請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66280完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鼎偉 | |
| dc.contributor.author | Ya-Han Yeh | en |
| dc.contributor.author | 葉亞涵 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:28:32Z | - |
| dc.date.available | 2014-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-14 | |
| dc.identifier.citation | [1] K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793 (2008).
[2] J. Nelson, “Thin Film Solar Cells,” in The Physics of Solar Cells (Imperial College Press, London, 2003) [3] T. Markvart, Luis Castaner, “Principle of Solar Cell Operation” in Solar cells: materials, manufacture and operation, T. Markvart, Luis Castaner (Elsevier, 2005). [4] B. Rech, and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 155–167 (1999). [5] J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004). [6] K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Prog. Photovoltaics 12, 69–92 (2004). [7] C. Haase, and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys.Lett. 91(6), 061116 (2007). [8] C. Haase, D. Knipp, and H. Stiebig, “Optics of thin-film silicon solar cells with efficient periodic light trapping textures,” Proc. SPIE, 6645, (2007). [9] N. Senoussaoui, M. Krause, J. Muller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004). [10]R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture” Opt. Express 17, 23058 (2009). [11] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009). [12]J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004). [13].B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C.M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007). [14] Y. Huang, S. Chattopadhyay, Y. Jen, C. Peng, T. Liu, Y. Hsu, C. Pan, H. Lo, C. Hsu, Y. Chang, C. Lee, K. Chen, and L. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770-774 (2007) [15] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163–167 (2008). [16] G. Conibeer, M. Green, R. Corkish, Y. Cho, E. C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. L. Lin, “Silicon nanostructures for third generation photovoltaic solar cells,” Thin Solid Films 511, 654 (2006). [17] Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, X. W.i Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 10 (2010) [18] J. Li, H.Y. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.Q. Lo, and D.L. Kwong. “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95, 033102 (2009) [19] F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35, 40 (2010). [20] S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692 (2010). [21] Y. Lu and A. Lal, “High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography,” Nano Lett. 10, 4651–4656 (2010). [22] D. Konig, “ Photovoltaic Device Physics on the Nanoscale” in Nanotechnology for Photovoltaic, Loucas Tsakalakos (CRC Press 2010) [23] Mark Z. Jacobson, “Review of Solutions to Global Warming, Air Pollution, and Energy Security.” (2009). [24] A. Khaligh, O. G. Onar, “Solar Energy Harvesting,” in ENERGY HARVESTING-Solar, Wind, and Ocean, Energy Conversion Systems Energys, AH Emadi (CRC Press 2010) [25] U.S. Department of Energy, Energy Efficiency and Renewable Energy, Solar Energy Technologies Program, “PV physics,” available at: http://www.eere.energy.gov/solar [26] S. M. Sze, K. K. Ng, Physics of semiconductor devices (John Wiley and Sons, 2007 ) [27] L. Martinez, D.S. Ghosh, S. Giurgola, P. Vergani and V. Pruneri, “Ultrathin Metal Film and Emerging Transparent Electrode for The Optoeletronics Industry,” CAOL IEEE, 15-18 (2008) [28] D. S. Ghosh,1,L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34, 325–327 (2010) [29] C. Granqvist, “Transparent conductors as solar energy materials: A panoramic review” in Solar Energy Materials and Solar Cells 91, 1529–1598, 2007. [30] P.R. Campbell and M.A. Green, “On intensity enhancement in texturized optical sheets for solar cells,” IEEE Transactions on Electron Devices ED 33, No. 11, 1834–1835 (1986) [31] D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19, A95-A107 (2011). [32] C.C. Chin, Y.H. Ye, and D.-W. Huang, “Efficiency improvement in nanorod amorphous silicon thin film with ultrathin metal electrode for photovoltaic application,” Proc. SPIE, 7848 (2010) [33] Kayes, B.M., Filler, M.A., Henry, M.D., Maiolo III, J.R., Kelzenberg, M.D., Putnam, M.C., Spurgeon, J.M., Plass, K.E., Scherer, A., Lewis, N.S., and Atwater, H.A., “Radial PN junction, wire array solar cells,” PVSC’08. 33rd IEEE, 1–5, 11–16 (2008) [34] A.R. Jha, “MEMS and Nanotechnology-Based Sensors and Devices for Communications,” in Medical and Aerospace Applications, Boca Raton, (FL: CRC Press, 2008.) [35] M.A. Greenwood, News Editor,”Solar Technology: Seeking its day in the sun,” Photonics Spectra, 42–50 (2007) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66280 | - |
| dc.description.abstract | 本篇論文為針對薄膜矽太陽能電池之效率改善,經由週期性光柵型粗化之表面結構,以及奈米柱之結構兩者結合,由不同高度的奈米柱組成的週期性光柵同時具有兩者對光波長吸收增益的優點,其一,對光波具有相當卓越的抗反射效果,其二,此設計能夠增加光的繞射以及散射,以至於增益光場的吸收,並提高轉換效率。模擬使用套裝軟體COMSOL MultiphysicsR 有限元素法解Maxwell’s Equations 來計算二維的奈米柱結構中之電磁場分布。
本文中,除了對光柵形狀之內的參數如:週期、填空比、和角度進行討論外,更進一步的說明了此週期性結構的形狀如:凹陷形、三角形、及帳篷型,對於光場的影響。經由吸收比、吸收分布、電場分布、和轉換效率的相互比較驗證各個參數之間對太陽能電池的影響。以短波長而言,小的週期或填空比都可達到抗反射的效果,而長波長,因適當週期產生的繞射效應造成較大的增益。對於整體效率看來,大角度的週期性結構提供了較好的抗反射條件及較長的光路徑,可以得到結構的角度越大,轉換效率越高的趨勢。而越具有尖角形狀的週期性結構具有和大角度結構同樣的效益,同樣能夠獲得較高的轉換效率。 | zh_TW |
| dc.description.abstract | The influence of nanostructure on the propagation of optical waves within amorphous thin-film silicon solar cells was investigated. Also, the influence of the amorphous silicon thin film (500 nm thick) with periodic gratings formed by array of nanowires with varied heights and different shaped profile on the conversion efficiency was studied via simulation for its solar energy absorption characteristics. The Finite Element Method (FEM) was used to rigorously solve the Maxwell’s equations in two dimensions. By studying the influence of the duty ratio, height and period of the nanowires of the gratings and the shapes of the grating profile including tented, triangular and concave shapes, the designs of the structures were optimized to achieve higher conversion efficiencies.
Enhancement of the conversion efficiency in the blue and green wavelengths of the spectrum is achieved by using small duty ratios and periods of shaped profiles owing to its anti-reflection property, whereas the conversion efficiency in the red and infrared wavelengths of the spectrum is mainly improved by properly designed periods (P = 500 – 900 nm) and larger angles of the shaped profiles to guide light into the structures. The enhancement of conversion efficiency both occurs when no matter what polarization of the incident wave is. The conversion efficiency of solar cells covered with triangular nanowire grating profile, which is approximately optimum, can be increased by 58.21%, 42.45%, and 20.38% compared to the cases for flat solar cells without nanowires, with nanowires, and periodic triangular textures, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:28:32Z (GMT). No. of bitstreams: 1 ntu-101-R97941075-1.pdf: 3537326 bytes, checksum: 06dee6c230756dc0cd1ec70fac7b6959 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 2 中文摘要 3 ABSTRACT 4 CONTENTS 5 LIST OF FIGURES 8 LIST OF TABLES 11 Chapter 1 Introduction 12 1.1 Thin-film solar cell 12 1.2 Nano surface structure 13 1.3 Nanowire 13 1.4 Motivation 14 1.5 Outline 14 Chapter 2 Background 16 2.1 Introduction to Photovoltaic (Solar) Cells 16 2.2 Principles of Solar Cells 17 2.2.1 p-n Diode 17 2.3 Theory of I-V Characterization 19 2.3.1 Short Circuit Current ( ) 21 2.3.2 Open Circuit Voltage ( ) 21 2.3.3 Maximum Power ( ), Current at Maximum Power ( ), Voltage at Maximum Power ( ) 22 2.3.4 Fill Factor (FF) 23 2.3.5 Efficiency (η) 24 2.3.6 Quantum Efficiency (QE) 24 2.3.7 The Air Mass (AM) 25 2.4 Semiconductor Material 26 2.4.1 Amorphous Silicon 27 2.5 Thin Film Solar Cell 28 2.6 Simulation Tools: COMSOL MultiphysicsR 29 Chapter 3 Techniques for Improving Conversion Efficiencies 31 3.1 Electrode Performance 31 3.1.1 Ultrathin Metal Film 31 3.1.2 TCO 32 3.2 Textured Surface 33 3.3 Nanostructure 35 3.3.1 Silicon Nanowires 35 3.3.2 Nanostructure Plasmons 37 3.3.3 Carbon Nanotubes (CNTs) 37 3.3.4 Quantum Dots 38 3.4 Multi-junction Amorphous 38 Chapter 4 Design 39 Chapter 5 Results and Discussion 42 5.1 Light Absorption 42 5.1.1 Nanowire Thickness 42 5.1.2 Period 43 5.1.3 Duty Ratio 47 5.2 Conversion Efficiency 52 5.2.1 Angle 53 5.2.2 Shape 64 Chapter 6 TM Wave 70 6.1 Period 70 6.2 Duty Ratio 73 6.3 Angle 75 6.4 Shape 78 6.5 Optimal Cases 79 Chapter 7 Conclusion and Future Work 80 7.1 Conclusion 80 7.2 Future Work 81 References 82 | |
| dc.language.iso | en | |
| dc.subject | 太陽能 | zh_TW |
| dc.subject | 週期性結構 | zh_TW |
| dc.subject | 奈米柱 | zh_TW |
| dc.subject | 太陽能 | zh_TW |
| dc.subject | 奈米柱 | zh_TW |
| dc.subject | 週期性結構 | zh_TW |
| dc.subject | photovoltaic | en |
| dc.subject | nanowire | en |
| dc.subject | periodic | en |
| dc.subject | solar cell | en |
| dc.subject | photovoltaic | en |
| dc.subject | nanowire | en |
| dc.subject | periodic | en |
| dc.subject | solar cell | en |
| dc.title | 奈米柱式週期性結構對太陽能電池效率之增益 | zh_TW |
| dc.title | The enhancement of conversion efficiency on solar cell with periodic grating formed by nanowires | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃嚴,魏培坤 | |
| dc.subject.keyword | 奈米柱,週期性結構,太陽能, | zh_TW |
| dc.subject.keyword | nanowire,periodic,solar cell,photovoltaic, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
