Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66244
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳
dc.contributor.authorMing-Fang Shieen
dc.contributor.author謝明芳zh_TW
dc.date.accessioned2021-06-17T00:27:02Z-
dc.date.available2015-03-19
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-15
dc.identifier.citation1. 行政院農業委員會. 2009. 結球白菜. p. 54. 刊於:行政院農業委員會編著. 98年農業統計年報. 行政院農業委員會編印. 臺北.
2. 行政院農業委員會. 2009. 農業災害-農作物被害狀況-結球白菜. p. 232. 刊於:行政院農業委員會編著. 98年農業統計年報. 行政院農業委員會編印. 臺北.
3. 朱德民. 1993. 植物與淹水逆境. p.65-86. 植物與環境逆境. 國立編譯館. 臺北.
4. 朱錦紅、柯文雄、許晃雄. 2002. 臺灣降水變化研究回顧-颱風長期變化與降水長期預報. 全球變遷通訊雜誌 36:38-46.
5. 李曉鋒、侯瑞賢、朱玉英、侯喜林、朱紅芳. 2009. 高溫脅迫對大白菜抗氧化系統酶及可溶性蛋白質和熱穩定蛋白質的影響. 上海農業學報 4:26-30.
6. 吳昌祐、朱德民. 1994. 植物在缺氧逆境下之適應調節. 科學農業 42:140-146.
7. 胡昌熾. 1956. 葉菜類. p. 119-124. 蔬菜學各論. 臺灣中華書局. 臺北.
8. 高景輝. 1988. 淹水與植物發育. 科學農業社編印. 臺北.
9. 陳亮憓、蔡秀隆、鄭延景. 2008. 不同溫度下淹水對小白菜產量與品質的影響. 臺灣農學會報 9:446-459.
10. 康妙英. 2009. 大白菜的營養特性與施肥技術. 山西農業科學 37:93-94.
11. 張連宗. 1985. 結球白菜耐熱性育種. 夏季蔬菜生產改進研討會專輯. 臺灣省桃園區農業改良場. 1985. 35-53.
12. 張連宗. 2005. 結球白菜. p. 377-384. 刊於:臺灣農家要覽增修訂三版策畫委員編著. 臺灣農家要覽 農作篇(二). 財團法人豐年社. 臺北.
13. 羅少波、李智軍、周微波、飛彈健一、中島武彥. 1996. 大白菜品種耐熱性的鑒定方法. 中國蔬菜 2: 16-18.
14. 劉安妮. 1987. 白菜類. p. 73-88. 蔬菜栽培技術. 五洲出版社. 臺北.
15. 劉林艷、呂長平、成明亮、莫寧婕. 2008. 植物耐濕性研究發展. 黑龍江農業科學 2:135-138.
16. 蘇小俊、袁希漢、徐海. 2007. 大白菜田間耐熱性的鑑定方法. 江蘇農業學報23:78-80.
17. Abernethy, R.H., D.S. Thiel, N.S. Peterson, and K. Helm. 1989. Thermotolerance is developmentally dependent in germinating wheat seed. Plant Physiol. 89:569-576.
18. Ahmed, J.U. and M.A. Hassan. 2011. Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance. Bangladesh J. Bot. 40:17-22.
19. Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002. Alteratioa in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163:117-123.
20. Amsellem, Z., M.A.K. Jaaen, A.R.J. Driesenaar, and J. Gressel. 1993. Developmental variability of photooxidative stress tolerance in paraquatresistant Conyza. Plant Physiol. 103:1097-1106.
21. Anton, J.M., C.H. Marjolein, J.B. Joris, A.M. Robert, B. Jordi, and A.C. Laurentius. 2002. Submergence research using Rumex palustris as a model: Looking back and going forward. J. Exp. Bot. 53:391-398.
22. Apostolova, E.L., A.G. Dobrikova, P.I. Ivanova, I.B. Petkanchin, and S.G. Taneva. 2006. Relatioahip between the organization of the supercomplex and the functioa of the photosynthetic apparatus. J. Photochem. Photobiol. B: Biol. 83:114-122.
23. Arnell, N. and C. Liu. 2001. Climate change 2001: hydrology and water resources. In: Report Intergovernmental Panel on Climate Change. http://www.ipcc.ch/
24. Asada, K. 1996. Radical production and scavenging in the chloroplasts, p. 123-150 In: N.R Baker (ed). Photosynthesis and the Environment. Kluwer Academic Publishers, Dordrecht, The Netherlands.
25. Baisak, R., D. Rana, P.B.B. Acharya, and M. Kar. 1994. Alteratioa in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell. Physiol. 35:489-495.
26. Bates, L.S., R.P. Waldren and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil 39:205-207.
27. Boem, F.H.G., R.S. Lavado, and C.A. Porcelli. 1996. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res. 47:175-179.
28. Bowler, C., M.V. Montagu, and D. Inze. 1992. Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116.
29. Britikov, E.A., S.V. Vladimirtseva, and N.A. Musatova. 1965. Transformation of proline in germinating pollen and pistil tissues. Fiziol. Hast.12:953-967.
30. Chaitanya, K.V., D. Sundar, S. Masilamani, and A.R. Reddy. 2001. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regulat. 36:175-180.
31. Chu T.M., D. Aspinall, and L.G. Paleg. 1974. Stress metabolism: temperature stress and the accumulation of proline in barley and radish. Aust. J. Plant Physiol. 1: 87-97.
32. Costa, E.S., Smith R.B., Oliveira J.G., Campostrini E., and Pimentel C. 2002. Photochemical efficiency in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L Walp) during recovery from high temperature stress. Brazilian J. Plant Physiol. 14:105-110.
33. Crafts-Brandner, S. and R. Law. 2000. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 212:67-74.
34. Crafts-Brandner, S.J. and M.E. Salvucci. 2002. Seaitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129:1773-1780.
35. Crafts-Brandner, S.J. and M.E. Salvucci 2000. Rubisco activase coatraia the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. USA 97:13430-13435.
36. Duysea, L.M.N. and H.E. Sweers. 1963. Mechanism of the two photochemical reactioa in algae as studied by means of fluorescence, p. 353-372. In: Japanese Society of Plant Physiologists (ed.). Studies on Microalgae and Photosynthetic Bacteria, University of Tokyo Press, Tokyo.
37. Erdmann, B. and E.M. Wiedenroth. 1988. Changes in the root system of wheat seedlings following anaerobiosis. III. Oxygen concentration in the roots. Ann. Bot. 62:277-86.
38. Flores, A., A. Grau, F. Laurich, and K. Dorffling. 1988. Effects of new terpenoid analogues of abscisic acid on chilling and freezing resistances. J. Plant Physiol. 132:362-363.
39. Foster, J.G. and J.L. Hess. 1980. Respoae of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66:482-487.
40. Fukao, T. and J. Bailey-Serres. 2004. Plant respoaes to hypoxia. Is survival a balancing act? Trends Plant Sci. 9:1403-1409.
41. Gibbs, J. and H. Greenway. 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30:1-47.
42. Good, A.G. and D.H. Paetkau. 1992. Identification and characterization of a hypoxically induced maize lactate dehydrogenase gene. Plant Mol. Biol. 19:693-97.
43. Halliwell, B. and J.M.C. Gutteridge. 1989. Free radicals in biology and medicine. 2nd Ed. Oxford university press, New York.
44. Hare, P.D. and W.A. Cress. 1997. Metabolic implicatioa of stress induced proline accumulation in plants. Plant Growth Regulat. 21:79-102.
45. Hasan, M.A., J.U. Ahmed, M.M. Bahadur, M.M. Haque, and S. Sikder. 2007. Effect of late planting heat stress on membrane thermostability, proline content and heat susceptibility index of different wheat cultivars. J. Natn. Sci. Foundation Sri Lanka 35:109-117.
46. Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell. Environ. 16:461-467.
47. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplast: I-kinetics and biochemistry of fatty acid peroxidation. Archs Biochem. Biophys. 125:189-198.
48. Hoque, M.A., M.N.A. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata. 2008. Proline and glycinebetaine enhance antioxidant defeae and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J. Plant Physiol. 165:813-824.
49. Hossain, M.M., H. Takeda, and T. Senboku. 1995. Proline content in Brassica under high temperature stress. JIRCAS J. 2:87-93.
50. Howard, H.F. and T.L. Watschke. 1991. Variable high-temperature tolerance among Kentucky bluegrass cultivars. Agron. J. 83:689-693.
51. Hsu, H.H. and Chen C.T. 2002. Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys. 79:87-104.
52. IPCC. 2007. Climate change 2007: the physical science basis. Summary for policymakers. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. IPCC secretariat, world meteorological organization, Geneva, Switzerland.
53. Islam, M.M., M.A. Hoque, E. Okuma, M.N.A. Banu, Y. Shimoishi, Y. Nakamura, and Y. Murata. 2009. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J. Plant Physiol. 166:1587-1597.
54. Issarakraisila, M., Q. Ma, and D.W. Turner. 2007. Photosynthetic and growth respoaes of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachineais) to waterlogging and water deficit. Scientific Hort. 111:107-113.
55. Kato, T. 1981. The physiological mechanism of heading in Chinese cabbage, p. 207-215. In: N.S. Talekar and T.A. Griggs (Eds.). Chinese cabbage, Proc. First Intl. Symp. AVRDC, Shanhua, Taiwan.
56. Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. J. Bot. 65:729-735.
57. Keleş, Y. and I. Oncel. 2002. Respoae of antioxidative defence system to temperature and water stress combinatioa in wheat seedlings. Plant Sci. 163:783-790.
58. Kooten, O. and J.F.H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn. Res. 25:147-150.
59. Kou C.G., H.M. Chen, and L.H. Ma. 1986. Effect of high temperature on proline content in tomato floral buds and leaves. J. Amer. Soc. Hort. Sci. 11:734-750.
60. Kuo, C.G., B.J. Shen, H.M. Chen, H.C. Chen, and R.T. Opena. 1988. Associatioa between heat tolerance, water coaumption, and morphological characters in Chinese cabbage. Euphytica 39:65-73.
61. Kuo, C.G. and J.S. Tsay. 1981. Physiological respoae of Chinese cabbage under high temperature, p. 217-224. In: N.S. Talekar and T.A. Griggs (Eds.). Chinese cabbage, Proc. First Intl. Symp. AVRDC, Shanhua, Taiwan.
62. Leul, M. and W. J. Zhou. 1999. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J. Plant Growth Regul. 18:9-14.
63. Lichtenthaler, H.K., C. Buschmann, and M. Knapp. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 43: 379-393.
64. Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40:503-510.
65. Lu, C. and A. Voahak. 2002. Effects of salinity stress on photosystem II function in cyanobacterial Spirulina plateais cells. Physiol. Plant 114:405-413.
66. Maathuis, F.J.M. 2009. Physiological functioa of mineral macronutrients. Curr. Opin. Plant Biol. 12:250-258.
67. Marcum, K.B. 1997. Cell membrane thermostability and whole-plant heat tolerance of kentucky bluegrass. Crop Sci. 38:1214-1218.
68. Mathur, S., A. Jajoo, P. Mehta, and S. Bharti. 2011. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol. 3:1-6
69. Mehta, P., A. Jajoo, S. Mathur, and S. Bharti. 2010. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol. Biochem. 48:16-20.
70. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.
71. Mommer, L., T.L. Poa, M. Wolters-Arts, J.H. Venema, and E.J.W. Visser. 2005. Submergence-induced morphological, anatomical, and biochemical respoaes in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol. 139:497-508.
72. NaKano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
73. Olivella, C., C. Biel, M. Vendrell, and R. Save. 2000. Hormonal and physiological respoaes of Gerbera jamesonii to flooding stress. Hort. Sci. 35:222-225.
74. Oosterhuis, D.M., H.D. Scott, R.E. Hampton, and S.D.Wullschleger. 1990. Physiological respoae of two soybean (Glycine max L. Merr.) cultivars to short-term flooding. Environ. Exp. Bot. 30:85-92.
75. Opena, R.T. and S.H. Lo. 1979. Genetics of heat tolerance in heading Chinese cabbage. HortScience 14:33-34.
76. Pastenes, C., and P. Horton. 1996. Effect of high temperature on photosynthesis in beaa (I. oxygen evolution and chlorophyll fluorescence). Amer. Soc. Plant Biologists 112:1245-1251.
77. Paulsen, G.M. 1994. High temperature respoaes of crop plants, p. 365-389. In: K.J. Boote, J.M. Bennett, and T.R. Sinclair (eds.). Physiology and determination of crop yield. ASA, CSSA, and SSSA, Madison, WI.
78. Pearcy, R. W. 1978. Effectes of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.)Wats. Plant Physiol. 61:484-486.
79. Polle, J., K. Niyogi, and A. Melis. 2001. Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol. 42:482-491.
80. Ronde, J., A. Mescht, and H.S.F. Steyn. 2001. Proline accumulation in respoae to drought and heat stress in cotton. African Crop Sci. J. 8:85-91.
81. Sagisaks, S. 1976. The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol. 57:308-309.
82. Sairam, R.K., D. Kumutha, K. Ezhilmathi, P.S. Deshmukh, and G.C. Srivastava. 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant. 52:401-412.
83. Setter, T.L. and I. Waters. 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil. 253:1-34.
84. Smillie, R.M and S.E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plantsmeasured by chlorophyll fluorescence in vivo. Plant Physiol. 72:1043-1050.
85. Stewart, G.R. and S.F. Boggess. 1978. Metabolism of 5-3H proline by barley leaves and its use in measuring the effect of water stress on proline oxidation. Plant Physiol. 61:654-657.
86. Stirbet, A. and Govindjee. 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applicatioa of the OJIP fluorescence transient. J. Photochem. Photobiol. B: Biol. 104:236-257.
87. Szigeti, Z. and E. Lehoczki. 2003. A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag. Sci. 59:451-458.
88. Szabados, L. and A. Savoure. 2009. Proline: a multifunctional amino acid. Trends Plant Sci. 15:89-97.
89. Taiz, L. and E. Zeiger. 2006. Photosynthesis: the light reaction, p. 125-165. In: L. Taiz and E. Zeiger (eds.). Plant Physiology. Sinauer associates, Inc. U.S.A.
90. Vervuren, P.J.A., C.W.P.M. Blom, and H. Kroon. 2003. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. J. Ecol. 91:135-46.
91. Wample, R.L. and R.W. Davis. 1983. Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annuus L.). Plant Physiol. 73:195-198.
92. Webb, J.A. and R.A. Fletcher. 1996. Paclobutrazol protects wheat seedlings from injury due to waterlogging. Plant Growth Regulat. 18:201-206.
93. Willekea, H., S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, M.V. Montagu, D. Inze, and W.V. Camp. 1997. Catalase is a sink for H2O2 and is indispeaable for stress defence in C3 plants. EMBO J. 16:4806-4816.
94. Yan, B., Q. Dai, X. Liu, S. Huang, and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261-268.
95. Yeh, D.M. and P.Y. Hsu. 2004. Heat tolerant in English ivy as measured by an electrolyte leakage technique. J. Hort. Soc. Biotech. 79:298-302.
96. Yiu, J.C., M.J. Tseng, and C.W. Liu. 2011. Exogenous catechin increases antioxidant enzyme activity and promotes flooding tolerance in tomato (Solanum lycopersicum L.). Plant Soil 344:213-225.
97. Zhang, G., K. Tanakamaru, J. Abe, and S. Morita. 2007. Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiol Plant. 29:171-176.
98. Zheng, C., D. Jiang, F. Liu, T. Dai, Q. Jing, and W. Cao. 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176:575-582.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66244-
dc.description.abstract結球白菜(Brassica campestris L.spp. pekinensis)為十字花科蕓苔屬之冷涼季蔬菜,生長適溫為10~22℃,耐熱品種可於平均氣溫持續超過25oC下正常發育、形成緊實葉球。臺灣夏季高溫,且常有颱風、豪雨侵襲,影響蔬菜生產,民國98年結球白菜損失金額約為3000萬臺幣。本研究先調查結球白菜40品種夏作淹水試驗之產量,並選出耐受性不同之品種,探討其苗期於高溫40/30℃淹水逆境下生長與生理之差異。依據結球白菜40品種夏作田間淹水產量試驗,篩選出產量較高的‘慶農200號’與AV86188,產量次高之‘桃園亞蔬2號’、‘47號’與農友‘玉豐’,及產量最低之‘瑞農720’等6品種,於20/15℃生長箱中育苗3週,即予以40/30℃淹水、40/30℃不淹水、20/15℃淹水及20/15℃不淹水共4種處理各48小時,之後調整至20/15℃並排水作為恢復期。於恢復期第8天,‘桃園亞蔬2號’、‘47號’與‘瑞農720’高溫不淹水與高溫淹水處理之葉面積、鮮重或乾重顯著下降,而‘慶農200號’與農友‘玉豐’有較好的生長勢。‘47號’與‘瑞農720’在高溫逆境下,電解質滲漏比率(electrolyte leakage ratio)顯著升高。高溫不淹水逆境對葉綠素含量的影響較嚴重,高溫逆境皆影響新生葉片之葉色。高溫逆境下6品種之葉綠素螢光參數Fv/Fm值皆顯著下降,於回復期第2天回升,但AV86188與‘瑞農720’之光合速率在恢復期第4天仍顯著低於對照組,其氣孔導度與蒸散速率也有相似之趨勢。對高溫淹水敏感之‘瑞農720’於高溫淹水處理下之脂質過氧化物丙二醛(malondialdehyde)與總過氧化物(total peroxide)含量皆顯著高於耐受品種‘慶農200號’,‘慶農200號’之脯胺酸(proline)含量在逆境處理後24小時即顯著累積較多達1.1 μmol/g。‘慶農200號’高溫不淹水與高溫淹水處理之過氧化氫酶(catalase)活性在處理後48小時顯著升高,‘瑞農720’則無顯著差異;抗壞血酸過氧化酶(ascorbate peroxidase)活性以‘慶農200號’高溫不淹水處理提升最快。根據試驗結果,夏作淹水後產量不同之品種,其苗期於高溫40/30℃淹水逆境下之鮮重、乾重、丙二醛含量、脯胺酸含量與CAT活性表現互相對應,或具有作為結球白菜高溫淹水耐受性篩選指標之潛力。zh_TW
dc.description.abstractChinese cabbage (Brassica campestris L. spp. pekinensis) is a cool-season vegetable of Brassica species in Cruciferae family. Chinese cabbage is not suitable to cultivate in summer of Taiwan due to the optimal growth temperature being 10~22℃. Heat tolerant Chinese cabbage cultivars can grow and develop a tight head at average temperature over 25℃. However, high temperature, typhoon and heavy rainfall affect vegetable production in summer of Taiwan. The loss sum of Chinese cabbage in 2009 was about NT$30,000,000. In this research, tolerances of 40 Chinese cabbage cultivars to waterlogging in summer were studied. The seedling growth and physiology of cultivars with very different tolerances to heat and waterlogging were investigated. According to the field yields after waterlogging in summer, the highest yielding ‘Ching-Long 200’ and AV86188, higher yielding ‘ASVEG#2’,‘No. 47’ and ‘Yu-Fong’, and the lowest yielding ‘Ruey-Long 720’ were selected from 40 cultivars. These six cultivars were sown and grown in growth chamber under20/15℃for 3 weeks. Then seedlings were treated with 20/15℃ non-waterlogging, 20/15℃waterlogging, 40/30℃ non-waterlogging and 40/30℃waterlogging. Afterwards seedlings were transferred to 20/15℃and drained as for recovery stage. On the 8th day of recovery, the leaf area, fresh weight and dry weight of ASVEG#2’, ‘No. 47’ and ‘Ruey-Long 720’ were significantly lower after heat and waterlogging treatments. ‘Ching-Long 200’ and ‘Yu-Fong’ showed better seedling growth. The electrolyte leakage ratio of ‘No. 47’ and ‘Ruey-Long 720’ increased significantly under heat stress. The 40/30℃ non-waterlogging treatment affected the chlorophyll contents of Chinese cabbage seriously. Heat stress also affected the leaf color of new born leaves. Fv/Fm values of 6 cultivars decreased significantly under heat stress and raised on the 2nd day of recovery. However, the photosynthetic rates of AV86188 and ‘Ruey-Long 720’, as stomatal conductance and transpirational rate, were significantly lower than control on the 4th day of recovery. The malondialdehyde and total peroxide contents of heat and waterlogging sensitive ‘Ruey-Long 720’ were significantly higher than tolerant ‘Ching-Long 200’ after heat and waterlogging treatment. The proline content of ‘Ching-Long 200’ accumulated to a significantly higher value of 1.1 μmol/g after 24hour stress treatment. The catalase activity of ‘Ching-Long 200’ significantly increased after 48 hours of both non-waterlogging and waterlogging at 40/30℃treatment, while ‘Ruey-Long 720’ did not show significant difference. The activity of ascorbate peroxidase of ‘Ching-Long 200’ increased earlier after 40/30℃ non-waterlogging treatment. According to these results, the expression of fresh weight, dry weight, malondialdehyde and proline contents, and catalase activity of seedlings were similar to the yield of waterlogging trials in summer. These parameters might have potentials as screening index for heat and waterlogging tolerance of Chinese cabbage.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:27:02Z (GMT). No. of bitstreams: 1
ntu-101-R98628126-1.pdf: 3960202 bytes, checksum: 06fb23a137fad6c0d39d8438fff991da (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝………………………………………………………………………………………I
中文摘要………………………………………………………………………………..II
英文摘要……………………………………………………………………………….IV
目錄…………………………………………………………………………………….VI
表目錄………………………………………………………………….…………….VIII
圖目錄…………………………………………………………………………..……X
第一章 前言…………………………………………………………………..………..1
第二章 前人研究………………………………………………………………………2
一、結球白菜概述………………………………………………….………………2
二、高溫逆境對植物生理之影響……………………………….…………………4
三、淹水逆境對植物生理之影響……………………………………..……….….9
第三章 材料與方法…………………………………………………………………...13
一、結球白菜苗期夏季淹水試驗………………………………………………….13
二、結球白菜40品種夏作淹水產量試驗…………………………………………14
三、結球白菜10品種夏作淹水產量試驗……..….………………………………17
四、結球白菜6品種苗期40/30℃淹水試驗………….……………………..……18
五、結球白菜2品種苗期40/30℃淹水試驗………..……………….……………21
六、統計分析…………………………………………………………………….…24
第四章 結果…………………………………………………………………………...25
一、結球白菜苗期夏季淹水試驗………………………………………………….25
二、結球白菜40品種夏作淹水產量試驗……………………...…………………26
三、結球白菜10品種夏作淹水產量試驗…………………………...……………26
四、結球白菜6品種苗期40/30℃淹水試驗……….…………………...……..…27
五、結球白菜2品種苗期40/30℃淹水試驗………….……………………….....32
第五章 討論…………………………………………………………………………...34
一、結球白菜苗期夏季淹水試驗…………………………………..….……..….34
二、結球白菜40品種夏作淹水產量試驗……………………………….…..……35
三、結球白菜10品種夏作淹水產量試驗…………………………………...……35
四、結球白菜6品種苗期40/30℃淹水試驗..…………………………………….36
五、結球白菜2品種苗期40/30℃淹水試驗…..………………………………….38
第六章 結論…………………………………………………………………………...40
參考文獻………………………………………………………………………………41
dc.language.isozh-TW
dc.subject過氧化氫&#37238zh_TW
dc.subject結球白菜zh_TW
dc.subject高溫逆境zh_TW
dc.subject淹水逆境zh_TW
dc.subject電解質滲漏zh_TW
dc.subject葉綠素螢光zh_TW
dc.subject光合作用速率zh_TW
dc.subject丙二醛zh_TW
dc.subject總過氧化物zh_TW
dc.subject脯胺酸zh_TW
dc.subject過氧化氫&#37238zh_TW
dc.subject結球白菜zh_TW
dc.subject高溫逆境zh_TW
dc.subject淹水逆境zh_TW
dc.subject電解質滲漏zh_TW
dc.subject葉綠素螢光zh_TW
dc.subject光合作用速率zh_TW
dc.subject丙二醛zh_TW
dc.subject總過氧化物zh_TW
dc.subject脯胺酸zh_TW
dc.subjectelectrolyte leakageen
dc.subjectchlorophyll fluorescenceen
dc.subjectphotosynthetic rateen
dc.subjectmalondialdehyeen
dc.subjectprolineen
dc.subjectcatalaseen
dc.subjectChinese cabbageen
dc.subjectheat stressen
dc.subjectwaterlogging stressen
dc.subjectelectrolyte leakageen
dc.subjectchlorophyll fluorescenceen
dc.subjectphotosynthetic rateen
dc.subjectmalondialdehyeen
dc.subjectprolineen
dc.subjectcatalaseen
dc.subjectChinese cabbageen
dc.subjectheat stressen
dc.subjectwaterlogging stressen
dc.title結球白菜高溫淹水耐受性之篩選及生理反應zh_TW
dc.titleScreening and Physiology of Chinese Cabbage
(Brassica campestris L. spp. pekinensis) Responding to
High Temperature and Waterlogging
en
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雯如,宋妤,張連宗
dc.subject.keyword結球白菜,高溫逆境,淹水逆境,電解質滲漏,葉綠素螢光,光合作用速率,丙二醛,總過氧化物,脯胺酸,過氧化氫&#37238,zh_TW
dc.subject.keywordChinese cabbage,heat stress,waterlogging stress,electrolyte leakage,chlorophyll fluorescence,photosynthetic rate,malondialdehye,proline,catalase,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2012-02-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved