請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66322完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Yi-An Huang | en |
| dc.contributor.author | 黃奕安 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:30:17Z | - |
| dc.date.available | 2012-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-13 | |
| dc.identifier.citation | [1] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, 'Optical phase conjugation for turbidity suppression in biological samples,' Nature Photonics, vol. 2, pp. 110-115, Feb 2008.
[2] D. Gabor, 'A NEW MICROSCOPIC PRINCIPLE,' Nature, vol. 161, pp. 777-778, 1948 1948. [3] W. Lukosz, 'EQUIVALENT-LENS THEORY OF HOLOGRAPHIC IMAGING,' Journal of the Optical Society of America, vol. 58, pp. 1084-&, 1968 1968. [4] R. W. Hellwarth, 'GENERATION OF TIME-REVERSED WAVE FRONTS BY NONLINEAR REFRACTION,' Journal of the Optical Society of America, vol. 67, pp. 1-3, 1977 1977. [5] F. Charra and J. M. Nunzi, 'NONDEGENERATE MULTIWAVE MIXING IN POLYDIACETYLENE - PHASE CONJUGATION WITH FREQUENCY-CONVERSION,' Journal of the Optical Society of America B-Optical Physics, vol. 8, pp. 570-577, Mar 1991. [6] I. Yamaguchi and T. Zhang, 'Phase-shifting digital holography,' Optics Letters, vol. 22, pp. 1268-1270, Aug 15 1997. [7] A. Yariv, 'PHASE CONJUGATE OPTICS AND REAL-TIME HOLOGRAPHY,' IEEE Journal of Quantum Electronics, vol. 14, pp. 650-660, 1978 1978. [8] Q. H. Liu, 'Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,' IEEE Transactions on Geoscience and Remote Sensing, vol. 37, pp. 917-926, Mar 1999. [9] S. H. Tseng, 'Investigating the Optical Phase Conjugation Reconstruction Phenomenon of Light Multiply Scattered by a Random Medium,' IEEE Photonics Journal, vol. 2, pp. 636-641, Aug 2010. [10] S. H. Tseng and C. Yang, '2-D PSTD simulation of optical phase conjugation for turbidity suppression,' Optics Express, vol. 15, pp. 16005-16016, Nov 26 2007. [11] S. H. Tseng, 'PSTD Simulation of optical phase conjugation of light propagating long optical paths,' Optics Express, vol. 17, pp. 5490-5495, Mar 30 2009. [12] A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method: Artech House, 2000. [13] R. N. Bracewell, The Fourier transformation and its applications, 3rd ed.: McGraw-Hill, 2002. [14] J.-P. Berenger, 'A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,' Journal of Computational Physics, vol. 114, pp. 185-200, 1994. [15] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. New York: Wiley-Interscience, 1983. [16] T. W. Lee and S. C. Hagness, 'A compact wave source condition for the pseudospectral time-domain method,' IEEE Wireless Propag. Lett., vol. 3, pp. 253-256, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66322 | - |
| dc.description.abstract | 利用時域擬譜法 (PSTD),我們開發了一套模擬工具,能夠對光學相位共軛現象 (OPC) 進行模擬。 由於時域擬譜法對於空間微分能精準估計,並節省記憶體。 因此,利用時域擬譜法,我們可以模擬一個大尺度的問題。
然而,利用時域擬譜法所進行的模擬,有一些需克服的問題,包括建構光源及光學相位共軛鏡。 為了避免硬波源 (hard source) 所造成的非自然反射,故我們使用軟波源 (soft source) 來實作光源。 另一方面,吉布斯現象 (Gibbs’ phenomenon) 會使得波源的邊緣不連續處產生高頻場值震盪誤差。我們藉由將光源加寬,降低訊號的空間頻率,以去除此誤差。於是,我們便能利用時域擬譜法來建立一個精確的光學相位共軛模擬。 另外,我們建立的光學相位共軛鏡模擬了實驗中的兩個階段,傳播 (forward) 及回聚 (playback): 在傳播階段,我們利用傅立葉轉換來記錄經過紊亂介質散射的光之相量 (phasor);而在回聚階段,我們藉由改變記錄光的波印亭向量 (Poynting vector) 的方向並重新入射,此共軛光將會如時光倒流般,循原路往回穿透紊亂介質。 如果我們增大模擬尺度,我們便得以進行將光學相位共軛鏡應用在生物組織上的模擬。由於大尺度的模擬運算量極大,故運用平行化運算來提高此模擬的運算速度是有其必要的。我們將模擬中的運算工作及資料平均分配給不同的CPU及記憶體,因而降低了大尺度光學相位共軛模擬的總運算時間。 在本論文中,我們建立利用時域擬譜法建立了一個精確的數值模型來模擬光學相位共軛現象。利用模擬,我們在光學相位共軛鏡中記錄了紊亂介質散射光的相量,並依此相量入射一相位共軛光至原紊亂介質上,則此共軛光將會穿透此紊亂介質,並聚焦在原光源處。至於未來的應用方面,我們希望經由模擬,能將光導引至紊亂介質(如生物組織)中的任意位置。隨著光學斷層掃描技術的進步,生物組織折射率的分布測量會更加精確。因此,利用光學相位共軛現象來進行非侵入式治療是值得期待的。 | zh_TW |
| dc.description.abstract | In the thesis, we show the development of a simulation tool for optical phase conjugation (OPC) phenomenon. We use the pseudospectral time-domain (PSTD) algorithm to implement our OPC simulation. The PSTD simulation is computationally efficient and memory-economic, enabling accurate modeling of the OPC phenomenon of light penetration through large-scale turbid media.
In PSTD algorithm, however, we have a few problems to cope with, including the construction of a light source and an OPC mirror. To avoid the hard-source artificial reflection, a light source is implemented by soft sources. Also, the Gibbs’ phenomenon causes overshoots on the boundary of a soft source. Therefore, we broaden the width of the soft source to reduce the spatial frequency of the input signal. The overshoot noises are eliminated. With these problems solved, the PSTD simulation of OPC phenomenon is robust and error-controllable. The PSTD simulation of OPC phenomenon is divided into two parts as the OPC experiment: the forward and playback scenarios. In the forward scenario, we record the phasor of light scattered by turbid media; in the playback scenario, we emit the recorded scattered light with its phase conjugated and Poynting vectors inverted. The phase-conjugated light penetrates through the turbid media and focus at the location of the original source. By increasing the simulation scale, we can apply the OPC phenomenon to a macroscopic, biological tissue. To speed up the macroscopic simulation, we develop an PSTD simulation of OPC phenomenon with parallel computation, distributing the computation work and data to different CPUs and computer memories, respectively. The time consumption of the OPC simulation reduces as the number of CPUs increases. We develop an efficient simulation technique to model the OPC phenomenon using the PSTD analysis. In the simulation, the phasors of light scattered by turbid media are recorded by the OPC mirror. With these phasors, the OPC mirror emits phase-conjugated light. The light penetrates through the turbid media and focuses at where it originated. As for future applications, our goal is to deliver light to arbitrary location within the turbid media by the OPC simulation. With the progressive tomography of a biological tissue, the development of a non-invasive OPC treatment is promising. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:30:17Z (GMT). No. of bitstreams: 1 ntu-101-R98941072-1.pdf: 3001081 bytes, checksum: 5c04bf730fa9f7392fd9cc8d92ef960f (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………Ⅲ Abstract………………………………………………………………ⅤList of Figures………………………………………………………Ⅷ
Chapter 1: Introduction to Optical Phase Conjugation………1 1.1 Optical phase conjugation……………………………1 1.2 PSTD simulation of OPC…………………………………2 Chapter 2: Introduction to Pseudospectral Time-Domain (PSTD) Method…………………………………………………………5 2.1 PSTD algorithm……………………………………………5 2.2 Nyquist rate………………………………………………10 2.3 Dispersion relation……………………………………14 2.4 Absorbing boundary condition: perfectly matched layer (PML).……………………………………………………………19 2.5 Mie theory: cylindrical form…………………………25 2.6 NTFF validation…………………………………………32 Chapter 3: The Soft-Source Optical Phase Conjugation (SOPC) mirror……………………………………………………………………37 3.1 Hard source and soft source OPC mirrors…………37 3.2 The implementation of an OPC mirror in the PSTD simulation………………………………………………………47 3.3 The error analysis and robustness test……………51 Chapter 4: Using Parallel Computation to Simulate the OPC Phenomenon for a Biological Tissue………………………………55 4.1 The colonic cancer cell: HT-29………………………55 4.2 An introduction to MPI…………………………………58 4.3 The validation of parallel computation and its performance……………………………………………………65 4.4 Light penetration through dielectric cylinders with an OPC mirror………………………………………………………67 4.5 Light penetration through the tissue of HT29 cells with an OPC mirror…………………………………………………72 Chapter 5: Conclusions and Future Prospects…………………75 5.1 Conclusions………………………………………………75 5.2 Future prospects………………………………………76 Reference………………………………………………………………77 | |
| dc.language.iso | en | |
| dc.subject | 平行化運算 | zh_TW |
| dc.subject | 平行化運算 | zh_TW |
| dc.subject | 時域擬譜法 | zh_TW |
| dc.subject | 時域擬譜法 | zh_TW |
| dc.subject | 光學相位共軛 | zh_TW |
| dc.subject | 光學相位共軛 | zh_TW |
| dc.subject | pseudospectral time-domain (PSTD) algorithm | en |
| dc.subject | pseudospectral time-domain (PSTD) algorithm | en |
| dc.subject | optical phase conjugation (OPC) | en |
| dc.subject | parallel computing technique | en |
| dc.subject | optical phase conjugation (OPC) | en |
| dc.subject | parallel computing technique | en |
| dc.title | 利用時域擬譜法分析光學相位共軛現象 | zh_TW |
| dc.title | PSTD analysis of optical phase conjugation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張宏鈞(Hung-Chun Chang),江衍偉(Yean-woei Kiang) | |
| dc.subject.keyword | 時域擬譜法,光學相位共軛,平行化運算, | zh_TW |
| dc.subject.keyword | pseudospectral time-domain (PSTD) algorithm,optical phase conjugation (OPC),parallel computing technique, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
