請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66343完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅昭銘 | |
| dc.contributor.author | Wen-Yu Chang | en |
| dc.contributor.author | 張彣鈺 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:31:11Z | - |
| dc.date.available | 2022-02-10 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2012-02-13 | |
| dc.identifier.citation | 一、 中文文獻
甘漢銧、熊召弟、鍾聖校(1996) 。小學自然科教學研究。臺北市:師大書苑。 吳瓊瑜(2008)。不同教學時間分配方式對國小學童學習奈米科技成效之研究-以台中市某國小為例。國立台中教育大學科學教育研究所碩士論文,未出版,台北市。 李世光、吳政忠、蔡雅雯、林宜靜、黃圓婷(2003)。奈米科技人才培育計畫之推動規劃與展望:從K-12奈米人才培育試行計劃談起。物理雙月刊,25(3), 435-443。 奈米國家型科技人才培育計畫辦公室(2009)。奈米國家型科技人才培育計畫專刊。台中市。 林益興(2000)。自然科教材教法重點整理。取自http://s8.ntue.edu.tw/htmls/p5_entrance/test_questions/key_of_matters.pdf 林寶山(1988)。教學論-理論與方法。臺北市:五南。 林寶山(1991)。教學原理。臺北市:五南。 施昆易(2010)。一位中學教師將奈米科技融入科學教學之困境與挑戰。2010 中華民國物理年會暨研究成果發表會,國立成功大學。(NSC98-2120-S-018 -002 -NM) 張政義(2008)。奈米科技融入國小自然與生活科技課程之教學研究。物理教育學刊,第九卷第一期,109-122頁。 張春興(1994)。教育心理學。臺北市:東華 陳淑思(2005)。國民小學教師奈米科技概念之現況研究。國立台中教育大學自然科學教育學系碩士論文,未出版,台中市。 陳嘉皇(2002)。從成績單學習表現敘述之問題探討計分標準再教學與評量上的實際運用。國教天地,149,73-79。 曾國鴻、陳沅(2005)。國小高年級學生對奈米科技之熟悉度、學習需求及其融入課程之研究。科學教育學刊,第十三卷第一期,101-120頁。 葉孟考等(2008a)。高中奈米通用補充教材第1冊。新竹市:教育部中北區奈米科技中心。 葉連祺、林淑萍(2003)。布魯姆認知領域教育目標分類修訂版之探討。教育研究月刊,105,94-106。 歐滄和(2002)。教育測驗與評量。臺北市:心理。 潘文福(2004)。奈米科技融入九年一貫課程之領域主題規劃。生活教育月刊,37(2),20-25。 蔡元福、吳佳瑾、胡焯淳(2004)。奈米科技融入自然與生活科技領域教學之初探。科學教育研究與發展季刊,35,39-52。 蔡明容(2005)。探討奈米科技融入國小五年級自然與生活科技領域教學之研究。臺北市立師範學院科學教育研究所碩士論文,未出版,臺北市。 鍾聖校(1999)。自然與科技課程教材教法。臺北市:五南。 魏世台 (1981)。奧素柏認知教學理論之分析研究。臺灣師範大學教育研究所碩士論文,未出版,台北市。 二、英文文獻 Amy Rebecca Taylor (2008). Students' and teachers' conceptions of surface area to volume in science contexts: What factors influence the understanding of the concept of scale? Unpublished doctoral dissertation, North Carolina State University. Amy Rebecca Taylor (2008).Students' and teachers' conceptions of surface area to volume in science contexts: What factors influence the understanding of the concept of scale? North Carolina State University, Doctoral Thesis. Arter, J. & McTighe, J. (200l). Scoring rubrics in the classroom: Using performance criteria for assessing and improving student performance. Thousand Oaks, CA: Corwin Press. Asmus, E. P. (1999). Music assessment concepts. Music Educators Journal, 86(2), 19-24. Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winsto. Ausubel, D. P., Novak, J. D. and Hanesian, H. (1978). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston. Chase, C. I. (1999). Contemporary assessment for educators. New York: Longman. Craig A. Mertler. (2001). Designing Scoring Rubrics for Your Classroom. Practical Assessment Research Evaluation, 7 (25). Giselle, O.M. (2002). Becoming a better teacher: Eight innovations that work. VA: Association for Supervision and Curriculum Development. Herman, J. L., Aschbacher, P. R., & Winters, L. (1992). A practical guide to alternative assessment. Alexandria, VA: Association for Supervision and Curriculum Development. Lawson, A. E., Abraham, M. R. & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. NARST Monograph, no.1. Light, G., Swarat, S., Park, E-J., & Drane, D. (2008). Student understanding of “surface area to volume ratio” and its relationship to property change in the nano-science engineering context. Proceedings of the Research in Engineering Education Symposium, Davos, Switzerland. McCollum, S. L.(1994). Performance assessment in the social studies classroom. Educational Leadership, 52, 8. Moskal, B. M. (2000). Scoring rubrics: what, when, and how? Practical Assessment, Research, & Evaluation, 7(3). Available online: http://ericae.net/pare/getvn.asp?v=7&n=3 Nitko, A. J. (2001). Educational assessment of students (3rd ed.). Upper Saddle River, NJ: Merrill. Park E. J., Light, G. (2008). Identifying Threshold Concepts in Learning Nanoscience by Using Concept Maps and Students’ Responses to an Open-ended Interview. International Conference in Learning Science. Utrecht, Netherlands. Popham, W. J. (1997). What’s wrong- and what’s right- with rubrics. Educational Leadership, 55, 72-75. Russell, S. (2004). Grade 9-10, A Teacher’s Resource Handbook Getting Assessment Right Drama.Data Based Directions. Stavy, R. & Tirosh, D. (1996). Intuitive Rules in Science and Mathematics : The Case of “More of A -- More of B”. International Journal of Science Education, Vol. 18, No. 6, 653-667. Swarat et al. (2009).Unpacking Student Conceptions of Surface Area to Volume Ratio in the Nanoscience Context: An Empirical Application of the Construct-Centered Design Framework. Proceedings of the Research in Engineering Education Symposium 2009, Palm Cove, QLD. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres (1990). Phys. Rev. B, 42, 8548. Tirosh, D., & Stavy R. (2001). The intuitive rules theory and in-service teacher education. In F.-L. Lin & T. Cooney (Eds.), Making Sense of Mathematics Teacher Education (pp. 73-85). Dordrecht: Kluwer Academic. Tirosh, D., & Stavy, R. (1996). Intuitive Rules in Science and Mathematics : The Case of 'Everything can be Divided by Two'. International Journal of Science Education, Vol. 18, No. 6, 669-683. Tirosh, D., & Stavy, R. (1999). Intuitive rules: a way to explain and predict students’ reasoning. Educational Studies in Mathematics, 38(1-3), 55-66. Van Dooren, W., De Bock, D., Weyers, D., & Verschaffel, L. (2004). The predictive power of intuitive rules: A critical analysis of the impact of “More A-More B” and “Same A-Same B”. Educational Studies in Mathematics, 56, 179-207. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66343 | - |
| dc.description.abstract | 學生學習奈米科技時因缺乏熟悉感與生活中的舊有經驗感覺有落差,往往將
此單元視為獨立、與其他物理單元脫節的學習內容。概念性的思維常常來自直覺 式的建立,奈米科技若缺少與校內課程連結,學生難以整合物理原理形成連貫的 知識系統。 本研究以使用模型強調表體比賦予物理意義關聯之教學策略進行準實驗設 計,對照組為表體比與其造成現象未賦與意義連結之教學。探討奈米科技表體比 概念模組融入高中基礎物理教學之成效,利用整合表面積和體積兩種變因以解釋 物體本質改變現象,引導學生將此思考模式運用於生活中的例子並做出分析判斷。 經過五十分鐘的奈米金熔點主題教學後,以二向度評分準則表予以評分調查學生 的思考模式,實驗組在表體比意義概念測驗學習成效顯著高於對照組,兩組在基 本知識與理解層面上皆有顯著提升,但實驗組在基本理解、應用理解較高層次向 度上的後測表現皆顯著高於對照組學生。在奈米科技課程學習知覺問卷方面,實 驗組於奈米科技課程的學習感受向度得分顯著高於對照組,認為表體比概念對連 結學習過的物理學概念有幫助。 本教學策略改善學生在奈米科技課程中金熔點變化的學習,並幫助建立與校 內課成之關聯,提供融入課程之建議。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:31:11Z (GMT). No. of bitstreams: 1 ntu-100-R97222043-1.pdf: 3858718 bytes, checksum: a490aaa134268c7189aff100c499f031 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝································································i
中文摘要···························································ii 英文摘要···························································iii 圖目錄······························································v 表目錄·····························································vi 第壹章 緒論··········································· 1 第一節 研究背景與動機··········································1 第二節 研究目的···········································3 第三節 研究問題···········································4 第四節 研究範圍與限制··········································4 第五節 名詞解釋···········································4 第貳章 文獻探討···········································7 第一節 奈米科技教育···········································7 第二節 表體比迷思與相關教學···································11 第三節 教學策略之理論依據·····································20 第四節 教學評量模式···········································26 第參章 研究方法···········································31 第一節 研究流程···········································31 第二節 研究設計···········································38 第三節 研究工具···········································42 第四節 資料處理與分析·········································52 第肆章 研究結果與討論·········································53 第一節 前導問卷結果與討論·····································53 第二節 表體比意義概念測驗卷結果與討論·························58 第三節 奈米科技課程學習知覺問卷統計···························87 第四節 奈米科技課程學習知覺問卷各向度間表現相關···············97 第伍章 討論與建議···········································101 第一節 結論··········································· 101 第二節 建議·········································· ·106 參考文獻··························································108 附錄··························································113 圖目錄 圖 2-1-1 第二期奈米國家型科技人才培育計畫架構圖(引自 奈米國家型科技人 才培育計畫辦公室) ··················································8 圖 2-2-1 金熔點對尺寸關係圖·········································14 圖 2-3-1 Ausubel 的學習二向度(引自魏世台,1981)·······················22 圖 2-4-1 評分準則製作步驟···········································30 圖 3-1-1 研究流程圖·················································32 圖 3-1-2 奈米金熔點改變之教學概念···································36 圖 3-1-3 奈米金粒子模型·············································37 圖 3-2-1 研究架構圖·················································39 圖 3-2-2 課程差異對照圖·············································41 圖 3-3-1 教活動設計流程·············································42 圖 4-1-1 教師專家任教階段與專家專長領域分布·························53 圖 4-1-2 奈米科技核心概念···········································54 圖 4-1-3 大中小學之奈米科技核心概念百分比··························54 圖 4-1-4 大中小學教師之奈米物理原理內涵分布·························55 圖 4-1-5 奈米核心概念圖統整········································57 圖 4-2-1 兩組學生表體比意義概念學習成效測驗成績····················60 圖 4-2-2 實驗組教學前後總分分佈圖··································61 圖 4-2-3 對照組教學前後總分分佈圖··································61 圖 4-2-4 實驗組表體比意義概念前後測封閉式問題答對率·················65 圖 4-2-5 實驗組表體比意義概念前後測封閉式問題答對率·················66 圖 4-2-6 兩班學生在表體比意義概念後測之開放式問題比較···············70 圖 4-2-7 教學前金熔點改變作答類型圖·································73 圖 4-2-8 教學後金熔點改變作答類型圖·································76 圖 4-2-9 奈米金熔點下降之常見解釋模式與正確概念關係比較圖···········78 圖 4-2-10 兩組學生金熔點突變解釋前測答案層次分佈圖··················80 圖 4-2-11 兩組學生金熔點突變解釋後測答案層次分佈圖··················81 圖 4-2-12 實驗組不同數理程度學生表體比概念前後測總分比較············84 圖 4-2-13 對照組不同數理程度學生表體比概念前後測總分比較············86 圖 4-3-1 兩班學生在奈米科技學習知覺前後測帄均得分圖·················90 表目錄 表 2-1-1 探討奈米科技融入教學議題文獻整理表··························8 表 2-2-1 表體比教學內容相關之直覺法則類型對照表·····················13 表 2-2-2 奈米教材金熔點改變主題教學內容·····························15 表 2-2-3 表體比相關文獻整理·········································16 表 2-3-1 Ausubel 的學習分類表(引自林寶山,1988)·······················22 表 2-3-2 學習環與推理性探究教學法與組織因子探究模式對照表···········25 表 3-1-1 「使用模型強調表體比賦予物理意義關聯之教學」之教學目標·····34 表 3-2-1 實驗設計表···············································39 表 3-2-2 教學內容差異之重點內容說明表·······························40 表 3-3-1 奈米科技課程學習知覺各向度的意義與題目分佈表··············43 表 3-2-2 教學內容差異之重點內容說明表·······························44 表 3-3-3 奈米科技課程學習知覺問題之信度 α 值························44 表 3-3-4 表體比意義概念測驗題目類型配分表··························46 表 3-3-5 使用表體比意義概念問卷開放式答案二向度層次評分準則表之題目 48 表 3-3-6 表體比意義概念問卷開放式答案二向度層次評分準則表··········49 表 3-3-7 表體比意義概念問卷開放式答案意義面向替換特徵表············50 表 3-3-8 表體比意義概念問卷金熔點突變尺度限制解釋之二向度層次評分準則 表··························································51 表 4-2-1 實驗教學組別人數分佈·······································58 表 4-2-2 表體比意義概念測驗題目類型題目編號表·······················59 表 4-2-3 兩組學生表體比意義概念測驗得分情形·························60 表 4-2-4 表體比意義概念前測 T 檢定摘要表····························61 表 4-2-5 實驗組表體比意義概念前後測 T 檢定摘要表····················62 表 4-2-6 對照組表體比意義概念前後測 T 檢定摘要表···················62 表 4-2-7 表體比意義概念後測 T 檢定摘要表····························62 表 4-2-8 表體比意義概念測驗試題雙向細目分析表·······················63 表 4-2-9 實驗組表體比意義概念各向度之前測得分與 T 檢定摘要表········63 表 4-2-10 實驗組表體比意義概念各向度之前後測得分與 T 檢定摘要·······63 表 4-2-11 對照組表體比意義概念各向度之前後測得分與 T 檢定摘要表·····63 表 4-2-12 兩班表體比意義概念各向度之後測得分與 T 檢定摘要表·········64 表 4-2-13 實驗組表體比意義概念前後測封閉式問題答對率與卡方檢定摘要表 65 表 4-2-14 對照組表體比意義概念前後測封閉式問題答對率與卡方檢定摘要表 66 表 4-2-15 兩班學生表體比意義概念後測封閉式問題答對率比較表··········67 表 4-2-16 表體比判斷學生作答類型表·································68 表 4-2-17 兩班學生在表體比意義概念前測測驗卷之開放式問題得分比較···69 表 4-2-18 兩班學生在表體比意義概念後測測驗卷之開放式問題得分比······70 表 4-2-19 實驗組後測各開放式問題答案面向層次相關分析表··············71 表 4-2-20 對照組後測各開放式問題答案面向層次相關分析表············72 表 4-2-21 教學前後金熔點改變作答類型····························73 表 4-2-22 實實驗組教學前後金熔點突變解釋答案層次分佈表············79 表 4-2-23 對照組教學前後金熔點突變解釋答案層次分佈表············80 表 4-2-24 實驗組學生數理能力程度分佈表···························83 表 4-2-25 對照組學生數理能力程度分佈表···························83 表 4-2-26 兩班學生數理能力獨立 T 檢定····························83 表 4-2-27 實驗組不同數理能力學生在表體比概念前後測總分比較········83 表 4-2-28 對照組不同數理能力學生在表體比概念前後測總分比較········85 表 4-3-1 實驗組與對照組奈米科技課程學習知覺問卷前測之 t 檢定結果···88 表 4-3-2 實驗組學生奈米科技課程學習知覺問卷前後測之成對 t 檢定結果··89 表 4-3-3 對照組學生奈米科技課程學習知覺問卷前後測之成對 t 檢定結果··89 表 4-3-4 實驗組與對照組奈米科技課程學習知覺問卷後測之 t 檢定結果····89 表4-3-5實驗組與對照組奈米科技課程學習知覺問卷各向度前測之T檢定結果90 表 4-3-6 實驗組奈米科技課程學習知覺問卷各向度之成對 T 檢定結果······91 表 4-3-7 對照組奈米科技課程學習知覺問卷各向度之成對 T 檢定結果······91 表 4-3-8 實驗組與對照組奈米科技課程學習知覺問卷各向度後測 T 檢定結果 92 表 4-3-9 兩組學生學習前後知覺問卷各題平均得分統計表·················94 表 4-3-10 兩班學生在奈米科技學習知覺問卷中各題後測 T 檢定表·········95 表 4-4-1 奈米科技知覺問卷各向度相關分析表·························97 表 4-4-2 表體比概念、表體比對應現象變化趨勢表現相關···············98 表 4-4-3 奈米科技課程的學習感受、表體比概念表現相關···············98 表 4-4-4 奈米科技課程的學習感受、表體比對應現象變化趨勢表現相關···98 表 4-4-5 表體比意義概念與奈米科技表體比學習知覺問卷相關檢定表···99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米金 | zh_TW |
| dc.subject | 表體比 | zh_TW |
| dc.subject | 奈米科技 | zh_TW |
| dc.subject | 融入課程 | zh_TW |
| dc.subject | 模組 | zh_TW |
| dc.subject | 融入課程 | zh_TW |
| dc.subject | 奈米金 | zh_TW |
| dc.subject | 奈米科技 | zh_TW |
| dc.subject | 模組 | zh_TW |
| dc.subject | 表體比 | zh_TW |
| dc.subject | specific surface | en |
| dc.subject | nanotechnology | en |
| dc.subject | curriculm | en |
| dc.subject | module | en |
| dc.subject | nanogold | en |
| dc.subject | specific surface | en |
| dc.subject | nanotechnology | en |
| dc.subject | curriculm | en |
| dc.subject | module | en |
| dc.subject | nanogold | en |
| dc.title | 奈米科技表體比概念模組融入高中基礎物理教學之成效 | zh_TW |
| dc.title | Adapting the concept of specific surface into fundamental physics curriculum for high school | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃萬居,胡崇德,葉蓉樺 | |
| dc.subject.keyword | 表體比,奈米科技,融入課程,模組,奈米金, | zh_TW |
| dc.subject.keyword | specific surface,nanotechnology,curriculm,module,nanogold, | en |
| dc.relation.page | 127 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
