請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66317完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江介宏(Jie-Hong Roland Jiang) | |
| dc.contributor.author | Fu-Rong Wu | en |
| dc.contributor.author | 吳阜融 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:30:04Z | - |
| dc.date.available | 2017-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-13 | |
| dc.identifier.citation | [1] W. Gilbert and B. Muller-Hill, 'The lac operator is DNA,' Proc Natl Acad Sci U S A, vol. 58, pp. 2415-21, 1967.
[2] M. Ptashne, 'Specific binding of the lambda phage repressor to lambda DNA,' Nature, vol. 214, pp. 232-4, 1967. [3] A. D. Riggs, S. Bougeois, and M. Cohn, 'The lac repressor-operator interaction: 3. Kinetic studies,' J. Mol. Biol. vol.53, pp. 401-17, 1970. [4] R. B. Winter and P. H. von Hippel, 'Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor-interaction: Equilibrium measurement,' Biochemistry, vol. 20, pp. 6948-60, 1981. [5] P. H. von Hippel and O. G. Berg, 'Facilitated target location in biological systems,' J Biol Chem, vol. 264, pp. 675-8, 1989. [6] J. Widom, 'Target site localization by site-specific, DNA-binding proteins,' Proc Natl Acad Sci U S A, vol. 102, pp. 16909-10, 2005. [7] Y. M. Wang, R. H. Austin, and E. C. Cox, 'Single Molecule Measurements of Repressor Protein 1D Diffusion on DNA,' Physical Review Letters, vol. 97, p. 048302, 2006. [8] I. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox, 'Real-time kinetics of gene activity in individual bacteria,' Cell, vol. 123, pp. 1025-36, 2005. [9] M. Slutsky and L. A. Mirny, 'Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential,' Biophys J, vol. 87, pp. 4021-35, 2004. [10] S. E. Halford and J. F. Marko, 'How do site-specific DNA-binding proteins find their targets?,' Nucleic Acids Res, vol. 32, pp. 3040-52, 2004. [11] J. Gorman and E. C. Greene, 'Visualizing one-dimensional diffusion of proteins along DNA,' Nat Struct Mol Biol, vol. 15, pp. 768-74, 2008. [12] J. Weindl, Z. Dawy, P. Hanus, J. Zech, and J. C. Mueller, 'Modeling promoter search by E. coli RNA polymerase: one-dimensional diffusion in a sequence-dependent energy landscape,' J Theor Biol, vol. 259, pp. 628-34, 2009. [13] M. Slutsky and L. A. Mirny, 'Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential,' Biophys J, vol. 87, pp. 4021-35, 2004. [14] S. E. Halford, 'An end to 40 years of mistakes in DNA-protein association kinetics?,' Biochem Soc Trans, vol. 37, pp. 343-8, 2009. [15] D. S. Latchman, 'Transcription factors: an overview,' Int J Biochem Cell Biol, vol. 29, pp. 1305-12, 1997. [16] R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, 'Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,' Science, vol. 287, pp. 2497-500, 2000. [17] S. J. Greive and P. H. von Hippel, 'Thinking quantitatively about transcriptional regulation,' Nat Rev Mol Cell Biol, vol. 6, pp. 221-232, 2005. [18] T. Rajala, A. Hakkinen, S. Healy, O. Yli-Harja, and A. S. Ribeiro, 'Effects of transcriptional pausing on gene expression dynamics,' PLoS Comput Biol, vol. 6, p. e1000704, 2010. [19] N. Crampton, W. A. Bonass, J. Kirkham, C. Rivetti, and N. H. Thomson, 'Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy,' Nucleic Acids Res, vol. 34, pp. 5416-25, 2006. [20] K. Sneppen, I. B. Dodd, K. E. Shearwin, A. C. Palmer, R. A. Schubert, B. P. Callen, and J. B. Egan, 'A mathematical model for transcriptional interference by RNA polymerase traffic in Escherichia coli,' J Mol Biol, vol. 346, pp. 399-409,2005. [21] K. E. Shearwin, B. P. Callen, and J. B. Egan, 'Transcriptional interference--a crash course,' Trends Genet, vol. 21, pp. 339-45, 2005. [22] V. Epshtein and E. Nudler, 'Cooperation between RNA polymerase molecules in transcription elongation,' Science, vol. 300, pp. 801-5, 2003. [23] V. P. Zhdanov, 'Model of gene transcription including the return of a RNA polymerase to the beginning of a transcriptional cycle,' Physical Review E, vol. 80, 2009. [24] G. J. Tortora, B. R. Funke, and C. L. Case, Microbiology : an introduction, 10th ed. San Francisco, CA: Pearson Benjamin Cummings, 2010. [25] B. Lewin, Genes IX, 9th ed. Sudbury, Mass.: Jones and Bartlett Publishers, 2008. [26] D. M. Bourg, Physics for game developers. Beijing ; Cambridge: O'Reilly, 2002. [27] MathWork , 'MATLAB,' available in : http://www.mathworks.com/ [28] A. Ruttor, G. Reents, and W. Kinzel, 'Synchronization of random walks with reflecting boundaries,' Journal of Physics a-Mathematical and General, vol. 37, pp. 8609-8618, 2004. [29] V. Elgart, T. Jia, A. T. Fenley, and R. Kulkarni, 'Connecting protein and mRNA burst distributions for stochastic models of gene expression,' Phys Biol, vol. 8, p. 046001, 2011. [30] N. Shimamoto, 'One-dimensional diffusion of proteins along DNA. Its biological and chemical significance revealed by single-molecule measurements,' J Biol Chem, vol. 274, pp. 15293-6, 1999. [31] Coddington, Paul D. Random number generators for parallel computers. Technical report, Northest Parallel Architecures Center, Syracuse University, Syracuse NY, 1997. [32] H. C. Berg, Random walks in biology, Expanded ed. Princeton, N.J.: Princeton University Press, 1993. [33] M. A. Islam, 'Einstein-Smoluchowski diffusion equation: A discussion,' Physica Scripta, vol. 70, pp. 120-125, 2004. [34] N. Metropolis, 'The beginning of the Monte Carlo method.” Los Alamos Science (1987 Special Issue dedicated to Stanisław Ulam), pp. 125-130. [35] E. A. Codling, M. J. Plank, and S. Benhamou, 'Random walk models in biology,' J R Soc Interface, vol. 5, pp. 813-34, 2008. [36] A. Raj and A. van Oudenaarden, 'Single-molecule approaches to stochastic gene expression,' Annu Rev Biophys, vol. 38, pp. 255-70, 2009. [37] M. J. Quinn, Parallel programming in C with MPI and OpenMP: McGraw-Hill, 2004. [38] I. Golding and E. C. Cox, 'RNA dynamics in live Escherichia coli cells,' Proc Natl Acad Sci U S A, vol. 101, pp. 11310-5, Aug 3 2004. [39] R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, 'Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,' Science, vol. 287, pp. 2497-500, 2000. [40] L. Bai, T. J. Santangelo, and M. D. Wang, 'Single-molecule analysis of RNA polymerase transcription,' Annu Rev Biophys Biomol Struct, vol. 35, pp. 343-60, 2006. [41] J. H. Kim and R. G. Larson, 'Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules,' Nucleic Acids Res, vol. 35, pp. 3848-58, 2007. [42] D. Zenklusen, D. R. Larson, and R. H. Singer, 'Single-RNA counting reveals alternative modes of gene expression in yeast,' Nat Struct Mol Biol, vol. 15, pp. 1263-71, 2008. [43] M. Barbi, C. Place, P. V, and M. Salerno, 'A model of sequence-dependent protein diffusion along DNA,' Journal of Biological Physics, vol. 30, pp. 203-226, 2004. [44] H. Kuthan, 'A Mathematical Model of Single Target Site Location by Brownian Movement in Subcellular Compartments,' J Theor Biol, vol. 221, pp. 79-87, 2003. [45] M. A. Stephens, 'Random Walk on a Circle,' Biometrika, vol. 50, pp. 385-&, 1963. [46] E. Frey and K. Kroy, 'Brownian motion: a paradigm of soft matter and biological physics,' Annalen der Physik, vol. 14, pp. 20-50, 2005. [47] J. Renn, 'Einstein's invention of Brownian motion,' Annalen der Physik, vol. 14, pp. 23-37, 2005. [48] M. Kandhavelu, H. Mannerstrom, A. Gupta, A. Hakkinen, J. Lloyd-Price, O. Yli-Harja, and A. S. Ribeiro, 'In vivo kinetics of transcription initiation of the lar promoter in Escherichia coli. Evidence for a sequential mechanism with two rate-limiting steps,' BMC Syst Biol, vol. 5, p. 149, 2011. [49] A. S. Ribeiro, A. Hakkinen, H. Mannerstrom, J. Lloyd-Price, and O. Yli-Harja, 'Effects of the promoter open complex formation on gene expression dynamics,' Physical Review E, vol. 81, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66317 | - |
| dc.description.abstract | 基因表現是主要包含兩個步驟: 轉錄和轉譯。首先,RNA聚合酶必須先結合到DNA中的特定序列,才能啟始基因轉錄。然而目前對於RNA聚合酶透過何種機制去尋找到特定的結合位置,仍然是個未解的謎。在過去幾十年來,有許多關於RNA聚合酶的移動機制的動力模型被提出,然而在生物體中的實際現象,仍尚待更進一步研究。
本篇論文目的在於研究RNA聚合酶的移動行為會如何影響基因轉錄的現象。我們透過建立一個RNA聚合酶在DNA序列上做隨機運動的模型,使用電腦模擬的方式來探討在原核生物中基因驟發性轉錄的特性。透過使用蒙地卡羅模擬法,來驗證我們的模型並和實際生物實驗做比較。 我們的實驗結果顯示,在適當的參數假設下,模擬結果相當接近一些實際的生物實驗,我們的理論模型和模擬結果,提出一些驟發性轉錄現象的可能原因,並引入了一些參數假設,尚待在未來生物實驗中驗證所代表實際上的生物意義。 | zh_TW |
| dc.description.abstract | Gene expression consists of two main steps: transcription and translation. It origins from the binding of RNA polymerases to their target sites on DNA sequences. The mechanism how RNA polymerases locate their target sites remains a puzzling mystery. It affects almost all aspects of biology. Over the past few decades, many related studies have been made on the regulation of gene expression. Although several models have been proposed and demonstrated for the mechanism, many details of the elementary steps of gene transcription in vivo are still open for debate.
This thesis aims to explain how the motion of RNA polymerases affects gene transcription dynamics and the transcriptional bursting. We introduce a random walk model for the motion of RNA polymerases along DNA during the search of target locations and the transcription process. In order to verify our model, we apply Monte Carlo simulation and simplified statistical computation to compare our prediction to prior experimental data. The findings suggest that under proper assumptions, our model is able to explain the transcriptional bursting phenomenon, and computer simulations are consistent with prior experimental data. Our results also suggest some parameters which await experiments to justify their biological significances. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:30:04Z (GMT). No. of bitstreams: 1 ntu-101-R97943159-1.pdf: 999807 bytes, checksum: 5ba48d5483e1f3efd95a92a35a77e980 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Acknowledgments i
中文摘要 ii Abstract iii Contents iv List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Bursting Phenomenon of Transcription 2 1.2 Motion of RNAP along DNA 3 1.3 Motivation 4 1.4 Main Contribution 5 1.5 Thesis Organization 6 Chapter 2 Preliminaries 7 2.1 Biological Background 7 2.1.1 DNA, RNA, and Nucleotide 7 2.1.2 Amino Acid, Protein, Enzyme, and RNAP 8 2.1.3 Gene and Gene Expression 9 2.1.4 Gene Transcription 10 2.1.5 Genome and Plasmid 11 2.1.6 Prokaryote 12 2.2 Random Walk 12 2.3 Gambler’s Ruin Problem 13 2.4 Diffusion and Brownian Motion 17 2.5 Monte Carlo Simulation Method 19 2.5.1 Random Number Generator 20 2.5.2 Simulation of Random Events 22 Chapter 3 Previous Work 24 3.1 Interaction between DNA-binding Protein and DNA 24 3.1.1 Faster than 3D Diffusion Limit 24 3.1.2 Protein one-dimensional Diffuse on DNA 26 3.2 Gene Transcription Model 26 3.3 Regulation of Gene Transcription 27 3.3.1 Regulation of Gene Transcription Initiation 27 3.3.2 Regulation of Gene Transcription Elongation 27 3.3.3 Regulation of Gene Transcription Termination 28 3.4 Summary 28 Chapter 4 Random Walk Model 30 4.1 RNAP Diffuse along DNA 30 4.1.1 One-dimensional Random Walk 30 4.1.2 Transcription Probability of RNAP 31 4.1.3 Fluctuation of Transcription Probability 32 4.2 Collision Behavior of RNAP 33 4.2.1 Random-walking RNAP 34 4.2.2 Elongating RNAP and Random-walking RNAP 35 4.2.3 Elongating RNAP 35 4.3 Summary 36 Chapter 5 Computer Simulation Method 37 5.1 Term and Parametric Definition 38 5.1.1 DNA 39 5.1.2 Gene 39 5.1.3 RNAP 39 5.1.4 Cell 40 5.2 Method I: Step-by-Step Simulation 40 5.3 Method II: Apply Gambler’s Ruin Simulation 43 5.4 Comparison of Simulation Methods 47 5.5 Interface of Simulation Program 48 Chapter 6 Experimental Results 50 6.1 Simulation Parameters 50 6.2 Zero Transcript Percentage 51 6.3 Average Number of Transcription 51 6.4 Discussion of Parametric Effects 54 6.4.1 Transcription Probability 54 6.4.2 Collisions between RNAP 54 6.4.3 Recruitment of RNAP to Promoter 55 6.5 Summary 58 Chapter 7 Conclusion and Future Work 59 Bibliography 61 | |
| dc.language.iso | en | |
| dc.subject | 隨機運動 | zh_TW |
| dc.subject | 隨機運動 | zh_TW |
| dc.subject | 原核生物基因轉錄 | zh_TW |
| dc.subject | 原核生物基因轉錄 | zh_TW |
| dc.subject | gene transcription | en |
| dc.subject | random walk | en |
| dc.subject | transcriptional bursting | en |
| dc.subject | random walk | en |
| dc.subject | transcriptional bursting | en |
| dc.subject | gene transcription | en |
| dc.title | 解析原核生物基因轉錄之驟發現象 | zh_TW |
| dc.title | Uncovering the Bursting Phenomenon of Gene Transcription in Prokaryotes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳倩瑜(Chien-Yu Chen),黃筱鈞(Hsiao-Chun Huang) | |
| dc.subject.keyword | 原核生物基因轉錄,隨機運動, | zh_TW |
| dc.subject.keyword | gene transcription,transcriptional bursting,random walk, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 976.37 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
