Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66302
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(Chang-Fu Wu)
dc.contributor.authorChia-Yang Wengen
dc.contributor.author翁嘉陽zh_TW
dc.date.accessioned2021-06-17T00:29:27Z-
dc.date.available2017-03-02
dc.date.copyright2012-03-02
dc.date.issued2012
dc.date.submitted2012-02-14
dc.identifier.citationAgarwal, M. (2009). 'UNSTEADY STATE DISPERSION OF AIR POLLUTION UNDER THE EFFECT OF DELAYED ANS NPNDELAYED REMOVAL MECHISMS.' MATURAL RESOURCE MODERLNG 22: 489-510.

Allen, C. T. (2007). 'Improving pollutant source characterization by better estimating wind direction with a genetic algorithm.' Atmospheric Environment 41(11): 2283.

Blanchard, C. L. (1999). 'Method for attribution ambient air pollutants to emission sources.' Annual Review of Energy and the Environment 24: 329-365.

Chang, W. S. (2009). 'Odor Load Investigation for a Pharmaceutical Plant by Open Path Fourier Transform Infrared (OP-FTIR)/Environmental Protection Agency Regulatory Dispersion Model (AERMOD).' Environmental Forensics 10(1): 82-91.

Chen, C.-L., C.-M. Shu, et al. (2006). ' Location and Characterization of VOC Emissions at a Petrochemical Plant in Taiwan.' Environmental Forensics 7(2): 159-167.

Enting (2002). 'Inverse Problems in Atmospheric Constituent Transport.' Cambridge University Press.

EPA, U. (2004). 'AERMET USER’S GUIDE.'

EPA, U. S. (1996). User's Guide for the Industrial Source Complex (ISC3) Dispersion Models Volume II, U.S. Environmental Protection Agency.

EPA, U. S. (2003). Comparison of Regulary Design Concertratoin: Aermod Vs Iscst3, Ctdmplus, Isc-Prime. N. C. O. o. A. Q. P. a. Standard.

EPA, U. S. (2006). Other Test Method OTM10: Optical Remote Sensing for Emission Characterization from Non-Point Sources., EPA, U.S.

Faulkner, W. B. (2008). 'Sensitivity of Two Dispersion Models (AERMOD and ISCST3) to Input Parameters for a Rural Ground-Level Area Source.' J. Air & Waste Manage. Assoc. 58: 1288-1296.

FLESCH, T. K. (2005). 'Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial with Wind Disturbance.' American Meteorological Society 44: 475-483.

Flesh, T. K., J. D. Wilson, et al. (2005). 'Estimating gas emission from a farm with an inverse-dispersion technique.' Atmospheric Environment. 39(27): 4863–4874.

Grosch, T. G. (1999). 'Sensitivity of the AERMOD air quality model to the selection of land use parameters.' 1999 air pollution conference in San Francisco, CA.

Guo, S. (2009). 'Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method.' International Journal of Heat and Mass Transfer 50(17-18): 3955–3962.

Isakov (2004). 'Near-field dispersion modeling for regulatory applications.' J Air Waste Manag Assoc. 54(4): 473-482.

Leeuw, F. A. A. M. d. (1999). 'THE USE OF ATMOSPHERIC DISPERSIONMODELS IN RISK ASSESSMENT DECISION SUPPORT SYSTEMS FOR PESTICIDES.' ENVIRONMENTAL MONITORING AND ASSESSMENT 62: 133-145.

Liu, X. and Z. Zhai (2007). 'Inverse modeling methods for indoor airborne pollutant tracking:literature review and fundamentals.' Indoor Air 17: 419–438.

Lushi, E. and J. M. Stockie (2009). 'An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources.' Atmospheric Environment 44 1097-1107.

Perry, S. G. (2004). 'AERMOD: A Dispersion Model for Industrial Source Application. Part II: Model Performance against 17 field Study Databases.' Journal of Applied Meteorology 44: 694.

Rao, K. S. (2007). 'Source estimation methods for atmospheric dispersion.' Atmospheric Environment. 41 6964–6973.

Schauberger, G. (2011). 'Odour emissions from a waste treatment plant using an inverse dispersion technique.' Atmospheric Environment 45 1639e1647.

Seinfeld (1986). 'Atmospheric Chemistry and Physics of Air Pollutant.' John Wiley & Sons, New York: 872.

Sexton, K. (2004). 'Evaluating Differences between Measured Personal Exposures to Volatile Organic Compounds and Concentrations in Outdoor and Indoor Air.' Environ. Sci. Technol. 38: 2593-2602.

Shaughnessy, P. (2011). 'Use of AERMOD to determine a hydrogen sulfide emission factor for swine operations by inverse modeling.' Atmospheric Environment 45(27): 4617-4625.

Silverman, K., J. Tell, et al. (2007). 'Comparison of the industrial source complex and AERMOD dispersion models: case study for human health risk assessment.' J Air Waste Manag Assoc. 57: 1439-1446.

Thomson, L. C., B. Hirst, et al. (2006). 'An improved algorithm for locating a gas source using inverse methods.' Atmospheric Environment 41: 128.

Thurston, G. D. (2008). Outdoor Air Pollution: Sources, Atmospheric Transport, and Human Health Effects. New York University School of Medicine, Tuxedo, NY, USA.

Turner, D. B. (1994). 'Workbook of Atmospheric Dispersion Estimation : Second Edition.'

WebMET (2002). '6. METEOROLOGICAL DATA PROCESSING - 6.2.2 Vector Computations.' from http://www.webmet.com/met_monitoring/622.html.

Wu, C. F. and S. Y. Chang (2010). 'Comparisons of radial plume mapping algorithms for locating gaseous emission sources.' Atmospheric Environment 45: 1476e1482.

Wu, C. F., C.-H. Chen, et al. (2008). 'Developing and Evaluating Techniques for Localizing Pollutant Emission Sources with Open-Path Fourier Transform Infrared Measurements and Wind Data.' J. Air & Waste Manage. Assoc. 58: 1360–1369.

Zou, B. (2010). 'Performance of AERMOD at different time scales.' Simulation Modelling Practice and Theory 18: 612-623.

吳清吉 (2001). '我們生活的空間-大氣邊界層.' 台灣大學大氣科學系 科學發展月刊: 803.

宋偉國 (2001). '氣象條件下對於高雄地區污染物擴散之影響性研究.' 第三屆台灣環境資源永續發展研討會.

林士鈞 (2010). '以雙測線之一維輻射光徑煙流分布重建法定位污染源.' 國立臺灣大學環境衛生研究所碩士論文.

空氣品質支援中心 (2009). '空氣品質支援中心98年計劃報告書-美國AERMOD 模式系統在國內應用的可行性評估.' (4.7): 4-257.

陳世芳 (2004). '混和層高度診斷方法之研究.' 國立台灣大學環境工程學研究所碩士論文.

曾威霖 (2005). '地表能量平衡處理大氣穩定度方法與實例.' 國立台灣大學環境工程研究所論文.

葉政凱 (2011). '運用開徑式傅立葉轉換紅外線光譜儀及空氣擴散模式定位逸散源.' 國立臺灣大學職業醫學與工業衛生研究所碩士論文.

盧彥勳 (2009). '大氣中微粒污染與重金屬成分之模擬與分析.' 東海大學環境科學與工程系碩士班碩士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66302-
dc.description.abstract過去許多研究提出逆演算空氣擴散模式技術,以定位不明污染逸散源位置之方法。本研究使用開徑式傅立葉轉換紅外線光譜儀(Open-Path Fourier Transform Infrared)收集下風處濃度資料,在大範圍之空間區域中,相對於使用多個定點採樣器,可更快地獲得具有代表性之資料。本研究在工業區進行三場次追蹤氣體實地實驗,於下風處架設三條OP-FTIR監測線(長度分別為123、127、127公尺),追蹤氣體釋放源有三個點,分別為逸散源A(Source A)與三道監測線之距離大約為105、315、與530公尺(期間: 295分鐘),逸散源B(Source B)與三道監測線之距離大約為355、565、與780公尺(期間:180分鐘),逸散源C(Source C)與三道監測線之距離大約為400、615、與825公尺(期間: 483分鐘)。為從理論上驗證此技術之可行性,也於電腦程式中進行模擬進行前向(forward)方法預測下風處濃度,並使用最佳化演算法逆演算美國環保署ISCST3(Industrial Source Complex – Short Term 3)模式與AERMOD(American Meteorological Society Environmental Protection Agency Regulatory Model)模式去回推逸散源位置,另嘗試以風向直接進行向量(vector)法估計出可能之逸散源位置。研究結果發現逆演算法雖然無法精準回推釋放點,但藉由適當之篩選條件可得到一可能釋放區域(uncertainty area),ISCST3模式於僅用1個風向下Source B真實點與預測點之平均距離為60.40公尺(CCF>0.5),而AERMOD模式於Source B真實點與預測點平均距離為49.44公尺(CCF>0.75) 皆為經過篩選後之最佳結果,而其流量之預測結果分別為低估22.6%與51.0%。另外兩個釋放源由於實驗場地與資料限制,其結果不盡理想,1個風向之回推結果平均距離於Source A為128.22-340.42公尺,而Source C為156.93-295.38公尺。研究結果亦顯示氣象資料及模式參數值會影響回推值,因此未來研究需計算與取得適和台灣環境之參數值,以使模式預測或回推更為準確。zh_TW
dc.description.abstractIn many previous studies, the technique of inversing air dispersion model technology was presented to locate unknown emission sources locations. In this study, wWe collected the downwind concentration data using optical remote sensing (ORS)open-path fFourier transform infrared spectroscopy (OP-FTIR) instrument thatwhich can obtainprovide representative data faster than using many point samplers among ain large spatial areas. In our field experiments of releasing tracer gases, we set up three discrete OP-FTIR monitoring lines (lengths of lines were 123, 127, and 127m) at the downwind sites of the survey area near an industrial complex to locate two three artificially released emission sources. ForTo verifying the inversion algorithmtheory, we also conducted computer simulation studies. combine path integrated concentration data and meteological data as input data, and the uncertainty areas of unknown emission source are estimated. For Source A, the distance between the source and the monitoring lines was 355, 565, and 780m, respectively. On the other hand, that distance for Source B was 105, 315, and 530m. The experiment study was conducted with three discrete monitoring lines as the field experimental setup in the reconstruction process. The distance between the Ssource A (duration: 295minutes) and the monitoring lines was 105, 315, and 530m, respectively. The distance between the Ssource B (duration: 180minutes) and the monitoring lines was 355, 565, and 780m, respectively. The distance between the Ssource C (duration: 438minutes) and the monitoring lines was 400, 615, and 825m, respectively. An oOptimization algorithm was used to inverse the U.S. EPA ISCST3 and AERMOD models for to traceing back the source locations considering different scenarios including different wind directions, emission rates and source locations. Previous studies showed that the screening criteria with efficient downwind PICdata and wind direction could improve the reconstruction result. For verifying the theory, we demonstrated the results of uncertainy area with different screening criteria, but we found that screening criteria of CCF and wind direction were not very robustious . The results showed that the true source locations could not be identified exactly but they could be covered by the uncertainty areas.We could estimated the uncertainy area of possible source location with reconstruction procedure of ISCST3 and AERMOD model. The average distance between Source B and the predicted source location was 49.44m (AERMOD model) and 60.40m (ISCST3 model), and Source B was provided the best result after screening for CCF larger smaller than 0.75. The estimated emission rates were underestimated from real emission rate forby 22.6% (ISCST3 model) and 51.9% (AERMOD model). The other emission sources were gave obtained poorworse results because of limitations of the experimental setup. The average distance of errors for Source A ranged from 128.22-340.42m, and Source C was 156.93-295.38m. The poor results were because we could notdue to not offer thehaving suitable proper model parameters and meteorological data for model process. Future studies should obtain local data to improve the performance of the modeling and inversion techniques.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:29:27Z (GMT). No. of bitstreams: 1
ntu-101-R98844004-1.pdf: 1634673 bytes, checksum: d48d4d980ac7095f8c8bf2cc5ed8545b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1 研究背景 1
1.2 文獻回顧 1
1.2.1 定點採樣器汙染源定位方法 1
1.2.2 輻射型光徑煙流分佈重建法(Radial Plume Mapping) 2
1.3 逆演算技術 3
1.4 運用遙測資料之優點 5
1.5 研究目的 5
第二章 研究方法 7
2.1 資料收集 7
2.2 資料分析 9
2.2.1 向量方法(vector method) 9
2.2.2 逆演算方法(inversion method) 10
2.2.3 向量結合逆演算方法(vector with inversion method) 12
2.2.4 前向方法(forward method)與重建(Reconstruction)程序 12
2.2.5 敏感度分析 13
第三章 結果與討論 23
3.1 資料收集 23
3.2 ISCST3結果 24
3.2.1 Source A回推結果 24
3.2.2 Source B回推結果 26
3.2.3 Source C回推結果 27
3.2.4多風向回推結果 28
3.3 AERMOD結果 29
3.3.1 Source A回推結果 29
3.3.2 Source B回推結果 30
3.3.3 Source C回推結果 31
3.3.4多風向回推結果 32
3.5 ISCST3與AERMOD模式結果比較 33
3.6風向(Wind Direction)變異與移動平均值(Moving Average)討論 34
3.7 前向(Forward)結果與模擬(Simulation)逆演算程序 35
3.8氣象資料對AERMOD與ISCST3之影響 38
3.9向量(Vector)與逆演算(inversion)方法討論 41
3.10 排放速率(Emission rate)與風速(Wind Speed) 討論 42
第四章 總結 44
參考文獻 86
附錄1 89
附錄2 90
附錄3 93
附錄4 94
附錄5 95
附錄6 96
附錄7 97
dc.language.isozh-TW
dc.subject逸散源位置zh_TW
dc.subject逆演算空氣擴散模式zh_TW
dc.subject開徑式傅立葉轉換紅外線光譜儀zh_TW
dc.subject開徑式傅立葉轉換紅外線光譜儀zh_TW
dc.subject逆演算空氣擴散模式zh_TW
dc.subject逸散源位置zh_TW
dc.subjectopen-path Fourier transform infrared spectroscopyen
dc.subjectopen-path Fourier transform infrared spectroscopyen
dc.subjectinversion of dispersion modelen
dc.subjectemission source locationen
dc.subjectinversion of dispersion modelen
dc.subjectemission source locationen
dc.title使用開徑式傅立葉轉換紅外線光譜儀及逆演算空氣擴散模式定位逸散源之方法驗證zh_TW
dc.titleMethod Validation of Inversing Air Dispersion Models to Locate Emission Sources with Open-Path Fourier Transform Infrared Spectroscopyen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡詩偉,吳焜裕
dc.subject.keyword開徑式傅立葉轉換紅外線光譜儀,逆演算空氣擴散模式,逸散源位置,zh_TW
dc.subject.keywordopen-path Fourier transform infrared spectroscopy,inversion of dispersion model,emission source location,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2012-02-14
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved