請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66352完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達 | |
| dc.contributor.author | You-Sheng Lin | en |
| dc.contributor.author | 林佑昇 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:31:34Z | - |
| dc.date.available | 2012-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-10 | |
| dc.identifier.citation | [1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). [3] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Uni- versity Press, New York, 1989). [4] R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quan- tum Many Body Problem (Springer-Verlag, Berlin, 1990). [5] E. Engel and R. M. Dreizler, Density Functional Theory: An Advanced Course (Springer- Verlag, Berlin, 2011). [6] W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996). [7] M. E. Casida, Recent Advances in Density Functional Methods, Part I (World Scientific, Singapore, 1995). [8] E. K. U. Gross, J. F. Dobson, and M. Petersilka, Density Functional Theory II (Springer, Heidelberg, 1996). [9] T. V. Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998). [10] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003). [11] Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006). [12] A. D. Becke, J. Chem. Phys. 104, 1040 (1996). [13] A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002). [14] V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003). [15] Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 2715 (2004). [16] J. G. Hill, J. A. Platts, and H.-J. Werner, Phys. Chem. Chem. Phys. 8, 4072 (2006). [17] A. D. Boese and J. M. L. Martin, J. Chem. Phys. 121, 3405 (2004). [18] Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005). [19] Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006). [20] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008). [21] A. D. Becke, Int. J. Quantum Chem. 23, 1915 (1983). [22] A. D. Becke, J. Chem. Phys. 109, 2092 (1998). [23] A. D. Becke, J. Chem. Phys. 112, 4020 (2000). [24] H. L. Schmider and A. D. Becke, THEOCHEM 527, 51 (2000). [25] Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008). [26] Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008). [27] H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001). [28] Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004). [29] I. C. Gerber and J. G. ’Angy’an, Chem. Phys. Lett. 415, 100 (2005). [30] I. C. Gerber, J. G. ’Angy’an, M. Marsman, and G. Kresse, J. Chem. Phys. 127, 054101 (2007). [31] O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J. Chem. Phys. 125, 074106 (2006). [32] O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006). [33] J.-W. Song, T. Hirosawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 126, 154105 (2007). [34] A. J. Cohen, P. Mori-S’anchez, and W. Yang, J. Chem. Phys. 126, 191109 (2007). [35] J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008). [36] J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008). [37] J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 131, 174105 (2009). [38] A. D. Becke, J. Chem. Phys. 98, 5648 (1993). [39] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994). [40] A. D. Becke, J. Chem. Phys. 107, 8554 (1997). [41] J. F. Dobson, K. McLennan, A. Rubio, J. Wang, T. Gould, H. M. Le, and B. P. Dinte, Aust. J. Chem. 54, 513 (2001). [42] S. Kristyan and P. Pulay, Chem. Phys. Lett. 229, 175 (1994). [43] X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles, J. Chem. Phys. 115, 8748 (2001); Q. Wu and W. Yang, ibid. 116, 515 (2002); U. Zimmerli, M. Parrinello, and P. Koumoutsakos, ibid. 120, 2693 (2004); S. Grimme, J. Comput. Chem. 25, 1463 (2004); 27, 1787 (2006); J. Antony and S. Grimme, Phys. Chem. Chem. Phys. 8, 5287 (2006); P. Jureˇcka, J. ˇCern’y, P. Hobza, and D. R. Salahub, J. Comput. Chem. 28, 555 (2006); A. Goursot, T. Mineva, R. Kevorkyants, and D. Talbi, J. Chem. Theory Comput. 3, 755 (2007); S. Grimme, J. Antony, T. Schwabe, and C. M‥uck-Lichtenfeld, Org. Biomol. Chem. 5, 741 (2007); J. ˇCern’y, P. Jureˇcka, P. Hobza, and H. Vald’es, J. Phys. Chem. A 111, 1146 (2007); C. Morgado, M. A. Vincent, I. H. Hillier, and X. Shan, Phys. Chem. Chem. Phys. 9, 448 (2007); M. Kabel’aˇc, H. Vald’es, E. C. Sherer, C. J. Cramer, and P. Hobza, 9, 5000 (2007); P. Jureˇcka and P. Hobza, 9, 5291 (2007). [44] S. Grimme, J. Chem. Phys. 124, 034108 (2006). [45] T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007). [46] A. Tarnopolsky, A. Karton, R. Sertchook, D. Vuzman, and J. M. L. Martin, J. Phys. Chem. A 112, 3 (2008). [47] T. Benighaus, R. A. DiStasio, Jr., R. C. Lochan, J.-D. Chai, and M. Head-Gordon, J. Phys. Chem. A 112, 2702 (2008). [48] Y. Zhang, X. Xu, and W. A. Goddard, III, Proc. Natl. Acad. Sci. U.S.A. 106, 4963 (2009). [49] R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011). [50] P. M. W. Gill, R. D. Adamson, and J. A. Pople, Mol. Phys. 88, 1005 (1996). [51] T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008). [52] M. Ernzerhof and J. P. Perdew, J. Chem. Phys. 109, 3313 (1998). [53] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); 78, 1396(E) (1997). [54] L. A. Constantin, J. P. Perdew, and J. Tao, Phys. Rev. B 73, 205104 (2006). [55] von Weizsa‥cker, C. F. Z. Phys. 96, 431 (1935). [56] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). [57] H. Stoll, C. M. E. Pavlidou, and H. Preuss, Theor. Chim. Acta 49, 143 (1978); H. Stoll, E. Golka, and H. Preuss, 55, 29 (1980). [58] S. J. Chakravorty, S. R. Gwaltney, E. R. Davidson, F. A. Parpia, and C. F. Fischer, Phys. Rev. A 47, 3649 (1993). [59] L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106, 1063 (1997). [60] L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. Phys. 109, 42 (1998). [61] L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000). [62] J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, J. Chem. Phys. 90, 5622 (1989). [63] Y. Zhao, N. Gonz’alez-Garc’ıa, and D. G. Truhlar, J. Phys. Chem. A 109, 2012 (2005); 110, 4942(E) (2006). [64] P. Jureˇcka, J. ˇSponer, J. ˇCern’y, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006). [65] S. E. Wheeler and K. N. Houk, J. Chem. Theory Comput. 6, 395 (2010). [66] Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio, Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer, III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8, 3172 (2006). [67] S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). [68] C. W. Murray, N. C. Handy, and G. J. Laming, Mol. Phys. 78, 997 (1993). [69] V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 15, 48 (1975); 16, 293 (1976); Sibirsk. Mat. Zh. 18, 132 (1977). [70] L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 123, 124107 (2005). [71] R. A. DiStasio, Jr., R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007). [72] T. Bally and G. N. Sastry, J. Phys. Chem. A 101, 7923 (1997); B. Bra‥ıda, P. C. Hiberty, and A. Savin, 102, 7872 (1998); P. Mori-S’anchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125, 201102 (2006); A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria, 126, 104102 (2007). [73] A. D. Dutoi and M. Head-Gordon, Chem. Phys. Lett. 422, 230 (2006). [74] G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982). [75] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989). [76] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 15b, August 2011, Editor: Russell D. Johnson III, http://cccbdb.nist.gov/. [77] P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Int. J. Quantum Chem. Symp. 26, 319 (1992). [78] C. R. Brundle, M. B. Robin, N. A. Kuebler, and H. J. Basch, J. Am. Chem. Soc. 94, 1451 (1972). [79] W. von Niessen, L. ˚Asbrink, and G. Bieri, J. Electron Spectrosc. Relat. Phenom. 26, 173 (1982). [80] E. A. Colbourne, J. M. Dyke, E. P. F. Lee, A. Morris, and I. R. Trickle, Mol. Phys. 35, 873 (1978). [81] D. C. Frost, S. T. Lee, and C. A. McDowell, Chem. Phys. Lett. 17, 153 (1972). [82] G. Bieri, L. ˚Asbrink, and W. von Niessen, J. Electron Spectrosc. Relat. Phenom. 27, 129 (1982). [83] T. Cvitas, H. G‥usten, L. Klasinc, I. Novak, and H. Vansik, Z. Naturforsch. A 32A, 1528 (1977). [84] G. Bieri, L. ˚Asbrink, and W. von Niessen, J. Electron Spectrosc. Relat. Phenom. 23, 281 (1981). [85] L. ˚Asbrink, W. von Niessen, and G. Bieri, J. Electron Spectrosc. Relat. Phenom. 21, 93 (1980). [86] U. Gelius, C. J. Allan, D. A. Allison, H. Siegbahn, and K. Siegbahn, Chem. Phys. Lett. 11, 224 (1971). [87] L. ˚Asbrink, A. Svensson, W. von Niessen, and G. Bieri, J. Electron Spectrosc. Relat. Phe- nom. 24, 293 (1981). [88] G. Bieri and L. ˚Asbrink, J. Electron Spectrosc. Relat. Phenom. 20, 149 (1980). [89] W. von Niessen, G. Bieri, and L. ˚Asbrink, J. Electron Spectrosc. Relat. Phenom. 21, 175 (1980). [90] M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745 (1984). [91] See supplementary material at [URL will be inserted by AIP] for the reference values and molecular geometries of the IP131 and FG115 databases, as well as some detailed DFT results. [92] J. F. Janak, Phys. Rev. B 18, 7165 (1978). [93] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51 (1983). [94] L. J. Sham and M. Schl‥uter, Phys. Rev. Lett. 51, 1888 (1983). [95] L. J. Sham and M. Schl‥uter, Phys. Rev. B 32, 3883 (1985). [96] T. Tsuneda, J.-W. Song, S. Suzuki, and K. Hirao, J. Chem. Phys. 133, 174101 (2010). [97] A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998). [98] S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999). [99] A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003). [100] Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66352 | - |
| dc.description.abstract | Kohn–Sham 密度泛函理論已成為最廣泛應用的電子結構理論之一。但理論中
的重要部分,交換–相關能泛函仍未確知,並且需要近似。真實的交換–相關電洞 是完全非局域性的。加入了 Hartree-Fock (HF)交換能的混成密度泛函增加了模型中的非局域性。混成高階密度泛函已被證實可以表現得比混成廣義密度梯度近似還要好。長程修正的(LC)混成泛函只對於長程的電子–電子交互作用保留完整的 HF交換能,因而解決了一大部分的自我作用問題。 藉由將一個系統化地模擬 LC 混成密度泛函的方法應用到 M05 混成高階交換–相關泛函的形式,並加入經驗的原子–原子分散修正,吾人發表了一個新的 LC 高階廣義密度梯度近似,稱為 ωM05-D,可適用於熱化學、熱化學動力學以及非共價交互作用。測試顯示,對於大部分的應用,ωM05-D 之於 M05-2X 泛函,展現了可觀的改善。若和 LC 廣義密度梯度近似 ωB97X-D 比較,ωM05-D 展現了較小的自我作用誤差,與較佳的漸近特性。 | zh_TW |
| dc.description.abstract | Kohn–Sham density-functional theory (KS-DFT) has become one of the most popular electronic structure theories. However, its crucial ingredient, the exact exchange-correlation energy functional remains unknown and needs to be approximated. The exact exchange-correlation hole is fully nonlocal. Hybrid density functionals, which incorporate Hartree-Fock (HF) exchange, can help to include nonlocality. Hybrid meta density functionals have been shown capable of performing better than hybrid generalized gradient approximation (GGA). Long-range corrected (LC) hybrids retain full HF exchange only for long-range electron-electron interactions, and thereby resolve a significant part of the self-interaction problems.
By applying a general scheme for systematically modeling LC hybrid density functionals to the form of hybrid meta exchange-correlation functional M05, and including empirical atom-atom dispersion corrections, we present a new LC meta-GGA, called ωM05-D, for thermochemistry, thermochemical kinetics, and noncovalent interactions. Tests show that for most applications, ωM05-D exhibits noticeable improvement over the M05-2X functional. When compared to the LC-GGA, ωB97X-D, ωM05-D exhibits smaller self-interaction error (SIE) and better asymptotic behavior. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:31:34Z (GMT). No. of bitstreams: 1 ntu-101-R98222031-1.pdf: 3478057 bytes, checksum: c9536338546229d2b0f7d81ed67926e9 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1. INTRODUCTION 5
1.1. Hartree-Fock approximation 5 1.2. Hohenberg-Kohn theorems 10 1.3. Kohn-Sham Equations 15 1.4. Exchange-correlation functionals 20 2. RATIONALES OF LC HYBRID SCHEMES 24 3. LC HYBRID MGGA-D FUNCTIONALS 28 4. RESULTS FOR THE TRAINING SET 34 5. RESULTS FOR THE TEST SETS 38 5.1. Atomization energies, reaction energies, and noncovalent interactions 38 5.2. Equilibrium geometries 39 5.3. Dissociation of symmetric radical cations 41 5.4. Frontier orbital energies 43 5.5. Fundamental gaps 44 5.6. Excitation energies 50 6. CONCLUSIONS 55 7. SUPPLEMENTARY MATERIAL 57 References 88 | |
| dc.language.iso | en | |
| dc.subject | 分散修正 | zh_TW |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 交換–相關 | zh_TW |
| dc.subject | 高階廣義密度梯度近似 | zh_TW |
| dc.subject | 分程的 | zh_TW |
| dc.subject | exchange-correlation | en |
| dc.subject | dispersion correction | en |
| dc.subject | range-separated | en |
| dc.subject | meta-GGA | en |
| dc.subject | density-functional theory | en |
| dc.title | 長程修正的高階廣義密度梯度近似 | zh_TW |
| dc.title | Long-range corrected meta-generalized-gradient approximations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 薛宏中,林倫年 | |
| dc.subject.keyword | 密度泛函理論,交換–相關,高階廣義密度梯度近似,分程的,分散修正, | zh_TW |
| dc.subject.keyword | density-functional theory,exchange-correlation,meta-GGA,range-separated,dispersion correction, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-10 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
