請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66333
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊平世 | |
dc.contributor.author | Sue-Cheng Lin | en |
dc.contributor.author | 林斯正 | zh_TW |
dc.date.accessioned | 2021-06-17T00:30:45Z | - |
dc.date.available | 2012-03-19 | |
dc.date.copyright | 2012-03-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-11 | |
dc.identifier.citation | 尾園暁、渡辺賢一、焼田理一郎、小浜継雄。2007。沖縄のトンボ図鑑。ミナミヤンマクラブ。東京。
渡辺賢一、小浜継雄。1985。沖縄のトンボ。博物館友の会。沖縄。 何健鎔、吳加雄、陳郁蕙、楊平世。2009。生態產業新趨勢-以阿里山賞螢產值及發展為例。台灣昆蟲 29:279-292。 汪良仲。1999。台灣的蜻蛉。人人公司。台北。 張家慈。2010。翅痣對蜻蜓振翅時翅膀形變之影響。國立中興大學物理學研究所碩士論文。 曹美華。2006。臺灣120種蜻蜓圖鑑。博客來出版社。台北。 張永仁、汪良仲。1997。陽明山國家公園解說叢書6蜻蛉篇。內政部營建署陽明山國家公園管理處。台北。 彭國棟。1999。物種瀕危等級及保育優先次序之評估。林曜松(編)。1999生物多樣性研討會論文集。台北。 楊平世。1989。台灣昆蟲保育之回顧與展望。國家公園學報 1:139-152。 楊平世。1991。台灣昆蟲資源的保育、利用與回顧。科學月刊 22:909-924。 楊平世、董美貞、陳建志。1995。昆蟲館之規劃與設計。動物園學報 7:37-53。 楊平世,何健鎔。2003。昆蟲資源與生態產業。行政院九二一震災重建委員會暨農委會特有生物保育中心。集集。 趙榮台。2009。建立台灣的保育類昆蟲評估分類機制。行政院農業委員會林務局保育研究系列97-04號。台北。 Barton, N. H., and K. S. Gale. 1993. Genetic analysis of hybrid zones. In: Harrison, R. G., ed. Hybrid zones and the evolutionary process. Oxford University Press, New York. Beukema, J. J. 2004. Recognition of conspecific females by males of Calopteryx haemorrhoidalis (Vander linden) (Zygoptera: Calopterygidae). Odonatologica 33: 147-156. Braune, E., O. Richter, D. Sondgerath, and F. Suhling. 2008. Voltinism flexibility of a riverine dragonfly along thermal gradients. Global Change Biol. 14: 470-482. Chakir, M., A. Chafik, P. Gibert, and J. R. David. 2002. Phenotypic plasticity of adult size and pigmentation in Drosophila: thermosensitive periods during development in two sibling species. J. Therm. Biol. 27: 61-70. Chen, C. W. 1950. Systematic notes on the genera Orolestes and Psolodesmus (Odonata). Quart. J. Taiwan Mus. 3: 23-32. Cordoba-Aguilar, A. 2002. Wing pigmentation in territorial male damselflies, Calopteryx haemorrhoidalis: a possible relation to sexual selection. Ani. Behav. 63: 759-766. Cordoba-Aguilar, A., J. C. Salamanca-Ocana, and M. Lopezaraiza. 2003. Female reproductive decisions and parasite burden in a calopterygid damselfly (Insecta: Odonata). Ani. Behav. 66: 81-87. Danforth, B. N. 1989. The evolution of hymenopteran wings: the importance of size. J. Zool. London 218: 247-276. Demayo C. G., S. A. Harun, and M. A. J. Torres. 2011. Procrustes analysis of wing shape divergence among sibling species of Neurothemis dragonflies. Aust. J. Basic Appl. Sci. 5: 748-759. Doi, H. 2008. Delayed phenological timing of dragonfly emergence in Japan over five decades. Biol. Lett. 4: 388-391. Dumont, H. J., J. Mertens, and W. De Coster. 1993. The Calopteryx splendens-cline in southwestern France, analysed by quantitative wingspot analysis (Zygoptera: Calopterygidae). Odonatologica 22: 345-351. Dumont, H. J., J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H. Weekers. 2005. Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of Calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Syst. Biol. 54: 347-362. Dumont, H. J., A. Vierstraete, and J. R. Vanfleteren. 2007. A revised molecular phylogeny of the Calopteryginae (Zygoptera: Calopterygidae). Odonatologica 36: 365-372. Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. Farris, J., M. Kallersjo, A. G. Kluge, and C. Bult. 1995. Constructing a significance test for incongruence. Syst. Biol. 44: 570-572. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. Fitzpatrick, M. J. 2004. Pleiotropy and the genomic location of sexually selected genes. Am. Naturalist 163: 800-808. Fitzstephens, D. M., and T. Getty. 2000. Colour, fat and social status in male damselflies, Calopteryx maculata. Anim Behav. 60: 851-855. Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294-299. Forsyth, A., and R. D. Montgomerie. 1987. Alternative reproductive tactics in the territorial damselfly Calopteryx maculata: sneaking by older males. Behav. Ecol. Sociobiol. 21: 73-81. Gibert P., B. Moreteau, and J. C Moreteau. 1998. Describing the evolution of reaction norm shape: body pigmentation in Drosophila. Evolution 52: 1501-1506. Gilpin, M. E., and M. E. Soule. 1986. Minimum viable populations: processes of species extinction. In Soule, M. E., ed. Conservation biology: the science of scarity and diversity. Sinauer Associates. Grether, G.F. 1996a. Sexual selection and survival selection on wing coloration and body size in the rubyspot damselfly Hetaerina americana. Evolution 50: 1939-1948. Grether, G. F. 1996b. Intrasexual competition alone favors a sexually dimorphic ornament in the rubyspot damselfly Hetaerina americana. Evolution 50: 1949-1957. Grether, G. F., and R. M. Grey. 1996. Novel cost of a sexually selected trait in the rubyspot damselfly Hataerina americana: conspicuousness to prey. Behav. Ecol. 4: 465-473. Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. Hagen, H. A. 1880. Quelques additions aux Calopterygines. C. R. Soc. Ent. Belg. 23: 62-65. Hall, T. A. 1999. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hamalainen, M. 2004. Caloptera damselflies from Fujian (China), with description of a new species and taxonomic notes (Zygoptera: Calopterygoidea). Odonatologica 33: 371-398. Haig, S. M, E. A. Beever, S. M. Chambers, H. M. Draheim, B. D. Dugger, S. Dunham, E. Elliott-Smith, J. B. Fontaine, D. C. Kesler, B. J. Knaus, I. F. Lopes, P. Loschl, T. D. Mullins, and L. M. Sheffield. 2006. Taxonomic considerations in listing subspecies under the U.S. endangered species act. Conserv. Biol. 20: 1584-1594. Hayashi, F., S. Dobata, and R. Futahashi. 2004. Macro- and microscale distribution patterns of two closely related Japanese Mnais species inferred from nuclear ribosomal DNA, its sequences and morphology (Zygoptera: Calopterygidae). Odonatologica 33: 399-412. Hayashi, F., S. Dobata, and R. Futahashi. 2005. Disturbed population genetics: suspected introgressive hybridization between two Mnais damselfly species (Odonata). Zool. Sci. 22: 869-881. Helbig, A. J., A. G. Knox, D. T. Parkin, G. Sangster, and M. Collinson. 2002. Guidelines for assigning species rank. Ibis 144: 518-525. Hewitt, G. M. 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87-112. Hewitt, G. M. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913. Hewitt, G. M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359: 183-195. Hooper, R., Y. Tsubaki, and M. Siva-Jothy. 1999. Expression of a costly, plastic secondary sexual trait is correlated with age and condition in a damsel£y with two male morphs. Physiol. Entomol. 24: 364-369. Hudson, R. R., M. Slatkin, and W. P. Maddison. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583-589. Ibrahim, K. M., R. A. Nichols, and G. M. Hewitt. 1996. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77: 282-291. Johansson, F. 2003. Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J. Biogeogr. 30: 29-34. Kimura, M. 2000. Paleogeography of the Ryukyu Islands. Tropics 10: 5-24. Kokko, H., R. Brooks, J. M. McNamara, and A. I. Houston. 2002. The sexual selection continuum. Proc. R. Soc. Lond. B 269: 1331-1340. Lande, R. 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. 78: 3721-3725. Lieftinck, M. A., J.-C. Lien, and T.-C. Maa. 1984. Catalogue of Taiwanese dragonflies (Insecta: Odonata). Asian Ecological Society. Taichung. Lin, S.-M., C.-A. Chen, and K.-Y. Lue. 2002. Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia:Lacertidae) of East Asia. Mol. Phylo. Evol. 22: 276-288. McLachlan, R. 1870. Descriptions of a new genus and four new species of Calopterygidae, and of a new genus and species of Gomphidae. Trans. Entomol. Soc. Lond. 18: 165-172. Mead, L.S., and S. J. Arnold. 2004. Quantitative models of sexual selection. Trends Ecol. Evol. 19: 264-271. Misof, B., C. L. Anderson, and H. Hadrys. 2000. A phylogeny of the damselfly genus Calopteryx (Odonata) using mitochondrial 16S ribosomal DNA markers. Mol. Phylogenet. Evol. 15: 5-14. Mullen, S. P., and J. A. Andres. 2007. Rapid evolution of sexual signals in sympatric Calopteryx damselflies: reinforcement or “noisy-neighbor” ecological character displacement. J. Evol. Biol. 20: 1637-1648. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press. New York. Nei, M., and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press. New York. Nichols, R. A., and G. M. Hewitt. 1994. The genetic consequences of long distance dispersal during colonization. Heredity 72: 312-317. Nicholas, K. B., H. B. Nicholas Jr, and D. W. Deerfield II. 1997. GeneDoc: analysis and visualization of genetic variation. Embnew News 4: 14. Norberg, R. A. 1972. The pterostigma of insect wings an inertial regulator of wing pitch. Comp. Physiol. 81: 9-22. Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Oguma, K. 1913. Japanese dragonflies of the family Calopterygidae with the descriptions of three new species and one new subspecies. J. Coll. Agr. Hokkaido Imp. Univ. 5: 149-163. Petit, R. J., I. Aguinagalde, J. L. de Beaulieu, C. Bittkau, S. Brewer, R. Cheddadi, R. Ennos, S. Fineschi, D. Grivet, M. Lascoux, A. Mohanty, G. Muller-Starck, B. Demesure-Musch, A. Palme, J. P. Martin, S. Rendell, and G. G. Vendramin. 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563-1565. Rabinowitz, D., S. Cairnes, and T. Dillon. 1986. Seven forms of rarity and their frequency in the flora of the British Isles. In Soule, M. E., ed. Conservation biology:the science of scarity and diversity. Sinauer Associates. Ramey, R. R. II, H. P. Liu, C. W. Epps, L. M. Carpenter, and J. D.Wehausen. 2005. Genetic relatedness of the Preble’s meadow jumping mouse (Zapus hudsonius preblei) to nearby subspecies of Z. hudsonius as inferred from variation in cranial morphology, mitochondrial DNA and microsatellite DNA: implications for taxonomy and conservation. Anim. Conserv. 8: 329-346. Rantala M. J., J. Koskimaki, J. Taskinen, K. Tynkkynen, and J. Suhonen. 2000. Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc. R. Soc. B 267: 2453-2457. Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNApolymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. Sadeghi, S., D. Adriaens, and H. J. Dumont. 2009. Geometric morphometric analysis of wing shape variation in ten European populations of Calopteryx splendens (Harris, 1782) (Zygoptera: Calopterygidae). Odonatologica 38: 341-357. Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin ver. 2.000: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland. Seilacher, A. 1970. Begriff und bedeutung der Fossil-Lagerstätten. Neues Jahrb. Geol. Palaontol. Abh. 1970: 34-39. Seutin, G., L. M. Ratcliffe, and P. T. Boag. 1995. Mitochondrial DNA homogeneity in the phenotypically diverse redpoll finch complex (Aves: Carduelinae: Carduelis flammea-hornemanni). Evolution 49: 962-973. Shih, H. T., H. C. Hung, C. D. Schubart, C. A. Chen, and H. W. Chang. 2006. Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five million years of the geological history of Taiwan. J. Biogeogr. 33: 980-989. Sibuet, J. C., and S. K. Hsu. 2004. How was Taiwan created? Tectonophysics 379: 159-181. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flock. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651-701. Siva-Jothy, M. T. 1999. Male wing pigmentation may affect reproductive success via female choice in a calopterygid damselfly (Zygoptera). Behaviour 136: 1365-1377. Siva-Jothy, M. T. 2000. A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc. R. Soc. B 267: 2523-2527. Suzuki, K. 1984. Character displacement and evolution of the Japanese Mnais damselflies (Zygoptera: Calopterygidae). Odonatologica 13: 287-300. Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts, USA. Tamada, T., B. Siriaroonrat, V. Subramaniam, M. Hamachi, L.-K. Lin, T. Oshida, W. Rerkamnuaychoke, and R. Masuda. 2008. Molecular diversity and phylogeography of the asian leopard cat, Felis bengalensis, inferred from mitochondrial and Y-chromosomal DNA sequences. Zool. Sci. 25: 154-163. Thompson, J. D., T. J. Gibson, T. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. Toda, M., M. Nishida, M. Matsui, G.-F. Wu, and H. Ota. 1997. Allozyme variation among east asian populations of the Indian rice frog Rana limnocharis (Amphibia: Anura). Biochem. Syst. Ecol. 25: 143-159. Toda, M., M. Nishida, M. Matsui, K.-Y. Lue, and H. Ota. 1998. Genetic variation in the Indian rice frog, Rana limnocharis (Amphibia: Anura), in Taiwan, as revealed by allozyme data. Herpetologica 54: 73-82. Tynkkynen, K., M. J. Rantala, and J. Suhonen. 2004. Interspecific aggression and character displacement in the damselfly Calopteryx splendens. J. Evol. Biol. 17: 759-767. Tzedakis, P. C., I. T. Lawson, M. R. Frogley, G. M. Hewitt, and R. C. Preece. 2002. Buffered tree population changes in a Quaternary refugium: evolutionary implication. Science 297: 2044-2047. Waage, J. K. 1975. Reproductive isolation and the potential for character displacement in the damselflies, Calopteryx maculate and C. aequabilis (Odonata: Calopterygidae). Syst. Zool. 24: 24-36. Waage, J. K. 1979. Reproductive character displacement in Calopteryx (Odonata: Calopterygidae). Evolution 33: 104-116. Wang, H. Y., and J. B. Heppner. 1997. Guidebook to dragonflies of Taiwan (part 1). Shu-Sing Publishing Company. Taipei. Watanabe, M., and M. Taguchi. 1990. Mating tactics and male wing dimorphism in the damselfly, Mnais pruinosa costalis Selys (Odonata: Calopterygidae). J. Ethol. 8: 129-137. Weekers, P. H. H., De Jonckheere, J. F., and H. J. Dumont. 2001. Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the Genus Calopteryx (Insecta: Odonata) of the west Mediterranean and adjacent west European zone. Mol. Phyl. Evol. 20: 89-99. Williamson, E. B. 1904. A new species of Psolodesmus (order Odonata) from Formosa. Entomol. News 15: 247-250. Zink, R. M. 2004. The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc. R. Soc. B 271: 561-564. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66333 | - |
dc.description.abstract | 為探討中華珈蟌 (Psolodesmus mandarinus) 三亞種親緣關係及翅色地理變異,本研究利用分子、形態與行為等方法整合分析並據此提出保育策略。首先,由細胞核與粒線體基因親緣分析結果,日本八重山族群 (即黑岩亞種 subspecies kuroiwae) 與台灣族群 (包括北台亞種 subspecies mandarinus與南台亞種 subspecies dorothea) 隸屬不同進化支序。在粒線體基因上,台灣產者又分為東部與西部分子支序。東部分支皆屬南台亞種個體,西部分支則包括北台與南台二亞種個體。由於台灣西北部族群遺傳多樣性較低,且大部分個體與南部共享一常見單倍型,因此北台亞種可能是南台亞種向北拓殖所形成之亞種。其次,利用翅痣形態測量分析,日本八重山族群 (即黑岩亞種) 與台灣族群 (包括北台與南台亞種) 可正確鑑別。往昔以翅色區分台灣產北台與南台亞種,經翅色與緯度的迴歸分析結果,翅色在北台灣為漸變形式,並無法有效釐清二亞種與其分布。反之,雌蟲翅面積在北緯24.19度 (約位於台灣中、北部交接處) 有一間斷變化,此緯度與現行區分二亞種分布範圍的北緯24.33度接近。由於屬於生活史性狀之一的雌蟲翅面積與翅色特徵的變化皆在北台灣,故兩者可能形成共同適應複合體,以適應北台灣不同選汰環境。第三,野外族群生殖配對行為研究結果顯示,台灣產北台與南台亞種雌蟲對雄蟲誇示翅色皆有相同偏好,因此無法單以雌蟲翅色偏好之性選汰解釋二亞種翅色差異。由於生活史性狀與翅色特徵僅在北台灣族群形成共同適應複合體,推論二亞種雌蟲相同翅色偏好應有不同適應度。即北台灣北台亞種雌蟲對誇示翅色偏好,可符合生活史與翅色之共同適應複合體,故翅色可由透翅型逐漸轉變為誇示翅色型。反之,台灣中、南部之南台亞種雌蟲翅色偏好並無法符合此適應性,故仍維持原有透翅型。最後,本研究強調中華珈蟌為台灣與八重山地區唯一特有屬豆娘,其翅色進化又是生物多樣性教育良好案例,也可作為溪流生態與氣候暖化之生物指標,後續需發展生態遊學相關計畫,達到研究、保育與資源永續利用之三贏目標。 | zh_TW |
dc.description.abstract | To investigate the phylogenetic relationship and geographical variation of wing color among the Psolodesmus mandarinus three subspecies, a combination of molecular, morphological, and behavioral approaches was used to guide this research and develop the conservation strategies. Firstly, the molecular phylogenetic analysis of nuclear and mitochondrial genes revealed considerable divergence between Yaeyama’s populations (subspecies kuroiwae) and Taiwanese populations (included subspecies mandarinus and dorothea). Furthermore, two mitochondrial lineages (east and west) existed in Taiwan. The eastern Taiwan lineage included these individuals belonging to dorothea, and the western Taiwan lineage included both dorothea and mandarinus. Because of the genetic diversity of mitochondrial gene was much lower in northwestern Taiwan region and two subspecies shared a common haplotype, it is probable the populations of manadrinus were derived from the northward expansion of dorothea populations. Secondarily, Yaeyama’s populations (kuroiwae) and Taiwanese populations (mandarinus and dorothea) could be exactly discriminated by the morphometrical analysis of wing pterostigma. Previous studies reported the wing color differences between mandarinus and dorothea, our results illustrated that the wing color traits gradually changed across the populations in northern Taiwan. It would be hard to discriminate two subspecies and determine the distribution limits. In contrast, the female wing size shifted dramatically at 24.19 degree (between central and northern Taiwan) which was close to the current criteria (24.33 degree) for dividing two subspecies. Because of both the wing color trait and female wing size changed across the populations of manadrinus in northern Taiwan, it is probable these traits may form co-adapted trait complexes and to cope with a different selection regime in northern Taiwan. Thirdly, the field observations of mating behavior in mandarinus and dorothea populations demonstrated that two subspecies possessed the same kind of female preference for exaggerated male coloration. Thus, the differentiation of wing color trait could not be interpreted only by using sexual selection. If the wing color trait and life history trait formed co-adapted trait complexes in northern Taiwan, the fitness of female preference would be difference between mandarinus and dorothea. Because of the positive fitness effect in female preference for mandarinus populations, wing color traits gradually changed across the northern Taiwan. On the contrary, the negative fitness effect in female preference for dorothea populations, the hyaline wing is maintained by a combination of sexual selection and natural selection. Finally, Psolodesmus is the only one endemic genus of damselflies in Taiwan and Yaeyama. The variety of wing color provided an ideal explanation case for biodiversity education. It also could be used as a biological indicator for monitoring stream ecosystem and global warming. Above all, we suggested developing an educational and recreational program for pursuing the goals of research, conservation and sustainable utilization. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:30:45Z (GMT). No. of bitstreams: 1 ntu-101-D93632004-1.pdf: 2628481 bytes, checksum: a3f97736549fa48087c26e309181d5ee (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書.....................i
誌謝...........................ii 中文摘要........................iii Abstract.........................v 目錄..........................vii 第一章 緒言........................1 圖............................5 第二章 中華珈蟌族群在細胞核與粒線體基因之遺傳分化.....7 緒言...........................8 材料與方法........................10 結果...........................18 討論...........................23 表............................26 圖............................36 附錄...........................40 第三章 中華珈蟌族群翅翼形態的地理變異..........48 緒言...........................49 材料與方法........................51 結果...........................56 討論...........................61 表............................64 圖............................71 第四章 台灣產中華珈蟌翅色與性選汰的關係.........79 緒言...........................80 材料與方法........................83 結果與討論........................87 表............................90 圖............................92 第五章 台灣產中華珈蟌現況與保育策略...........96 圖...........................100 第六章 結論與保育建議..................101 引用文獻........................106 | |
dc.language.iso | zh-TW | |
dc.title | 中華珈蟌族群之地理分化與保育研究 | zh_TW |
dc.title | A Study of the Geographical Differentiation and Conservation among Psolodesmus mandarinus Populations (Calopterygidae: Odonata) | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳建志,鄭明倫,何健鎔,徐堉峰,黃國靖 | |
dc.subject.keyword | 中華珈蟌,亞種,地理分化,保育,豆娘,台灣, | zh_TW |
dc.subject.keyword | Psolodesmus mandarinus,subspecies,geographical differentiation,conservation,damselfly,Taiwan, | en |
dc.relation.page | 115 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。