Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor關秉宗(Biing T. Guan)
dc.contributor.authorPo-Yin Chenen
dc.contributor.author陳柏因zh_TW
dc.date.accessioned2021-06-17T00:28:41Z-
dc.date.available2012-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-14
dc.identifier.citation王子定、戴廣耀、焦國模、施慶芳,1966。柳杉栽植距離之研究。國立臺灣大學農學院專刊 17:1-19。
李崇銘,1989。柳杉種源試驗十五年生林木之生長表現。國立台灣大學森林學研究所碩士論文。
林世宗,1989。不同栽植距離下柳杉林分之生長及其養分動態之研究。國立臺灣大學森林所博士論文。
林法勤,1992。柳杉栽植距離對其基本力學性質影響之研究。國立臺灣大學森林所碩士論文。
林淑華,1994。臺灣栽植柳杉之栽植距離對其原木、製材品等及製材彎曲強度性質影響之研究。國立臺灣大學森林所碩士論文。.
林雅慧,2009。柳杉栽植距離試驗之林分斷面積生長與收穫。國立臺灣大學森林環境暨資源學系碩士論文。
施慶芳,劉金淓,陳放生,1997。柳杉栽植距離之研究-46年生時之結果。臺大實驗林研究報告 11:81-109。
柯志裕,1995。栽植距離對柳杉實大樑靜曲及動彈性係數的影響。國立臺灣大學森林學研究所碩士論文。
陳姿彤,2011。以臺灣中部雲杉樹輪重建三百年古氣候:利用傳統樹輪及總體經驗模態分解法。國立臺灣大學地質學研究所碩士論文。
張振生,王亞男,賴彥任,梁治文,許炳修,魏聰輝,2008。臺大實驗林溪頭營林區夏季降雨之長期趨勢,臺大實驗林研究報告 22:9-19。
詹明勳,1999。塔塔加地區天然生台灣雲杉樹木氣候學之研究。國立臺灣大學森林學研究所博士論文。
鄒佩珊,1998。臺灣山區近五百年的氣候變化:樹輪寬度的證據。國立臺灣大學地質學研究所博士論文。
蔣麗雪,2011。臺灣中部威氏帝杉樹輪寬變化與當地氣候及中太平洋海面溫度之關係。國立臺灣大學森林環境暨資源學系碩士論文。
Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist 165, 351-371.
Becker, M., 1989. The role of climate on present and past vitality of silver fir forests in the Vosges-mountains of northeastern France. Canadian Journal of Forest Research 19, 1110-1117.
Biondi, F., Waikul, K., 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30, 303-311.
Blasing, T.J., Duvuck, D.N., 1983. Filtering the effects of competition from ring-width series. Tree-Ring Bulletin 43, 19-30.
Bontemps, J.D., Esper, J., 2011. Statistical modelling and RCS detrending methods provide similar estimates of long-term trend in radial growth of common beech in north-eastern France. Dendrochronologia 29, 99-107.
Briffa, K.R., Jones, P.D., Bartholin, T.S., Eckstein, D., Schweingruber, F.H., Karlen, W., Zetterberg, P., Eronen, M., 1992. Fennoscandian summers from ad-500 - temperature-changes on short and long timescales. Climate Dynamics 7, 111-119.
Briffa, K.R., Schweingruber, F.H., Jones, P.D., Osborn, T.J., Harris, I.C., Shiyatov, S.G., Vaganov, E.A., Grudd, H., 1998. Trees tell of past climates: but are they speaking less clearly today? Philosophical Transactions of the Royal Society B-Biological Sciences 353, 65-73.
Buckley, B.M., 2009. Dating, Dendrochronology. In: Gornitz, V. (Ed.), Encyclopedia of earth sciences series. Springer, Netherlands, pp. 239-247.
Carrer, M., Nola, P., Motta, R., Urbinati, C., 2010. Contrasting tree-ring growth to climate responses of Abies alba toward the southern limit of its distribution area. Oikos 119, 1515-1525.
Cescatti, A., Piutti, E., 1998. Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. Forest Ecology and Management 102, 213-223.
Cook, E.R., 1985. A time series analysis approach to tree-ring standardization. University of Arizona, Tucson, Arizona, USA.
Cook, E.R., 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin 47, 37-60.
Cook, E.R., Kairiukstis, L.A., 1989. Methods of dendrochronology: applications in the environmental science. Kluwer Academic Publishers, The Netherlands.
Cook, E.R., Peters, K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41, 45-54.
Corona, C., Edouard, J.L., Guibal, F., Guiot, J., Bernard, S., Thomas, A., Denelle, N., 2011. Long-term summer (AD751-2008) temperature fluctuation in the French Alps based on tree-ring data. Boreas 40, 351-366.
D'Arrigo, R., Wilson, R., Liepert, B., Cherubini, P., 2008. On the 'Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible causes. Global and Planetary Change 60, 289-305.
Esper, J., Cook, E.R., Krusic, P.J., Peters, K., Schweingruber, F.H., 2003. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research 59, 81-98.
Esper, J., Cook, E.R., Schweingruber, F.H., 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250-2253.
Fritts, H.C., 1976. Tree rings and climate. Academic Press, London; New York.
Fritts, H.C., Swetnam, T.W., 1989. Dendroecology - A tool for evaluating variations in past and present forest environments. Advances in Ecoogical Research 19, 111-188.
Gea-Izquierdo, G., Martin-Benito, D., Cherubini, P., Canellas, I., 2009. Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Annals Forest Science 66, 802.
Glock, W.S., 1955. Tree growth 2. growth rings and climate. Botanical Review 21, 73-188.
Grissino-Mayer, H.D., 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, 205-221.
Grudd, H., Briffa, K.R., Karlen, W., Bartholin, T.S., Jones, P.D., Kromer, B., 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12, 657-665.
Guan, B.T., Lin, S.T., Lin, Y.H., Wu, Y.S., 2008a. Growth efficiency-survivorship relationship and effects of spacing on relative diameter growth rate of Japanese cedars. Forest Ecology and Management 255, 1713-1723.
Guan, B.T., Lin, S.T., Lin, Y.H., Wu, Y.S., 2008b. No initial size advantage for Japanese cedars in crowded stands. Forest Ecology and Management 255, 1078-1084.
Helama, S., Lindholm, M., Timonen, M., Eronen, M., 2004. Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theoretical and Applied Climatology 79, 239-254.
Holmes, R.L., 1983. Computer-assisted Quality Control in Tree-ring Dating and Measurement. Tree-Ring Bulletin 43, 69-78.
Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A-Mathematical Physical & Engineering Sciences 454, 903-995.
Huang, N.E., Wu, Z.H., 2008. A review on Hilbert-Huang transform: method and its applications to geophysical studies. Reviews of Geophysics 46, RG2006.
Inoue, S., Shirota, T., Mitsuda, Y., Ishii, H., Gyokusen, K., 2008. Effects of individual size, local competition and canopy closure on the stem volume growth in a monoclonal Japanese cedar (Cryptomeria japonica D. Don) plantation. Ecological Research 23, 953-964.
Ise, T., Moorcroft, P.R., 2008. Quantifying local factors in medium-frequency trends of tree ring records: Case study in Canadian boreal forests. Forest Ecology and Management 256, 99-105.
Jozsa, L., 1988. Increment core sampling techniques for high quality cores. Forintek Canada Corp., Vancouver, British Columbia.
Kimmins, J.P., 2004. Forest Ecology: a foundation for sustainable forest management and environmental ethics in forest. 3rd. Prentice Hall, New Jersey.
Kojo, Y., 1987. A dendrochronological study of Cryptomeria japonica in Japan. Tree-Ring Bulletin 47, 1-22.
Lee, J.Y., 1971. Predicting mortality for even-aged stands of lodgepole pine. Forestry Chronicle 47, 29-32.
Linderholm, H.W., Gunnarson, B.E., Liu, Y., 2010. Comparing Scots pine tree-ring proxies and detrending methods among sites in Jamtland, west-central Scandinavia. Dendrochronologia 28, 239-249.
Macias, M., Andreu, L., Bosch, O., Camarero, J.J., Gutierrez, E., 2006. Increasing aridity is enhancing silver fir (Abies alba mill.) water stress in its south-western distribution limit. Climatic Change 79, 289-313.
Nicault, A., Guiot, J., Edouard, J.L., Brewer, S., 2010. Preserving long-term fluctuations in standardisation of tree-ring series by the adaptative regional growth curve (ARGC). Dendrochronologia 28, 1-12.
Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., Ceulemans, R., 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell & Environment 22, 683-714.
Nowacki, G.J., Abrams, M.D., 1997. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecological Monographs 67, 225-249.
Oliver, C., Larson, B., 1990. Forest stand dynamics. McGraw-Hill, New York.
R development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
Rozas, V., DeSoto, L., Olano, J.M., 2009. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytologist 182, 687-697.
Speer, J.H., 2010. Fundamentals of tree-ring research. The University of Arizona Press, Tucson, Arizona.
Szeicz, J.M., Macdonald, G.M., 1994. Age-dependent tree-ring growth-responses of sub-arctic white spruce to climate. Canadian Journal of Forest Research 24, 120-132.
VoorTech Consulting, 2009. MeasureJ2X. Holderness, NH.
Vaganov, E.A., Hughes, M.K., Shashkin, A.V., 2006. Growth dynamics of conifer tree rings: Images of past and future environments. Springer, New York.
Wang, X., Zhang, Y., McRae, D.J., 2009. Spatial and age-dependent tree-ring growth responses of Larix gmelinii to climate in northeastern China. Trees-Structure and Function 23, 875-885.
Warren, W.G., 1980. On removing the growth trend from dendrochronological data. Tree-Ring Bulletin 40, 35-44.
Wigley, T.M.L., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology 23, 201-213.
Zhang, Y.X., Wilmking, M., 2010. Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau. Forest Ecology and Management 260, 1076-1082.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66284-
dc.description.abstract樹輪寬記錄了林木的生長歷程。藉由樹木年代學(dendrochronology)的研究,可以瞭解林木與環境之間在時間與空間上的互動情況,如林木受競爭與氣候的影響等。本研究旨在探討溪頭地區之柳杉(Cryptomeria japonica)人造林,在不同起始栽植距離下,林木的氣候訊號表現有何差異。本研究比較負指數法(negative exponential curve)、Hugershoff curve法、三次平滑曲線法(cubic smoothing spline curve)等三種不同的生長趨勢移除(detrending)方法在擷取環境訊號上的差異,各趨勢移除方法皆分別建立標準年表(standard chronology)、殘差年表(residual chronology)、與自迴歸年表(ARSTAN chronology)。將以上輪寬年表與氣候因子分別以相關函數(correlation function)與反應函數(response function)分析,選用的氣候因子分別是溪頭地區的月平均最高溫(Tmax)、月平均溫(Tmean)、月平均最低溫(Tmin)、月降雨量等地域性因子,與NINO3.4指數。結果顯示:標準年表與氣候的反應較佳,三種趨勢移除方法則各有優劣。本研究中,與輪寬年表關係較好的氣候因子有:當年十月、十一月 (正相關),前一年七月、八月(負相關) 之Tmean;當年七月、一月(負相關),前一年七月、八月(負相關) 之Tmax;當年十、十一、十二月(正相關) 之Tmin;當年一、二月(正相關),與前一年二月(正相關) 之降雨量。本研究也發現,林木之初始栽植距離較小者,與氣候因子間的關係較強,且林木生長前期的輪寬也與氣候因子的關係較強。由以上結果推導出,本研究區域的柳杉,在競爭作用強的環境下時,有較好的氣候訊號擷取能力。zh_TW
dc.description.abstractTree-ring widths record the growth history of trees. Dendrochronology is the study of the interactions between tree growth and environmental conditions across space and time, e.g. the influences of competition and climate. The main objective of this research is to understand the differences in climate signal expression among trees with different initial spacing in a Japanese cedars (Cryptomeria japonica) plantation in Xitou, central Taiwan. This study compared the differences of three detrending methods, namely, negative exponential curve, Hugershoff curve, and cubic smoothing spline curve, in extracting signals from tree-ring series. The standard chronology, residual chronology, and ARSTAN chronology were built for each of the three detrending methods. Correlation and response functions were calculated for the detrended tree-ring width chronologies and local monthly climatic records, which included monthly average maximum temperature (Tmax), monthly average mean temperature (Tmean), monthly average minimum temperature (Tmin), and monthly precipitation, as well as the NINO3.4 index. The results showed that the standard chronology had the best correlation and response function relationships with climate. All three detrending methods had both pros and cons. This study found that the ring width chronologies had good relationships with the following climatic factors: Current October and November (positive correlation) and previous July and August Tmean (negative correlation); current July and January, and previous July and August Tmax (negative correlation); current October, November, and December Tmin (positive correlation) and current January and February, and previous February precipitation (positive correlation). This study also found that trees with narrower initial spacing showed stronger relationships with climatic factors, and ring widths in early growth stage had better relationships with climatic factors. These results suggested that the Japanese cedars in the study area had better ability to capture the climatic signals when they are under strong competition condition.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:28:41Z (GMT). No. of bitstreams: 1
ntu-101-R96625031-1.pdf: 3534401 bytes, checksum: 970c261e6004931c6310fd39d26df7ae (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員審定書 i
誌謝 ii
中文摘要 iv
英文摘要 v
目錄 vii
圖表目錄 x
附錄目錄 xii
專有名詞縮寫與中英對照表 xiii
1. 前言 1
2. 文獻回顧 4
2.1 樹輪學原理 4
2.1.1 均變性假說 4
2.1.2 選取樣木原則 5
2.1.3 複本原理 6
2.1.4 交互定年 6
2.1.5 自相關性與敏感度 6
2.1.6 樹輪序列之解構 8
2.1.7 標準化 9
2.2 估計生長趨勢 10
2.2.1 理論法則 10
2.2.2 隨機法則 11
2.2.3 經驗法則 15
2.2.4 生長趨勢估計法的選擇 16
2.3 以反應函數分析輪寬與氣候的關係 17
2.4 溪頭柳杉栽植距離試驗地過去研究 19
2.4.1 林分生長 20
2.4.2 木材物理性質 20
3. 材料與方法 22
3.1樣區概述 22
3.1.1 地理位置與氣候 22
3.1.2 樣區設置簡述 24
3.2 野外調查與取樣 25
3.3 樹輪樣本與數據之初步處理 26
3.3.1 樣本乾燥與固定 26
3.3.2 樣本砂磨 26
3.3.3 交叉定年與輪寬量測 26
3.4 樹輪寬度年表 30
3.4.1 使用ARSTAN製作樹輪寬度年表 30
3.4.2 樹輪年代表之統計數值 31
3.5 樹輪寬度年表分析 33
3.5.1 以相關性比較STD、RES、ARS年表 33
3.5.2 輪寬與氣候因子的關係 33
4. 結果與討論 36
4.1 樹輪初步處理概況 36
4.1.1 樹輪型態變異 36
4.1.2 分組樣本數量 38
4.1.3 樣本徑級分佈 40
4.2 樹輪寬度年表 41
4.2.1 原始樹輪寬度年表與基本統計數值 41
4.2.2 標準化後的樹輪寬度年表與基本統計值 44
4.2.3 以相關性比較STD、ARS、RES樹輪寬度年表 46
4.3 輪寬與氣候因子的關係 51
4.3.1 全樹輪寬度年表與氣候因子的關係 51
4.3.2 樹輪寬度年表性質在時間上的變化 58
5. 綜合討論 68
5.1 各寬度年表與氣候關係的差異 68
5.2 由輪寬年表的頻率性質討論競爭因素 70
5.3 討論輪寬與氣候間關係在不同栽植距離樣區、隨時間推移之差異 71
5.4 討論影響氣候與輪寬間關係的因素 74
6. 結論 77
7. 引用文獻 78
8. 附錄 85
dc.language.isozh-TW
dc.subject柳杉zh_TW
dc.subject氣候zh_TW
dc.subject競爭zh_TW
dc.subject樹木年代學zh_TW
dc.subject栽植距離zh_TW
dc.subject樹輪zh_TW
dc.subject氣候zh_TW
dc.subject競爭zh_TW
dc.subject樹木年代學zh_TW
dc.subject柳杉zh_TW
dc.subject栽植距離zh_TW
dc.subject樹輪zh_TW
dc.subjectCryptomeria japonicaen
dc.subjectClimateen
dc.subjecttree-ringen
dc.subjectspacing trailen
dc.subjectcompetitionen
dc.subjectdendrochronologyen
dc.subjectClimateen
dc.subjectcompetitionen
dc.subjectdendrochronologyen
dc.subjectCryptomeria japonicaen
dc.subjectspacing trailen
dc.subjecttree-ringen
dc.title栽植距離對柳杉樹輪寬與氣候因子關係之影響zh_TW
dc.titleEffects of Spacing on the Relationship between Cryptomeria japonica Ring Width and Climate Factorsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林世宗,郭幸榮,魏聰輝,詹明勳
dc.subject.keyword氣候,競爭,樹木年代學,柳杉,栽植距離,樹輪,zh_TW
dc.subject.keywordClimate,competition,dendrochronology,Cryptomeria japonica,spacing trail,tree-ring,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2012-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved