請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66253
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
dc.contributor.author | Ming-Wei Chang | en |
dc.contributor.author | 張明維 | zh_TW |
dc.date.accessioned | 2021-06-17T00:27:24Z | - |
dc.date.available | 2015-03-19 | |
dc.date.copyright | 2012-03-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-02-15 | |
dc.identifier.citation | [1] 曾信榮和許千樹,“發光二極體”,科學發展月刊,451,32 (2010)。
[2] M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys. 38, 2024 (1963). [3] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913 (1987). [4] 簡金雄和陳金鑫,“二十一世紀的明星產業-有機發光二極體平面顯示器技術”, 光電科技,24,78 (2001)。 [5] W. L. Barnes, “Electromagnetic Crystals for Surface Plasmon Polaritons and the Extraction of Light from Emissive Devices,” J. Lightwave Technol. 17, 2170 (1999). [6] Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2, 483 (2008). [7] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396 (1997). [8] H. Sano, S. Okutani, N. Kamiura, T. Sawatani, D. Fujita, T. Takehara and M. Kobayashi, “An organic light-emitting diode with highly efficient light extraction using newly developed diffraction layer,” SID 08, 515 (2008). [9] B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, and M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 2443302 (2010). [10] C. S. Kim, M. Kim, D. C. Larrabee, I. Vurgaftman, J. R. Meyer, S. H. Lee, and Z. H. Kafafi, “Enhanced performance of organic light-emitting diodes using two-dimensional zinc sulfide photonic crystals,” J. Appl. Phys. 106, 113105 (2009). [11] Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, “A high-extreaction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779 (2003). [12] M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced Luminance Efficiency of Organic Light-Emitting Diodes with Two-Dimensional Photonic Crystals,” Jap. J. Appl. Phys. 44, 2844 (2005). [13] S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324 (2002). [14] Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys. 96, 7629 (2004). [15] P. Vandersteegen, A. U. Nieto, C. V. Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, “Employing a 2D surface grating to improve light out coupling of a substrate emitting organic LED,” SPIE 6486, 64860-H1 (2007). [16] J. H. Jang, M. C. Oh, T. H. Yoon, and J. C. Kim, “Polymer grating imbedded organic light emitting diodes with improved out-coupling efficiency,” Appl. Phys. Lett. 97, 123302 (2010). [17] J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93, 051106 (2008). [18] A. O. Altun, S. Jeon, J. Shim, J. H. Jeong, D. G. Choi, K. D. Kim, J. H. Choi, S. W. Lee, E. S. Lee, H. D. Park, J. R. Youn, J. J. Kim, Y.H. Lee, J. W. Kang, “Corrugated organic light emitting diodes for enhanced light extraction,” Organic Electronics 11, 711-716 (2010). [19] Yee, “Numerical Solution of Initial Value Problems of Maxwell’s Equations,” IEEE Trans. Antennas and Propagation 14, 302 (1996). [20] R. Magnusson and T. K. Gaylord, 'Analysis of multiwave diffraction by thick gratings,' J. Opt. Soc. Am. 67, 1165–1170 (1977). [21] M. G. Moharam and T. K. Gaylord, 'Coupled-wave analysis of reflection gratings,' Appl. Opt., 20, 240–244 (1981). [22] M. G. Moharam and T. K. Gaylord, 'Rigorous coupled-wave analysis of planar-grating diffraction,' J. Opt. Soc. Am. 71, 811-818 (1981). [23] M. G. Moharam and T. K. Gaylord, 'Three-dimensional vector coupled-wave analysis of planar-grating diffraction,' J. Opt. Soc. Am. 73, 1105-1112 (1983). [24] Nicolas Chateau and Jean-Paul Hugonin, 'Algorithm for the rigorous coupled-wave analysis of grating diffraction,' J. Opt. Soc. Am. A 11, 1321-1331 (1994). [25] John Chilwell and Ian Hodgkinson, 'Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,' J. Opt. Soc. Am. A 1, 742-753 (1984). [26] D. S. Bethune, 'Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,' J. Opt. Soc. Am. B 6, 910-916 (1989). [27] 張智星,“MATLAB程式設計入門篇”,清蔚科技(2004)。 [28] P. Bienstman, P. Vandersteegen, R. Baets, “Modeling gratings on either side of the substrate for light extraction in light-emitting diodes,” Opt. Quant Electron 39, 797(2007). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66253 | - |
dc.description.abstract | 本論文對於上發射式有機發光二極體以及下發射式有機發光二極體的發光效率進行研究。在研究當中,我們利用嚴格耦合波分析法與轉移矩陣法進行模擬分析,此種方式利用傅立葉級數來展開不同階的繞射係數,不但能精確地模擬出光在各種模態的比例分佈,對於週期性結構以及多層平面結構,也可以較少的計算量、較短的運算時間得到結果。
在模擬當中,我們以綠光的有機發光二極體為例,發光頻譜的最大值波長為535nm,所以光源的波長就以535nm模擬。首先模擬最佳化的平板結構,得到上發射式有機發光二極體28.55%,以及下發射式有機發光二極體23.21%的出光效率做為比較基準。 為了提高有機發光二極體的出光效率,我們在結構中加入一層一維矩形/梯形週期性光柵,研究改變光柵的週期與厚度對於發光效率的影響,並且平移光源於三個位置在平均其結果,消除光源與光柵相對位置對發光效率的影響。最後與沒有加入光柵的平板結構比較,在上發射式有機發光二極體我們成功提升了約20%的發光效率,在下發射式有機發光二極體則提升了約12%(矩形光柵))/18%(梯形光柵)的發光效率。 | zh_TW |
dc.description.abstract | In this thesis, we use rigorous coupled-wave analysis and transfer matrix method to simulate top emission organic light emitting diodes and bottom emission organic light emitting diodes. It is much more efficiency for periodic structure and multi-planar structure such as OLEDs.
Using green light OLED as sample, the wavelength of the peak in light spectrum is 535nm. The best extraction efficiency of planar top emission OLED is 28.55%, and of planar bottom emission OLED is 23.21%. To improve the extraction efficiency, we add a one-dimensional rectangular / trapezoidal periodic grating layer in the structure. Finally, we successfully improve 20% extraction efficiency of top emission OLED and 12% (rectangular grating) / 18% (trapezoidal grating) of bottom emission OLED compared with planar OLED. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:27:24Z (GMT). No. of bitstreams: 1 ntu-101-R97941026-1.pdf: 6763267 bytes, checksum: 0da973d72671624f3ccfb4538b6b6173 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員審定書.....................................i
致謝...............................................ii 中文摘要...........................................iii ABSTRACT...........................................iv 目錄...............................................v 圖目錄.............................................vii 表目錄.............................................xiii 第1章導論..........................................1 1.1背景概要........................................1 1.2文獻回顧........................................3 1.3數值方法........................................6 1.4章節介紹........................................9 第2章數值分析......................................10 2.1嚴格耦合波分析法................................10 2.2轉移矩陣法......................................13 2.3光源............................................15 2.3.1數學模型......................................15 2.3.2與光柵的水平相對位置..........................17 第3章有機發光二極體模擬分析........................20 3.1模型建立........................................20 3.1.1上發射式有機發光二極體........................20 3.1.2下發射式有機發光二極體........................21 3.1.3光源的設定....................................22 3.2模擬結果分析....................................27 3.2.1節點與反節點..................................27 3.2.2上發射式有機發光二極體........................29 3.2.3下發射式有機發光二極體........................33 3.3圖形化使用者介面................................37 第4章有機發光二極體出光效率改良設計................41 4.1光柵............................................41 4.2矩形光柵........................................44 4.2.1下發射式有機發光二極體........................44 4.2.2上發射式有機發光二極體........................50 4.3梯形光柵........................................54 4.4瓦楞狀結構......................................73 第5章結論..........................................74 參考文獻...........................................75 | |
dc.language.iso | zh-TW | |
dc.title | 以嚴格耦合波分析法模擬含有一維光柵的有機發光二極體 | zh_TW |
dc.title | Rigorous Electromagnetic Analysis of Organic Light-Emitting Diode Devices with One-Dimensional Gratings | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴志賢,王子建 | |
dc.subject.keyword | 有機發光二極體,嚴格耦合波分析法,轉移矩陣法,一維光柵, | zh_TW |
dc.subject.keyword | Organic Light-Emitting Diodes,Rigorous Coupled-Wave Analysis,Transfer Matrix Method,One-Dimensional Gratings, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-02-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。