Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6632
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭宗甫
dc.contributor.authorYung-Ann Chenen
dc.contributor.author陳韻安zh_TW
dc.date.accessioned2021-05-17T09:15:31Z-
dc.date.available2012-08-15
dc.date.available2021-05-17T09:15:31Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citation1. 中華民國痛風之友協會會刊第69期。2011。
2. 行政院衛生署中醫藥委員會。臺灣藥用植物資源名錄。299,2003。
3. 行政院衛生署。國民營養現況: 2010-2011國民營養健康狀況變遷調查。33-34, 2012。
4. 吳煥,顧冠彬。台灣草藥新知:台灣抗痛風草藥。台北,2012。
5. 郭章華、周敏華。超臨界流體萃取技術在中藥研究領域的應用。國際醫藥衛生導報。9:3233,2003。
6. 陳垣崇。研究成果降尿酸藥引發的嚴重過敏反應:基因標記的發現。中央研究週報。1028:1-3,2005。
7. 莊雅玲。白花水竹草降低大鼠血中尿酸值、抗氧化性及毒性探討。國立台灣大學獸醫專業學院獸醫系碩士論文。2005。
8. 曾瀚群。白花水竹草之化學成分研究。國立臺灣大學理學院化學系
碩士論文。2008。
9. 陶良榆。葉下珠之萃取成分可抑制黃嘌呤氧化酶以及降低大鼠血液中的尿酸。國立清華大學生物科技研究所碩士論文。11-13,2011。
10. 李安哲。菊花之萃取成份可抑制黃嘌呤氧化酶以及降低大鼠血液中的尿酸。國立清華大學生物科技研究所碩士論文。13,17,2011。
11. 應紹舜。台灣高等植物彩色圖誌,第六卷。198,1998。
12. Ahmad I, Ijaz F, Fatima I, Ahmad N, Chen S, Afza N, Malik A. Xanthine oxidase/tyrosinase inhibiting, antioxidant, and antifungal oxindole alkaloids from Isatis costata. Pharm Biol. 716-21, 2010.
13. Arimboor R, Rangan M, Aravind SG, Arumughan C. Tetrahydroamentoflavone (THA) from Semecarpus anacardium as a potent inhibitor of xanthine oxidase. J Ethnopharmacol. 1117-20, 2011.
14. Attridge RL, Linn WD, Ryan L, Koeller J, Frei CR. Evaluation of the incidence and risk factors for development of fenofibrate-associated nephrotoxicity. J Clin Lipidol. 6:19-26, 2012.
15. Bijak M, Kolodziejczyk-Czepas J, Ponczek MB, Saluk J, Nowak P. Protective effects of grape seed extract against oxidative and nitrative damage of plasma proteins. Int J Biol Macromol. 183-187, 2012.
16. Bruder G, Heid H, Jarasch ED, Keenan TW, Mather IH. Characteristics of membrane-bound and soluble forms of xanthine oxidase from milk and endothelial cells of capillaries. Biochim Biophys Acta. 701:357-69, 1982.
17. Berger L, Yü TF. Renal function in gout. IV. An analysis of 524 gouty subjects including long-term follow-up studies. Am J Med. 59:605-13, 1975.
18. Becker MA, MacDonald PA, Hunt B, Gunawardhana L. Treating hyperuricemia of gout: safety and efficacy of febuxostat and allopurinol in older versus younger subjects. Nucleosides Nucleotides Nucleic Acids. 30:1011-7, 2011.
19. Beedham C, Critchley DJ, Rance DJ. Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from guinea pig, rabbit, and baboon. Arch Biochem Biophys. 481–90, 1995.
20. Chen JH, Yeh WT, Chuang SY, Wu YY, Pan WH. Gender-specific risk factors for incident gout: a prospective cohort study. Clin Rheumatol. 31:239-45, 2012.
21. Chuang SY, Lee SC, Hsieh YT, Pan WH. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr. 20:301-8, 2011.
22. Chung YC, Lin CC, Chou CC, Hsu CP. The effect of Longan seed polyphenols on colorectal carcinoma cells. Eur J Clin Invest. 713-21, 2010.
23. Chen J, Chen X, Qin J. Effects of polysaccharides of the Euphoria Longan (Lour.) Steud on focal cerebral ischemia/reperfusion injury and its underlying mechanism. Brain Inj. 292-9, 2011.
24. Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med 499-516, 2005.
25. Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 421-6, 1987.
26. Ching-Yu Hsieh and Shang-Tzen Chang Antioxidant Activities and Xanthine Oxidase Inhibitory Effects of Phenolic Phytochemicals from Acacia confuse Twigs and Branches. J. Agric. Food Chem. 58:1578–1583, 2010.
27. Cai Guo Huang, Yan Jun Shang, Jun Zhang, Jian Rong Zhang, Wen Jie Li and Bin Hua Jiao Hypouricemic Effects of Phenylpropanoid Glycosides Acteoside of Scrophularia ningpoensis on Serum Uric Acid Levels in Potassium Oxonate-Pretreate Mice. American Journal of Chinese Medicine. 149–157, 2008.
28. Chen Guang Liang, Zhang Qing Lin, Ma Xiao Qin, Xu Shu Yun. Hyperuricemia model induced by yeast in mice. Chinese Pharmacological Bulletin, 2003.
29. David Jacques , Edwin Haslam , Geoffery R. Bedford and David Greatbanks Plant proanthocyanidins. Part II. Proanthocyanidin-A2 and its derivatives. J. Chem. Soc., Perkin Trans. 1, 2663-2671, 1974
30. Doehner W, Landmesser U. Xanthine oxidase and uric acid in cardiovascular disease: clinical impact and therapeutic options. Semin Nephrol. 433-40, 2011
31. Friedl HP, Till GO, Trentz O, Ward PA. Role of oxygen radicals in tourniquet-related ischemia-reperfusion injury of human patients. Klin Wochenschr. 69:1109-12, 1991.
32. Fagugli RM, Gentile G, Ferrara G, Brugnano R. Acute renal and hepatic failure associated with allopurinol treatment. Clin Nephrol. 523-6, 2008.
33. Fatemeh Haidari et al. Orange juice and Hesperetin Supplementation of Hypouricemic Rats after Oxidative Stress Maker and Oxidoreductase Activity. J. Clin. Biochem. Nutr. 285-291, 2009.
34. Galvan AQ, Baldi S, Frascerra S, Sanna G, Ciociaro D, Ferrannini E. Effect of insulin on uric acid excretion in humans. Am J Physiol. 268:E1-5, 1995.
35. Guang-Liang Chen,* Wei Wei and Shu-Yun Xu. Effect and Mechanism of Total Saponin of Dioscorea on Animal Experimental Hyperuricemia. The American Journal of Chinese Medicine, 34: 77–85, 2006.
36. Huang MR, Li S, Li XG. Longan shell as novel biomacromolecular sorbent for highly selective removal of lead and mercury ions. J Phys Chem B. 114:3534-42, 2010.
37. Hsu, H. Y. Illustrations of Chinese Herb Medicine of Taiwan; Chinese Herb Medicine Committee National Health Administration: Taipei, Taiwan, R.O.C. p 168, 1972.
38. Hsu FL, Lu FH, Cheng JT. Influence of acetonylgeraniin, a hydrolyzable tannin from Euphoria longana, on orthostatic hypotension in a rat model. Planta Med. 60:297-300, 1994.
39. Hsu CP, Lin YH, Zhou SP, Chung YC, Lin CC, Wang SC. Longan flower extract inhibits the growth of colorectal carcinoma. Nutr Cancer. 62:229-36, 2010.
40. Heinig M, Johnson RJ. Role of uric acid in hypertension, renal disease, and metabolic syndrome. Cleve Clin J Med. 73:1059-64, 2006.
41. Hung SI, Chung WH, Liou LB.HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A, 102:4134-9, 2005.
42. Hsieh MC, Shen YJ, Kuo YH, Hwang LS. Antioxidative activity and active components of longan (Dimocarpus longan Lour.) flower extracts. J Agric Food Chem. 56:7010-6, 2008.
43. Ho SC, Hwang LS, Shen YJ, Lin CC. Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. J Agric Food Chem. 55:10664-70, 2007.
44. Haiyan Yan, Ying Ma, Mei Liu, Lanlan Zhou The Dual Actions of Paederia scandens Extract as a Hypouricemic Agent: Xanthine Oxidase Inhibitory Activity and Uricosuric Effect. Planta Medica. 1345–1350, 2008.
45. Hamburger M, Baraf HS, Adamson TC, Basile J, Bass L, Cole B, Doghramji PP, Guadagnoli GA, Hamburger F, Harford R, Lieberman JA, Mandel DR, Mandelbrot DA, McClain BP, Mizuno E, Morton AH, Mount DB, Pope RS, Rosenthal KG, Setoodeh K, Skosey JL, Edwards NL. 2011 recommendations for the diagnosis and management of gout and hyperuricemia. Phys Sportsmed. 98-123, 2011
46. Hepburn AL, Kaye SA, Feher MD. Fenofibrate: a new treatment for hyperuricaemia and gout. Ann Rheum Dis. 60:984-6, 2001.
47. Hatano T, Yasuhara T, Yoshihara R, Agata I, Noro T, Okuda T. Effects of interaction of tannins with co-existing substances. VII. Inhibitory effects of tannins and related polyphenols on xanthine oxidase. Chem Pharm Bull. 1224-9, 1999.
48. Ito S, Naritomi H, Ogihara T, Shimada K, Shimamoto K, Tanaka H, Yoshiike N. Impact of serum uric acid on renal function and cardiovascular events in hypertensive patients treated with losartan. Hypertens Res. 1038, 2012.
49. Johnson WJ, Stavric B, Chartrand A. Uricase inhibition in the rat by s-triazines: an animal model for hyperuricemia and hyperuricosuria. Proc Soc Exp Biol Med. 131:8-12, 1969.
50. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, Gersch MS, Benner S, Sánchez-Lozada LG. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 86:899-906, 2007.
51. Ji Xiao Zhu, Ying Wang, Ling Dong Kong, Cheng Yang, Xin Zhang Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. Journal of Ethnopharmacology 93:133–140, 2004.
52. Jin J, Bi H, Hu J, Zeng H, Zhong G, Zhao L, Huang Z, Huang M. Effect of Wuzhi tablet (Schisandra sphenanthera extract) on the pharmacokinetics of paclitaxel in rats. Phytother Res. 1250-3, 2011.
53. Kawabata F, Tsuji T. Effects of dietary supplementation with a combination of fish oil, bilberry extract, and lutein on subjective symptoms of asthenopia in humans. Biomed Res. 387-93, 2011.
54. Kawaguchi T, Shimode M, Matsushita H, Nagase S. Sex differences in the effect of uric acid on the survival of analbuminemic rats exposed to cold: effects of gonadal hormones and uric acid. Jpn J Physiol. 37:941-5, 1987.
55. Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13: 2888-97, 2002.
56. Kim KY, Ralph Schumacher H, Hunsche E, Wertheimer AI, Kong SX. A literature review of the epidemiology and treatment of acute gout. Clin Ther. 25:1593-617, 2003.
57. Kazuma Yoshizumi et al., The Xanthine Oxidase inhibitory Activity and Hyperuricemia effect of the Propolis in Rats. YAKUGAKU ZASSHI 125:315-321, 2005.
58. Keshk S, Mostafa M, Tawfik F, Elshemy I. Pharmazie. Biotransformation of extracted digitoxin from Digitalis lanata by Streptomyces. 458-62, 2011.
59. Kurajoh M, Koyama H, Shoji T, Sumida C, Yamamoto A, Tsutsumi Z, Moriwaki Y, Yamamoto T, Koga M. Relationship between serum allantoin and urate in healthy subjects and effects of benzbromarone in gout patients. Int J Clin Pharmacol Ther. 265-71, 2012.
60. Le MT, Shafiu M, Mu W, Johnson RJ. SLC2A9--a fructose transporter identified as a novel uric acid transporter. Nephrol Dial Transplant. 2746-9, 2008.
61. Lvyi Chena, Huafeng Yina, Zhou Lanb, Shuwei Maa, Chunfeng Zhanga, Zhonglin Yanga, Ping Li a, Baoqin Linc Anti-hyperuricemic and nephroprotective effects of Smilax china L. Chemico-Biological Interactions 135 :399–405, 2011.
62. Mai Thanh Thi NGUYEN et al., Hypouricemic Effects of Acacetin and 4,5-O-Dicaffeoylquinic Acid Methyl Ester on Serum Uric Acid Levels in Potassium Oxonate-Pretreated Rats Biol. Pharm. Bull. 28 :2231-2234, 2005.
63. Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG, Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ. Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol. 23:2-7, 2003.
64. Nguyen MT, Nguyen NT. A new lupane triterpene from Tetracera scandens L., xanthine oxidase inhibitor. Nat Prod Res. 19, 2012.
65. Nguyen MT, Awale S, Tezuka Y, Tran QL, Watanabe H, Kadota S. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol Pharm Bull. 27:1414-21, 2004.
66. Okuyama E, Ebihara H, Takeuchi H, Yamazaki M. Adenosine, the anxiolytic-like principle of the Arillus of Euphoria longana. Planta Med. 65:115-9, 1999.
67. O'Beirne, J., Patch, D., Holt, S., Hamilton, M., & Burroughs, A. K. Alcoholic hepatitis-the case for intensive management. Postgraduate Medical Journal. 504-507, 2000.
68. Ozyürek M, Bektaolu B, Güçlü K, Apak R. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method. Anal Chim Acta. 42-50, 2009.
69. Prathapan A, Lijo Cherian O, Nampoothiri SV, Mini S, Raghu KG. In vitro antiperoxidative, free radical scavenging and xanthine oxidase inhibitory potentials of ethyl acetate fraction of Saraca ashoka flowers. Nat Prod Res. 25:298-309, 2011.
70. Park SJ, Park DH, Kim DH, Lee S, Yoon BH, Jung WY, Lee KT, Cheong JH, Ryu JH. The memory-enhancing effects of Euphoria longan fruit extract in mice. J Ethnopharmacol. 128:160-5, 2010.
71. Prior, R.L. Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr. 570S-578S, 2003.
72. Perkins P, Jones AC. Gout. Ann Rheum Dis. 58:611-7, 1999.
73. Pan WH, Wu HJ, Yeh CJ, Chuang SY, Chang HY, Yeh NH, Hsieh YT. Diet and health trends in Taiwan: comparison of two nutrition and health surveys from 1993-1996 and 2005-2008. Asia Pac J Clin Nutr. 20:238-50, 2011.
74. Richette P, Bardin T. Gout. Lancet. 23:318-28, 2010.
75. Richette P. Gout: An overview of available urate lowering therapies. Ann Pharm Fr. 133-8, 2012.
76. Rangkadilok N, Worasuttayangkurn L, Bennett RN, Satayavivad J. Identification and quantification of polyphenolic compounds in Longan (Euphoria longana Lam.) fruit. J Agric Food Chem. 53:1387-92, 2005.
77. Rangkadilok N, Sitthimonchai S, Worasuttayangkurn L, Mahidol C, Ruchirawat M, Satayavivad J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem Toxicol. 45:328-36, 2006.
78. Soong YY, Barlow PJ. Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan Lour.) seed by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A. 1085:270-7, 2005.
79. Sun J, Shi J, Jiang Y, Xue SJ, Wei X. Identification of two polyphenolic compounds with antioxidant activities in longan pericarp tissues. J Agric Food Chem. 55:5864-8, 2007.
80. Sanchez-Lozada LG, Tapia E, Lopez-Molina R, et al. Effects of acute and chronic L-arginine treatment in experimental hyperuricemia Am J Physiol Renal Physiol 292: F1238-44, 2007.
81. Spanou CI, Veskoukis AS, Stagos D, Liadaki K, Aligiannis N, Angelis A, Skaltsounis AL, Anastasiadi M, Haroutounian SA, Kouretas D. Effects of Greek legume plant extracts on xanthine oxidase, catalase and superoxide dismutase activities. J Physiol Biochem. 8, 2011.
82. Shih-Chang Chien, Chen-Wei Yang, Yen-Hsueh Tseng, Hsin-Sheng Tsay, Yueh-Hsiung Kuo, Sheng-YangWang Lonicera hypoglauca Inhibits Xanthine Oxidase and Reduces Serum Uric Acid in Mice. Planta Medica 75: 302–306, 2009.
83. Sasiporn Sarawek, Bjoern Feistel, Ivo Pischel, Veronika Butterweck. Flavonoids of Cynara scolymus Possess Potent Xanthin oxidase Inhibitory Activity in vitro but are Devoid of Hypouricemic Effects in Rats after Oral Application. Planta Medica 74: 221–227, 2008.
84. Tsai HY, Wu LY, Hwang LS. Effect of a proanthocyanidin-rich extract from longan flower on markers of metabolic syndrome in fructose-fed rats. J Agric Food Chem. 56:11018-24, 2008.
85. Vikneswaran Murugaiyah, Kit-Lam Chan. Mechanisms of antihyperuricemic effect of Phyllanthus niruri and its lignan constituents Journal of Ethnopharmacology 124: 233–239, 2009.
86. Wu CH, Lai HM, Yang MC, Liaw CC, Chang SJ, Ko YC, Chen CJ. Identification of a new single-nucleotide mutation on the hypoxanthine-guanine phosphoribosyltransferase gene from 983 cases with gout in Taiwan. J Rheumatol. 34:794-7, 2007.
87. Wu, C. L., and Melton, D. W. Production of a model for Lesch-Nyhan syndrome in hypoxanthine phosphoribosyltransferase-deficient mice. Nature Genetics 3: 235-240, 1993.
88. Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 34:78-84, 1992.
89. Xiaoyu Liua, Ruohua Chenb, Yanjun Shanga, Binghua Jiao a, Caiguo Huanga Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats. Chemico-Biological Interactions 176:137–142, 2008.
90. Yu KH, See LC, Huang YC, Yang CH, Sun JH. Dietary factors associated with hyperuricemia in adults. Semin Arthritis Rheum. 37:243-50, 2008.
91. Yang DJ, Chang YY, Hsu CL, Liu CW, Lin YL, Lin YH, Liu KC, Chen YC. Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J Agric Food Chem. 58:2020-7, 2010.
92. Yu-Tang Tung, Chih-An Hsu, Chien-Shu Chen, Suh-Ching Yang, Chi-Chang Huang, and Shang-Tzen Chang Phytochemicals from Acacia confusa Heartwood Extracts Reduce Serum Uric Acid Levels in Oxonate-Induced Mice: Their Potential Use as Xanthine Oxidase Inhibitors. J. Agric. Food Chem. 58:9936–9941, 2010.
93. Yaylac S, Demir MV, Temiz T, Tamer A, Uslan MI. Allopurinol-induced DRESS syndrome. Indian J Pharmacol. 412-4, 2012.
94. Zuoqi Ding, Yue Dai, Zhengtao Wang Hypouricemic action of Scopoletin arising from xanthine oxidase inhibition and uricosuric activity. Planta Medica 71:183-185, 2005.
95. Zheng SQ, Jiang F, Gao HY, Zheng JG. Preliminary observations on the antifatigue effects of longan (Dimocarpus longan Lour.) seed polysaccharides. Phytother Res. 622-4, 2010.
96. Zhao J, He X, Yang N, Sun L, Li G. Study of drug metabolism by xanthine oxidase. Int J Mol Sci. 4873-9,2012.
97. Zhang Y, Chen C, Choi H, Chaisson C, Hunter D, Niu J, Neogi T. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. May 30, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6632-
dc.description.abstract人類在演化過程中失去可將尿酸轉化為尿素排出的尿酸酶,故尿酸合成過多或排泄減少是高尿酸血症主要形成的原因,而因營養過剩所造成的高尿酸血症與痛風更是現代人常見的文明病。主要位於肝臟的黃嘌呤酶是人體內嘌呤代謝過程產生尿酸的關鍵酵素,如果能抑制黃嘌呤酶作用便可以減低尿酸的形成,多餘的嘌呤可經由體內其他酵素回收利用,避免尿酸其在體內累積對關節、腎臟和心血管系統造成傷害。
近年來天然物萃物和自然保健食品已蔚為風潮,而植物化學成分中之抗氧化劑更是許多研究重心。龍眼除了是常見的熱帶水果更是中國傳統醫學中常見補神健胃的藥方,目前已有研究發現龍眼萃取物含有多種抗氧化成分,而抗氧化劑也被證實對許多酵素會產生影響。目前臨床常用之抗高尿酸血症藥物多為化學合成物質,有許多如:過敏、皮疹和肝腎傷害等不良副作用。由天然物中萃取能夠抗高尿酸血症又無副作用的植物化學成分是許多研究的目標。本實驗為證實民間偏方龍眼花茶之降尿酸療效,對其萃取物進行體外和體內之生物活性試驗,且為了充分利用生物資源,一併對龍眼種子、果殼、枝枒和樹葉進行研究。
實驗先以風乾龍眼﹙花、種子、果殼、枝枒和樹葉﹚甲醇萃取物在295nm波長下進行黃嘌呤酶抑制試驗測試龍眼萃取物抑制尿酸形成作用,發現五種龍眼萃取物都具有程度不等之黃嘌呤酶抑制效果,其中以龍眼花效果最佳,其IC50 為115.76 μg/ml。
另外測試龍眼花所含已知十種化合物之黃嘌呤酶抑制率,發現以proanthocyanidin A2效果最佳,其抑制率可達70.67%。之後進行生物體內活性試驗,在分別口服五種龍眼萃取物1小時後,以腹腔注射尿酸酶抑制劑oxonic acid,建立囓齒類動物﹙大鼠和小鼠﹚高尿酸血症模式,2小時後測量小鼠血中尿酸值的變化並和對照組比較,發現在100mg/kg劑量下五種龍眼甲醇萃取物都有降低小鼠血中尿酸值的效果﹙p< 0.01﹚。另外以高尿酸血症模式大鼠進行尿酸促進排除試驗,注射oxonic acid 2.5小時後,每30分鐘抽取膀胱尿液連續三小時。尿液分析結果顯示龍眼萃取物對促進尿酸排泄並無影響。綜合本研究之實驗結果,可以推測龍眼萃取物主要是藉由抑制黃嘌呤酶作用來降低血中尿酸值,並以龍眼花萃取物效果最佳,其作用主要是由具強抗氧化活性的proanthocyanidin A2對黃嘌呤酶產生抑制效果。
zh_TW
dc.description.abstractHyperuricemia results from over production or/and underexcretion of uric acid. Uric acid production is catalyzed by xanthine oxidase (XO) in the liver, which is a key enzyme in the oxidizing process of xanthine into uric acid. This study investigated anti-hyperuricemia bioactivity of Dimocarpus longan Lour. Longan pulp is a Chinese medicinal plant used for the treatment of amnesia and its flower is folklorically made into drinking tea to lower serum uric acid level. Therefore, the methanol extracts of the flower, seed, shell, stem and leaf of Longan were tested in vitro and in vivo to confirm its anti-hyperuricemic effect. Firstly, xanthine oxidase suppression rates were evaluated by the xanthine oxidase inhibition assay. The results showed that all Longan extracts reduced blood uric acid level as compared to the control group (p < 0.01). The flower extract exibited the best blood uric acid lowering effect and IC50 of XO inhibition was 115.76 μg/ml. 10 compounds have been previously isolated from Longan flower in other studies; in this study, we also examined them by the xanthine oxidase inhibition assay, revealing that proanthocyanidin A2 had the strongest inhibitory effect (70.67%). In the in vivo part of this study, the methanol extracts from 5 different Longan parts were orally administrated to different groups of mice at 50 mg/kg or 100 mg/kg 1 hour before oxonic acid was injected. The blood uric acid levels in mice were then detected 2 h later. Furthermore, we carried out the urine uric acid excretion test in rats to find out whether the Longan extracts could promote the excretion of uric acid; however no significant effect on the excretion of uric acid was observed. According to these results, the mechanism behind the antihyperuricemic effect of Longan methanol extracts was indicated to be associated with the inhibition of xanthine oxidase which results in decreased production of uric acid. This study not only revealed the existence of antihyperuricemic effect of of Dimocarpus longan, but also explored possible mechanisms. Our results showed that Dimocarpus longan has a great potential to be developed into novel therapeutic agents for the treatment of hyperuricemia.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:15:31Z (GMT). No. of bitstreams: 1
ntu-101-R98629021-1.pdf: 972603 bytes, checksum: ea4a24a6de35092c296e72b7f557d2bd (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 ix
英文縮寫對照表 xi
第一章 序言 1
第二章 文獻回顧 3
第一節 龍眼介紹 3
2-1.1 龍眼學名、產地及特性 3
2-1.2 龍眼所含之植物化學成分 4
2-1.3龍眼之藥理與生物活性 5
第二節 尿酸與高尿酸血症 6
2-2.1 尿酸生合成 6
2-2.2黃嘌呤酶之特性 7
2-2.3 高尿酸血症 8
2-2.4 高尿酸血症與疾病 9
2-2.5 高尿酸血症與痛風流行病學調查 11
2-2.6 高尿酸血症與痛風的治療 13
2-2.7 高尿酸血症的預防 14
2-2.8 高尿酸血症動物模式 15
第三節 可以降尿酸之天然物 16
第三章 材料與方法 21
第一節 五種龍眼樣本製備 21
3-1.1龍眼萃取物之製備 21
3-1.2 龍眼花成分之取得 21
第二節 龍眼萃取物之生物活性篩選 22
3-2.1黃嘌呤酶抑制試驗 22
第三節 高尿酸血症動物模式建立 23
3-3.1 實驗動物 23
3-3.2實驗設計及操作 23
3-3.3 資料分析與統計 24
第四節 高尿酸血症模式小鼠研究龍眼降低血中尿酸值效力試驗 24
3-4.1 龍眼五種甲醇粗萃物降低血中尿酸值效力試驗 24
3-4.2 資料分析與統計 25
第五節 高尿酸血症模式大鼠研究龍眼萃取物促進尿酸排泄試驗 25
第四章 結果 26
第一節 生物活性篩選結果 26
第二節 高尿酸血症動物模式建立 26
第三節 高尿酸血症模式小鼠研究龍眼萃取物降低血中尿酸值效力試驗 27
4-3.1 龍眼五種甲醇粗萃物降低血中尿酸值效力結果 27
第四節 高尿酸血症模式大鼠研究龍眼萃取物促進尿酸排泄試驗結果 27
第五章 討論 29
參考文獻 35
英文版 66
圖目錄
圖一 龍眼之花和果實 46
圖二 已鑑定出之龍眼成分 46
圖三 尿酸合成的代謝路徑 47
圖四 人體內尿酸之平衡 47
圖五 具黃嘌呤酶抑制作用之植物化學成分 49
圖六 氧嗪酸鉀誘導小鼠產生高尿酸血症之持續時間 50
圖七 龍眼五種甲醇萃取物在100 mg/kg口服劑量下對以氧嗪酸鉀誘導產生高尿酸血症小鼠血中尿酸值的影響 50
圖八 龍眼五種甲醇萃取物在75 mg/kg口服劑量下對以氧嗪酸鉀誘導產生高尿酸血症小鼠血中尿酸值的影響 51
圖九 龍眼五種甲醇萃取物在50 mg/kg口服劑量下對以氧嗪酸鉀誘導產生高尿酸血症小鼠血中尿酸值的影響 52
圖十 三種龍眼甲醇萃取物在口服100 mg/kg劑量下對以氧嗪酸鉀誘導產生高尿酸血症大鼠尿酸排泄的影響 52
圖十一 原花青素A2之化學結構 53
表目錄
表一 不同年級之台灣國中生的血清尿酸平均值、標準差及過高盛行率 53
表二 不同居住地區之台灣國中生的血清尿酸平均值、標準差及過高盛行率 54
表三 龍眼五種萃取物對黃嘌呤酶抑制試驗之百分之五十抑制濃度 55
表四 龍眼五種甲醇粗萃物以有機溶劑分配層析各分層對黃嘌呤酶之抑制率 56
表五 龍眼所含的十種化合物之黃嘌呤酶抑制百分比 57
表六 以氧嗪酸鉀誘導小鼠產生高尿酸血症可維持的時間 58
表七 以PBS為對照組對小鼠血中尿酸值的影響 59
表八 龍眼五種甲醇萃取物在100mg/kg劑量下和allopurinol以及PBS對以氧嗪酸鉀誘導產生高尿酸血症小鼠血中尿酸值的影響 60
表九 龍眼五種甲醇萃取物在75 mg/kg劑量下和allopurinol以及PBS對以氧嗪酸鉀誘導產生高尿酸血症小鼠血中尿酸值的影響 61
表十 龍眼五種甲醇萃取物在50mg/kg劑量下和allopurinol以及PBS對以氧嗪酸鉀誘導產生高尿酸血症小鼠血中尿酸值的影響 62
表十一 龍眼花萃取物在100 mg/kg劑量下對以氧嗪酸鉀誘導產生高尿酸血症大鼠尿中尿酸值的影響 62
表十二 龍眼種子萃取物在100 mg/kg劑量下對以氧嗪酸鉀誘導產生高尿酸血症大鼠尿中尿酸值的影響 63
表十三 龍眼殼萃取物在100 mg/kg劑量下對以氧嗪酸鉀誘導產生高尿酸血症大鼠尿中尿酸值的影響 63
表十四 以PBS作為陰性對照組觀察其對以氧嗪酸鉀誘導產生高尿酸血症大鼠尿中尿酸值的影響 64
表十五 以PBS為對照組對未經氧嗪酸鉀誘導產生高尿酸血症之大鼠尿中尿酸值的影響 64
表十六 促進高尿酸血症之大鼠尿中尿酸排泄試驗中每組各時間點間尿中尿酸值斜率之比較 65
表十七 75%酒精分別萃取5g新鮮和烘乾龍眼殼,200倍稀釋後之黃嘌呤酶抑制率…… 65
dc.language.isozh-TW
dc.subject黃嘌呤&#37238zh_TW
dc.subject降尿酸zh_TW
dc.subject龍眼zh_TW
dc.title龍眼花、殼、種子、葉與枝椏萃取物之降尿酸研究zh_TW
dc.titleThe study of the extracts of flower, shell, seed, leaves and twig of Dimocarpus longan Lour. on reducing uric acid level.en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor徐鳳麟
dc.contributor.oralexamcommittee劉朝鑫,郭悅雄
dc.subject.keyword龍眼,降尿酸,黃嘌呤&#37238,zh_TW
dc.subject.keywordDimocarpus longan,antihyperuricemia,xanthine oxidase inhibition,en
dc.relation.page86
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-09
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf949.81 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved