Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭益謙
dc.contributor.authorJiun-Chi Ganen
dc.contributor.author甘昀騏zh_TW
dc.date.accessioned2021-05-17T09:15:32Z-
dc.date.available2017-08-28
dc.date.available2021-05-17T09:15:32Z-
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citationAbu Elzein, E.M.E. and Crowther, J.R. 1978. Enzyme-labelled immunosorbent assay techniques in foot-and-mouth disease virus research. J Hyg Camb 80: 391-399.
Alexandersen, S., Zhang, Z. and Donaldson, A.I. 2002. Aspects of the persistence of foot-and-mouth disease virus in animals—the carrier problem. Microbes Infect 4: 1099-1110.
Bachrach, H.L. 1968. Foot-and-mouth disease. Ann Rev Microbiol 22: 201-244.
Bahnemann, H.G. 1990. Inactivation of viral antigens for vaccine preparation with particular reference to the application of binary ethylenimine. Vaccine 8: 299-303.
Barton, D.J., O'Donnell, B.J. and Flanegan, J.B. 2001. 5’ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. Embo J 20: 1439-1448.
Bautista, E.M., Ferman, G.S. and Golde, W.T. 2003. Induction of lymphopenia and inhibition of T cell function during acute infection of swine with foot and mouth disease virus (FMDV). Vet Immunol Immunopathol 92: 61-73.
Beard, C.W. and Mason, P.W. 2000. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol 74: 987-991.
Borman, A.M., Deliat, F.G. and Kean, K.M. 1994. Sequence within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J 13: 3149-3157.
Brocchi, E., Bergmann, I.E., Dekker, A., Paton, D.J., Sammin, D.J., Greiner, M., Grazioli, S., De Simone, F., Yadin, H., Haas, B., Bulut, N., Malirat, V., Neitzert, E., Goris, N., Parida, S., Sørensen, K. and De Clercq, K. 2006. Comparative evaluation of six ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus. Vaccine 24: 6966-6979.
Brooksby, J.B. 1982. Portraits of viruses: foot-and-mouth disease virus. Intervirology 18: 1-23.
Brown, C.C., Meyer, R.F., Olander, H.J., House, C. and Mebus, C.A. 1992. A Pathogenesis Study of Foot-and-Mouth Disease in Cattle, using in situ Hybridization. Can J Vet Res 56: 189-193.
Brown, C.C., Piccone, M.E., Mason, P.W., McKenna, T.S.-C. and Grubman, M.J. 1996. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J Virol 70: 5638-5641.
Bucher, D.J., Mikhail, A., Popple, S., Graves, P., Meiklejohn, G., Hodes, D.S., Johansson, K. and Halonen, P.E. 1991. Rapid detection of type A influenza viruses with monoclonal antibodies to the M protein (M1) by enzyme-linked immunosorbent assay and time-resolved fluoroimmunoassay. J Clin Microbiol 29: 2484-2488.
Burness, A.T.H. and Clothier, F.W. 1970. Particle weight and other biophysical properties of encephalomyocarditis virus. J Gen Virol 6: 381-393.
Burrows, R., Mann, J.A., Garland, A.J.M., Greig, A. and Goodridge, D. 1981. The pathogenesis of natural and simulated natural foot-and-mouth disease infection in cattle. J Comp Pathol 91: 599-609.
Cambrosio, A. and Keating, P. 1992. Between fact and technique: the beginnings of hybridoma technology. J Hist Biol 25: 175-230.
Capozzo, A.V., Periolo, O.H., Robiolo, B., Seki, C., La Torre, J.L. and Grigera, P.R. 1997. Total and isotype humoral responses in cattle vaccinated with foot and mouth disease virus (FMDV) immunogen produced either in bovine tongue tissue or in BHK-21 cell suspension cultures. Vaccine 15: 624-630.
Carrillo, C., Lu, Z., Borca, M.V., Vagnozzi, A., Kutish, G.F. and Rock, D.L. 2007. Genetic and phenotypic variation of foot-and-mouth disease virus during serial passages in a natural host. J Virol 81: 11341-11351.
Cheng, I.C., Liang, S.M., Tu, W.J., Chen, C.M., Lai, S.Y., Cheng, Y.C., Lee, F., Huang, T.S. and Jong, M.S. 2006. Study on the porcinophilic foot-and-mouth disease virus I. production and characterization of monoclonal antibody against VP1. J Vet Med Sci 68: 859-864.
Childerstone, A.J., Cedillo-Baron, L., Foster-Cuevas, M. and Parkhouse, R.M. 1999. Demonstration of bovine CD8+ T-cell responses to foot-and-mouth disease virus. J Gen Virol 80: 663-669.
Chu, R.M., Yang, P.C. and Cheng, I.C. 1997. Review: Foot-and-mouth disease. J Chin Soc Vet Sci 23: 477-491.
Collen, T. and Doel, T.R. 1990. Heterotypic recognition of foot-and-mouth disease virus by cattle lymphocytes. J Gen Virol 71: 309-315.
Crowther, J.R. 2001. The ELISA guide book. Humana Press Inc., Totowa.
Crowther, J.R. and Abu Elzein, E.M.E. 1979. Application of the enzyme linked immunosorbent assay to the detection and identification of foot-and-mouth disease viruses. J Hyg Camb 83: 513–519.
Crowther, J.R., Faris, S., Carpenter, Q.C. and Samuel, A.R. 1993. Identification of a fifth neutralization site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J Gen Virol 74: 1547-1553.
Davies, G. 2002. Foot and mouth disease. Res Vet Sci 73: 195-199.
de St. Groth, S.F. and Scheidegger, D. 1980. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 35: 1-21.
Di Girolamo, W., Salas, M. and Laguens, R.P. 1985. Role of Langerhans cells in the infection of the guinea-pig epidermis with foot-and-mouth disease virus. Arch Virol 83: 331-336.
Doel, T.R. 1999. Optimization of the immune response to foot-and-mouth disease vaccines. Vaccine 17: 1767-1771.
Doel, T.R. 2003. FMD vaccines. Virus Res 91: 81-99.
Domingo, E., Verdaguer, N., Ochoa, W.F., Ruiz-Jarabo, C.M., Sevulla, N., Batanowski, E., Mateu, M.G. and Fita, I. 1999. Biochemical and structural studies with neutralizing antibodies raised against foot-and-mouth disease virus. Virus Res 62: 169-175.
Donaldson, A.I. and Kihm, U. 1997. Research and technological developments required for more rapid control and eradication of foot and mouth disease. Rev Sci Tech 15: 863-873.
Donaldson, A.I., Gibson, C.F., Oliver, R., Hamblin, C. and Kitching, R.P. 1987. Infection of cattle by airborne foot-and-mouth disease virus: minimal doses with O1 and SAT 2 strains. Res Vet Sci 43: 339-346.
Donaldson, A.I., Gloster, J., Harvey, L.D. and Deans, D.H. 1982. Use of prediction models to forecast and analyse airborne spread during the foot-and-mouth disease outbreaks in Brittany, Jersey and the Isle of Wight in 1981. Vet Rec 110: 53-57.
Donaldson, A.I., Kitching, R.P. and Barnett, P.V. 1996. Foot and mouth disease. In: OIE manual of standards for diagnostic test and vaccines, Office international des epizooties, Paris, Chapter 2.1.1., pp. 47-56.
Donaldson, A.L. 1997. Foot-and-mouth disease in Taiwan. Vet Rec 140: 407.
Dunn, C.S. and Donaldson, A.I. 1997. Natural adaption to pigs of a Taiwanese isolate of foot-and-mouth disease virus. Vet Rec 141: 174-175.
Eisenbarth, G.S. 1981. Application of monoclonal antibody techniques to biochemical research. Anal Biochem 111: 1-16.
Erickson, J.W., Frankenberger, E.A., Rossmann, M.G., Fout, G.S., Medappaand, K.C. and Rueckert, R.R. 1983. Crystallization of a common cold virus, human rhinovirus 14: “isomorphism” with poliovirus crystals. Proc Natl Acad Sci USA 80: 931-934.
Fawcett, T. 2006. An introduction to ROC analysis. Pattern recognition letters 27: 861-874.
Ferris, N.P. and Dawson, M. 1988. Routine application of enzyme-linked immunosorbent assay in comparison with complement fixation for the diagnosis of foot-and-mouth and swine vesicular diseases. Vet Microbiol 16: 201-209.
Forss, S.K., Strebel, K., Beck, E. and Schaller, H. 1984. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res 12: 6587-6601.
Fraenkel-Conrat, H., Kimball, P.C. and Levy, J.A. 1988. Picornavirus. In: Virology 2nd ed: 83-93.
Gailiunas, P. and Cottral, G.E. 1966. Presence and persistence of foot-and-mouth disease virus in bovine skin. J Bacterial 91: 2333-2338.
Garcia-Valcarcel, M., Doel, T., Collen, T., Ryan, M. and Parkhouse, R.M.E. 1996. Recognition of foot-and-mouth disease virus and its capsid protein VP1 by bovine peripheral T lymphocytes. J Gen Virol 77: 727-735.
Grubman, M.J. 1980. The 5’ end of foot-and-mouth disease virion RNA contains a protein covalently linked to the nucleotide pUp. Arch Virol 63: 311-315.
Grubman, M.J. and Baxt, B. 2004. Foot-and-mouth disease. Clin Microbial Rev 17: 465-493.
Grubman, M.J. and Mason, P.W. 2002. Prospects, including time-frames, for improved foot and mouth disease vaccines. Rev Sci Tech 21: 589-600.
Grubman, M.J. Robertson, B.H., Morgan, D.O., Moore, D.M. and Dowbenko, D. 1984. Biochemical map of polypeptides specified by foot-and-mouth disease virus. J Virol 50: 579-586.
Haydon, D., Lea, S., Fry, L., Knowles, N., Samuel, A.R., Stuart, D. and Woolhouse, M.E. 1998. Characterizing sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype O) with respect to virion structure. J Mol Evol 46: 465-475.
Herold, J. and Andino, R. 2001. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell 7: 581-591.
Huang, C.C., Jong, M.H. and Lin, S.Y. 2000. Characteristics of foot and mouth disease virus in Taiwan. Virology 59: 677-679.
Hynes, R.O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11-25.
Jackson, T., Mould, A.P., Sheppard, D. and King, A.M.Q. 2002. Integrin αvβ is a receptor for foot-and-mouth disease virus. J Virol 76: 935-941.
Jackson, T., Sharma, A., Ghazaleh, R.A. Blakemore, W.E., Ellard, F.M., Simmons, D.L., Newman, J.W., Stuart, D.I. and King, A.M. 1997. Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin alpha(v)beta3 in vitro. J Virol 71: 8357-8361.
Jelokhani-Niaraki, S., Esmaelizad, M., Daliri, M., Vaez-Torshizi, R., Kamalzadeh, M. and Lotfi, M. 2010. Sequence and phylogenetic analysis of the non-structural 3A and 3B protein-coding regions of foot-and-mouth disease virus subtype A Iran 05. J Vet Sci 11: 243-247.
Kitching, R.P. 1992. The application of biotechnology to the control of foot-and-mouth disease virus. Br Vet J 148: 375-388.
Kitching, R.P. 2002. Clinical variation in foot and mouth disease: cattle. Rev Sci Tech 21: 499-504.
Kitching, R.P. and Alexandersen, S. 2002. Clinical variation in foot and mouth disease: pigs. Rev Sci Tech 21: 513-518.
Kitching, R.P. and Hughes, G.J. 2002. Clinical variation in foot and mouth disease: sheep and goats. Rev Sci Tech 21: 502-512.
Klug, A. and Caspar, D.L.D. 1960. The structure of small viruses. Adv Virus Res 7: 225-325.
Köhler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495-497.
Leippert, M., Beck, E., Weiland, F. and Pfaff, E. 1997. Point mutations within the βG-βH loop of foot and mouth disease virus O1K affect virus attachment to target cells. J Virol 71: 1046-1051.
Lin, S.Y. 2000. The outbreaks and controls of foot-and-mouth disease in Taiwan. 11th FAVA, 262.
Lin, Y.L., Huang, Y.W., Jong, M.H., Chang, W.M., Huang, C.C., Chang, P.C. and Shieh, H.K. 2012 (a). Protective efficacy of foot-and-mouth disease vaccine (O/TAW/98) against challenge with the virus isolated in Taiwan in 2009. Taiwan Vet J 36: 214-221.
Lin, Y.L., Jong, M.H., Huang, C.C., Shieh, H.K. and Chang, P.C. 2010 (b). Genetic and antigenic characterization of foot-and-mouth disease viruses isolated in Taiwan between 1998 and 2009. Vet Microbiol 145: 34-40.
Longjam, N., Deb, R., Sarmah, A.K., Tayo, T., Awachat, V.B. and Saxena, V.K. 2011. Review article: A brief review on diagnosis of foot-and-mouth disease of livestock: conventional to molecular tools. Vet Med Int 2011: 1-17.
Lu, Z., Zhang, X., Fu, Y., Cao, Y., Tian, M., Sun, P., Li, D., Liu, Z. and Xie, Q. 2010. Expression of the major epitope regions of 2C integrated with the 3AB non-structural protein of foot-and-mouth disease virus and its potential for differentiating infected from vaccinated animals. J Virol Methods 170: 128-133.
Mason, P., Grubman, M.J. and Baxt, B. 2003. Molecular basis of pathogenesis of FMDV. Virus Res 91: 9-32.
Mason, P., Rieder, E and Baxt, B. 1994. RGD sequence of foot and mouth disease virus is essential for infecting cell via the natural receptor but can be bypassed by an antibody dependent enhancement pathway. Proc Natl Acad Sci USA 91: 1932-1936.
Mateu, M.G., Andreu, D. and Domingo, E. 1995. Antibodies raised in a natural host and monoclonal antibodies recognize similar antigenic features of foot-and-mouth disease virus. Virology 210: 120-127.
McCullough, K.C., Parkinson, D. and Crowther, J.R. 1988. Opsonization-enhanced phagocytosis of foot-and-mouth disease virus. Immunology 65: 187-191.
McCullough, K.C., Simone, F.D., Brocchi, E., Capucci, L., Crowther, J.R. and Kihm, U. 1992. Protective immune response against foot-and-mouth disease. J Virol 66: 1835-1840.
Meyer, R.F., Babcock, G.D., Newman, J.F.E., Burrage, T.G., Toohey, K., Lubroth, J. and Brown, F. 1997. Baculovirus expressed 2C of foot-and-mouth disease virus has the potential for differentiating convalescent from vaccinated animals. J Virol Methods 65: 33-43.
Mulcahy, G., Gale, C., Robertson, P., Iyisan, S., DiMarchi, R.D. and Doel, T.R. 1990. Isotype responses of infected, virus-vaccinated and peptide-vaccinated cattle to foot-and-mouth disease virus. Vaccine 8: 249-256.
Murphy, F.A., Gibbs, E.P.J., Horzinek, M.C. and Studdert, M.J. 1999. Chapter 35: Picornaviridae. Veterinary Virology 3th. A Division of Harcourt Brace. 517-532.
Nayak, A., Goodfellow, I.G., Woolaway, K.E., Birtley, J., Curry, S. and Belsham, G.J. 2006. Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. J Virol 80: 9865-9875.
Oleksiewicz, M.B., Donaldson, A.I. and Alexandersen, S. 2001. Development of a novel real-time RT-PCR assay for quantitation of foot-and-mouth disease virus in diverse porcine tissues. J Virol Methods 92: 23-35.
Ouldridge, E.J., Barnett, P. and Rweyemamu, M.M. 1982. The relative efficiency of two ELISA techniques for the tritration of FMD antigen. Current Topics in Veterinary Medicine and Animal Science 22: 142-151.
Pacheco, J.M., Henry, T.M., O’Donnell, V.K., Gregory, J.B. and Mason, P.W. 2003. Role of non-structural proteins 3A and 3B in host range and pathogenicity of foot-and-mouth disease virus. J Virol 77: 13017-13027.
Reed, L.J. and Muench, H. 1938. A simple method of estimating fifty percent end points. American J Hygiene 27: 493-497.
Reichert, J. and Pavolu, A. 2004. Monoclonal antibodies market. Nat Rev Drug Discov 3: 383-384.
Rigden, R.C., Carrasco, C.P., Barnett, P.V., Summerfield, A. and McCullough, K.C. 2003. Innate immune responses following emergency vaccination against foot-and-mouth disease virus in pigs. Vaccine 21: 1466-1477.
Rueckert, R.R. 1996. Chapter 21 Picornaviridae: The virus and their replication. Virology 3th ed. Lippincott-Raven Publishers, Philadelphia. 609-654.
Rweyemamu, M.M. and Leforban, Y. 1999. Foot-and-mouth disease and international development. Adv Virus Res 53: 111-126.
Saiz, J.C., Sobrinao, F. and Dopazo, J. 1993. Molecular epidemiology of foot-and-mouth disease virus type O. J Gen Virol 74: 2281-2885.
Saleem, M. and Mustafa, K. 2010. Monoclonal antibodies in clinical diagnosis: A brief review application. African Journal of Biotechnology 7.
Salt, J.S. 1993. The carrier state of foot and mouth disease–an immunological review. Br Vet J 149: 207-223.
Salt, J.S., Mulcahy, G. and Kitching, R.P. 1996. Isotype-specific antibody responses to foot-and-mouth disease virus in sera and secretions of 'carrier' and 'non-carrier' cattle. Epidemiol Infect 117: 349-360.
Samina, I., Rones, Z.Z. and Peleg, B.A. 1997. Homologous heterologous antibody response of cattle and sheep after vaccination with foot and mouth disease and influenza viruses. Vaccine 16: 551-557.
Samuel, A.R. and Knowles, N.J. 2001. Foot-and-mouth disease virus: cause of the recent crisis for the UK livestock industry. Trends genet 17: 421-424.
Scudamore, J.M. and Harris, D.M. 2002. Control of foot and mouth disease: lessons from the experience of the outbreak in Great Britain in 2001. Rev Sci Tech 21: 699-710.
Sellers, R.F. 1968. The inactivation of foot-and-mouth disease virus by chemicals and disinfectants. Vet Rec 83: 504-506.
Shafer, A.L., Katz, J.B. and Eernisse, K.A. 1998. Development and validation of a competitive enzyme-linked immunosorbent assay for detection of type A influenza antibodies in avian sera. Avian Dis 42: 28-34.
Shieh, H.K. 1997. The FMD situation inTaiwan. J Chin Vet Sci 23: 395-402.
Snowdon, W.A. 1966. Growth of foot-and-mouth disease virus in monolayer cultures of calf thyroid cells. Nature 210: 1079-1080.
Sørensen, K.J., de Stricker, K., Dyrting, K.C., Grazioli, S. and Haas, B. 2005. Differentiation of foot-and-mouth disease virus infected animals from vaccinated animals using a blocking ELISA based on baculovirus expressed FMDV 3ABC antigen and a 3ABC monoclonal antibody. Arch Virol 150: 805-814.
Sørensen, K.J., Madsen, K.G., Madsen, E.S., Salt, J.S., Nqindi, J. and Mackay, D.K.J. 1998. Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus. Arch Virol 143: 1461-1476.
Suarez, D.L., Das, A. and Ellis, E. 2007. Review of rapid molecular diagnostic tools for avian influenza virus. Avian Dis 201-208.
Sutmoller, P. and McVicar, J.W. 1976. Pathogenesis of foot-and-mouth disease: the lung as an additional portal of entry of the virus. J Hyg (Lond) 77: 235-243.
Svitkin, Y.V., Pestova, T.V., Maslova, S.V. and Agol, V.I. 1988. Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166: 394-404.
Tami, J.A., Parr, M.D., Brown, S.A. and Thompson, J.S. 1986. Monoclonal antibody technology. Am J Hosp Pharm 43: 2816-2825.
Tsai, C.P., Pan, C.H., Liu, M.Y., Lin, Y.L., Chen, C.M., Huang, T.S., Cheng, I.C., Jong, M.H. and Yang, P.C. 2000. Molecular epidemiological studies on foot-and-mouth disease type O Taiwan viruses from the 1997 epidemic. Vet Microbiol 74: 207-216.
VaMateu, M.G., Camarero, J.A., Giralt, E., Andreu, D. and Domingo, E. 1995. Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host.Virology 206: 298-306.
Voller, A., Bartlett, A. and Bidwell, D.E. 1978. Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol 31: 507-520.
Xie, Q-C., McCahon, D., Crowther, J.R., Belsham, G.H. and McCullough, K.C. 1987. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol 68: 1637-1647.
Yang, P.C., Chu, R.M., Chung, W.B. and Sung, H.T. 1999. Epidemiological characteristics and financial costs of the 1997 foot-and-mouth disease epidemic in Taiwan. Vet Rec 145: 731-734.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6633-
dc.description.abstract口蹄疫疫苗免疫後,主要是透過血清中和試驗 (serum neutralization test, SN test) 來了解免疫動物獲得中和抗體保護力的情形,但SN test必須使用口蹄疫的活病毒,因而衍生許多的不便及限制。本實驗室使用口蹄疫病毒O/TW/97所製備的單源抗體Q10E-3,已被證明能夠精準辨認口蹄疫病毒涵蓋RGD的中和抗原決定位Site 1序列;利用此單源抗體為tracer Ab,搭配原核系統所表現的口蹄疫重組結構蛋白VP1,建構一個重組結構蛋白VP1阻斷型酵素連結免疫吸附試驗 (recombinant VP1 blocking enzyme-linked immunosorbent assays, rVP1- bELISA),來檢測免疫動物體內的抗體,並以SN test作為黃金標準 (gold standard)。試驗樣本包含不同物種及不同SN力價的血清,分別為豬血清674個、牛血清100個及羊血清100個。結果顯示,以樣本PI值 (percentage inhibition value) 與SN力價所繪製的標準曲線圖,可看出兩個試驗在三種種別動物樣品皆有極顯著的相關性 ( p < 0.001)。而試驗血清所得之cut-off值、敏感性及特異性,在豬血清樣本為20%、58.8% (173/294)、92.9% (353/380),牛血清樣本為10%、66.7% (40/60)、67.5% (27/40),羊血清樣本則為30%、73.3% (44/60)、67.5% (27/40)。推測同一組SN力價血清樣本經過rVP1-bELISA檢測後PI值的差異,可能是因為血清樣本中含有抗不同中和抗原決定位的抗體,或是血清樣本影響了tracer Ab與rVP1的結合所致。本實驗的結果證明了rVP1-bELISA與SN test的正相關性,或許未來可以嘗試加入口蹄疫病毒的其他結構蛋白,再篩選出抗各個中和抗原決定位的單源抗體去搭配組合作用,以獲得更佳的敏感性及特異性,而更能精準地呈現出SN test的檢測結果。zh_TW
dc.description.abstractTo know the protection of foot-and-mouth disease virus (FMDV) vaccine, intensive serological surveillance has been implemented. And serum neutralization test (SN test) is a conventional serological assay of FMD. The test operates live virus desperately, so it should be handled in P3 class laboratory. To overcome the restriction, we try to establish a recombinant structural protein VP1 blocking enzyme-linked immunosorbent assays (rVP1-bELISA) to replace the SN test in the future hopefully. The rVP1 was expressed by prokaryotic system. The monoclonal antibody (MAb) Q10E-3 recognizing neutralization antigenic site 1 (RGD motif) on VP1 was raised by the immunization against FMDV O/Taiwan/1997. The rVP1-bELISA was checked with swine, cattle and goat sera samples with different SN titers with sample size 674, 100 and 100 respectively. SN test is the gold standard in this experiment. The current result shows the significant correlation between rVP1-bELISA and SN test (p < 0.001) among three species samples. The cut-off value, sensitivity and specificity of swine, cattle and goat samples is 20%, 58.8% (173/294), 92.9% (353/380); 10%, 66.7% (40/60), 67.5% (27/40) and 30%, 73.3% (44/60), 67.5% (27/40), respectively. The reason of the variance of results between same SN titer sample, might be the effect of antibody that induced against different antigenic site. In the future, we can try to add other FMDV structural proteins and MAb that against different antigenic sites in our ELISA kit. It may be able to obtain better sensitivity, specificity and consistency between test results of rVP1-bELISA and SN test.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:32Z (GMT). No. of bitstreams: 1
ntu-101-R99629024-1.pdf: 3176779 bytes, checksum: f915ffc90ddc861e98084d211c7d74b3 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 xi
表目錄 xiii
第一章 序言 1
第二章 文獻回顧 3
2.1 歷史背景與簡介 3
2.2 病毒特性 4
2.2.1 病毒分類與結構 4
2.2.2 病毒基因與蛋白 5
2.2.3 病毒抗原構造 5
2.2.4 病毒物理化學特性 6
2.2.5 病毒生長特性 6
2.3 病毒流行病學 7
2.3.1 傳播途徑 7
2.3.2 宿主動物 8
2.3.3 致病機轉 8
2.3.4 臨床症狀 9
2.3.5 組織病理變化 10
2.3.6 宿主免疫反應 10
2.4 診斷方法 11
2.4.1 補體結合試驗 (Complement Fixation Test, CFT) 11
2.4.2 病毒分離 (Virus Isolation) 11
2.4.3 酵素連結免疫吸附試驗 (ELISA) 12
2.4.4 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 12
2.4.5 血清中和試驗 (Serum Neutralization Test, SN test) 13
2.5 預防與控制 13
2.5.1 移動管制 13
2.5.2 撲殺 13
2.5.3 疫苗免疫 14
2.5.4 血清學監控 14
2.6 酵素連結免疫吸附試驗 15
2.6.1 ELISA原理 15
2.6.2 ELISA分類 16
2.6.2.1 直接型ELISA (Direct ELISA) 16
2.6.2.2 間接型ELISA (Indirect ELISA) 16
2.6.2.3 三明治ELISA (Sandwich ELISA) 16
2.6.2.4 競爭型ELISA (Competitive ELISA) 17
2.6.2.5 阻斷型ELISA (Blocking ELISA, bELISA) 17
2.6.3 ELISA應用 18
2.7 單源抗體 18
2.7.1 歷史背景 18
2.7.2 單源抗體原理 18
2.7.3 單源抗體應用 19
第三章 材料與方法 20
3.1 病毒製備 20
3.1.1 口蹄疫病毒株 20
3.1.2 細胞培養與繼代 20
3.1.3 口蹄疫病毒的增殖 21
3.1.4 口蹄疫病毒力價測定 21
3.1.5 口蹄疫病毒濃縮 21
3.2 單源抗體製備 22
3.2.1 單源抗體來源 22
3.2.2 單源抗體生產 22
3.2.3 單源抗體純化 23
3.2.4 單源抗體透析 23
3.2.5 單源抗體定量 24
3.2.6 單源抗體標示過氧化氫酶 (horseradish peroxidase, HRP) 24
3.3 重組結構蛋白質 (rVP1) 表現與確認 25
3.3.1 重組蛋白質表現 25
3.3.2 重組蛋白質之電泳分析與確認 26
3.3.2.1 聚丙烯醯胺膠片電泳 (SDS-PAGE) 26
3.3.2.2 西方墨點法 (Western blot, WB) 27
3.3.3 重組蛋白質純化 28
3.3.3.1 鎳離子親和層析管柱純化 28
3.3.3.2 切膠純化 28
3.3.4 重組蛋白質定量 29
3.3.5 重組蛋白質與單源抗體結合能力測試 29
3.3.6 重組蛋白質特異性分析與確認 30
3.4 多源抗體製備 30
3.4.1 實驗動物 30
3.4.2 免疫計畫 30
3.4.3 多源抗體特性分析 31
3.4.3.1 西方墨點法 31
3.4.3.2 血清中和試驗 31
3.5 血清樣本 31
3.5.1 標準血清 32
3.5.2 樣本血清 32
3.5.2.1 豬血清樣本 32
3.5.2.2 牛血清樣本 32
3.5.2.3 羊血清樣本 32
3.6 發展檢測血清中和抗體之阻斷型ELISA 33
3.6.1 塗鍍重組結構蛋白VP1阻斷型ELISA (rVP1-bELISA) 33
3.6.1.1 最佳化rVP1-bELISA條件 33
3.6.1.2 rVP1-bELISA操作流程 33
3.6.1.3 rVP1-bELISA標準血清分析與確認 34
3.6.1.4 rVP1-bELISA樣本血清檢測 34
3.6.1.5 A450讀值轉換成抑制百分比 (PI value) 34
3.6.1.6 rVP1-bELISA與SN test相關性之分析 34
3.6.1.7 rVP1-bELISA之cut-off值、敏感性、特異性與一致性分析 35
3.6.2 塗鍍口蹄疫全病毒阻斷型ELISA (virus-bELISA) 36
3.6.2.1 最佳化virus-bELISA條件 36
3.6.2.2 virus-bELISA操作流程 36
3.6.2.3 virus-bELISA標準血清分析與確認 37
第四章 結果 38
4.1 病毒製備 38
4.1.1 口蹄疫病毒力價測定 38
4.2 單源抗體製備 38
4.2.1 單源抗體純化、透析與定量 38
4.2.2 單源抗體標示過氧化氫酶 38
4.3 重組結構蛋白質 (rVP1) 表現與確認 39
4.3.1 重組蛋白質表現 39
4.3.2 重組蛋白質純化與定量 39
4.3.3 重組蛋白質與單源抗體結合能力測試 39
4.3.4 重組蛋白質特異性分析與確認 40
4.4 多源抗體製備 40
4.4.1 多源抗體特性分析 40
4.4.1.1 西方墨點法 40
4.4.1.2血清中和試驗 40
4.5 發展檢測血清中和抗體之阻斷型ELISA 40
4.5.1 塗鍍重組結構蛋白VP1阻斷型ELISA (rVP1-bELISA) 40
4.5.1.1 最佳化rVP1-bELISA條件 40
4.5.1.2 rVP1-bELISA標準血清分析與確認 41
4.5.1.3 rVP1-bELISA樣本血清檢測結果 41
4.5.1.3.1 豬血清樣本 41
4.5.1.3.2 牛血清樣本 41
4.5.1.3.3 羊血清樣本 42
4.5.1.4 rVP1-bELISA與SN test相關性之分析 42
4.5.1.4.1 豬血清樣本 42
4.5.1.4.2 牛血清樣本 42
4.5.1.4.3 羊血清樣本 43
4.5.1.5 rVP1-bELISA之cut-off值、敏感性、特異性與一致性分析 43
4.5.1.5.1 豬血清樣本 43
4.5.1.5.2 牛血清樣本 43
4.5.1.5.3 羊血清樣本 43
4.5.2 塗鍍口蹄疫全病毒阻斷型ELISA (virus-bELISA) 44
4.5.2.1 最佳化virus-bELISA條件 44
4.5.2.2 virus-bELISA標準血清分析與確認 44
第五章 討論 45
參考文獻 51
附錄 95
dc.language.isozh-TW
dc.title抗口蹄疫病毒結構蛋白VP1單源抗體應用於酵素連結免疫吸附試驗zh_TW
dc.titleEstablishment of ELISA with Monoclonal Antibody against Structural Protein VP1 of Foot-and-Mouth Disease Virusen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王金和,林有良,陳啟銘,蔡向榮
dc.subject.keyword口蹄疫,單源抗體,結構蛋白VP1,阻斷型酵素連結免疫吸附試驗,血清中和試驗,zh_TW
dc.subject.keywordfoot-and-mouth disease,monoclonal antibody,structural protein VP1,blocking enzyme-linked immunosorbent assay,serum neutralization test,en
dc.relation.page95
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-09
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf3.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved