST of TABLES x Chapter 1 Introduction 1 1.1 Background and literature review 1 1.1.1 What is electrotaxis? 1 1.1.2 Electrotaxis and cancer metastasis 3 1.1.3 Mechanism of electrotaxis 6 1.1.4 Tools for electrotaxis study 10 1.1.5 Human lung adenocarcinoma CL cells 12 1.2 Purpose and skeleton of this dissertation 13 1.2.1 Microfluidic device development for electrotaxis study 13 1.2.2 Electrotaxis study on human lung cancer cells 14 Chapter 2 Electrotactic chip development 15 2.1 Design of electrotactic chip 15 2.1.1 Single-field chip (SFC) and multi-field chip (MFC) 15 2.1.2 Large electric-field chip (LEFC) 18 2.2 Fabrication and examination of electrotactic chip 20 2.2.1 Fabrication procedure 20 2.2.2 Cytotoxicity test of double-sided tape 21 2.2.3 Mathematical Modeling of the Shear stress 22 2.3 System setup for electrotaxis study 23 2.4 Electric field simulation and measurement 28 2.4.1 Methods 28 2.4.2 Results and discussion 28 2.5 Summary 32 Chapter 3 Electrotaxis study in human lung cancer cells 34 3.1 Materials and methods 34 3.1.1 Cell preparation 34 3.1.2 Electrotaxis experiment 35 3.1.3 Cell imaging and time lapse photography 37 3.1.4 Cell migration and orientation measurement 37 3.1.5 Fluorescence labeling of epidermal growth factor receptor 39 3.2 Results and discussion 40 3.2.1 Cell migration in EF 40 3.2.2 Directedness of CL cells in EF 42 3.2.3 Migration ability enhanced by EF 44 3.2.4 Cell orientation vs. migration in long-term EF treatment 45 3.2.5 Effect of dcEF on EGFR distribution 49 3.2.6 Effects of dcEFs on the filopodium growth 51 3.3 Summary 55 Chapter 4 Gene expression profiling of CL cells in response to dcEF 57 4.1 Materials and methods 58 4.1.1 Electric field stimulation 58 4.1.2 RNA isolation 59 4.1.3 GeneChip hybridization 60 4.1.4 Microarray data analysis 61 4.1.5 Real-time RT-PCR 62 4.2 Results and discussion 64 4.2.1 Signaling pathway analysis 64 4.2.2 Membrane protein encoding genes 74 4.2.3 Overlapped EF-regulated Genes in CL1-0 and CL1-5 79 4.2.4 Biological function analysis in CL1-5 80 4.2.5 Gene expression of reported electrotaxis-related genes/proteins 82 4.2.6 Microarray analysis in different EF-stimulated cells 85 4.3 Summary 88 Chapter 5 EF-sensing protein prediction 90 5.1 Hypotheses 90 5.2 Methods 91 5.2.1 Comparison of gene expression between CL1-5 and CL1-0 91 5.2.2 Network building with shortest paths algorithm 91 5.3 Results and discussion 92 5.3.1 Reasoning of EF-sensing protein 92 5.3.2 Protein level verification 97 5.4 Summary 101 Chapter 6 Conclusion and future work 103 6.1 Conclusion 103 6.2 Future work 105 6.2.1 Electrotaxis of cancer cells in 3D environment 105 6.2.2 Electrotaxis v.s. chemotaxis 106 6.2.3 Discovery of EF-sensing proteins 106 References 107 Appendix 1 The complete list of membrane proteins shown in the shortest paths network of (a) SP5 only, (b) SP0 only, and (c) both SP5 and SP0 (overlap). 119 Appendix 2 Summary of the responses of cells to applied electric fields 123 | |
dc.language.iso | en | |
dc.title | 以微流體晶片研究人類肺癌細胞之趨電性行為 | zh_TW |
dc.title | Electrotaxis Study of Human Lung Cancer Cells by Using Microfluidic Chips | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李超煌,莊永仁,陳健尉,趙本秀 | |
dc.subject.keyword | 趨電性,微流體,癌轉移性,肺癌細胞,基因表現,微陣列分析, | zh_TW |
dc.subject.keyword | Electrotaxis,Microfluidic,Metastasis,Lung cancer cell,Gene expression,Microarray analysis, | en |
dc.relation.page | 124 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-10 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。